
Spejd: A Shallow Processing and
Morphological Disambiguation Tool

Adam Przepiórkowski and Aleksander Buczyński

Polish Academy of Sciences, Institute of Computer Science
ul. Ordona 21, 01-237 Warsaw, Poland

{adamp,olekb}@ipipan.waw.pl
http://www.ipipan.waw.pl

Abstract. This article presents a formalism and a beta version of a new
tool for simultaneous morphosyntactic disambiguation and shallow pars-
ing. Unlike in the case of other shallow parsing formalisms, the rules of
the grammar allow for explicit morphosyntactic disambiguation state-
ments, independently of structure-building statements, which facilitates
the task of the shallow parsing of morphosyntactically ambiguous or er-
roneously disambiguated input.

Key words: morphosyntactic disambiguation, partial parsing, shallow
parsing, constituency parsing, syntactic words, syntactic groups, spejd,
poliqarp

1 Introduction

Two observations motivate the work described here. First, morphosyntactic dis-
ambiguation and shallow parsing inform each other and should be performed in
parallel, rather than in sequence. Second, morphosyntactic disambiguation and
shallow parsing rules often implicitly encode the same linguistic intuitions, so a
formalism is needed which would allow to encode disambiguation and structure-
building instructions in a single rule.

The aim of this paper is to present a new formalism and tool, Spejd,1 abbre-
viated to “♠” (the Unicode character 0x2660). The formalism is essentially a cas-
cade of regular grammars, where (currently) each regular grammar is expressed
by a — perhaps very complex — single rule. The rules specify, both morphosyn-
tactic disambiguation/correction operations and structure-building operations,
but, unlike in pure unification-based formalisms, these two types of operations
1 Spejd stands for the Polish Składniowy Parser (Ewidentnie Jednocześnie Dezam-

biguator), the English Shallow Parsing and Eminently Judicious Disambiguation,
the German Syntaktisches Parsing Entwicklungsystem Jedoch mit Disambiguierung,
and the French Super Parseur Et Jolie Désambiguïsation. Originally the system was
called Shallow Parsing And Disambiguation Engine and abbreviated to SPADE .
However, to avoid confusion with the other SPADE parsing system (Sentence-level
PArsing for DiscoursE, http://www.isi.edu/licensed-sw/spade/), it was renamed
to Spejd.



are decoupled, i.e., a rule may be adorned with instructions to the effect that a
structure is built even when the relevant unification fails.

After a brief presentation of some related work in §2, we present the formalism
in §3 and its implementation in §4, with §5 concluding the paper.

2 Background and Related Work

Syntactic parsers differ in whether they assume morphosyntactically disam-
biguated or non-disambiguated input: deep parsing systems based on unification
usually allow for ambiguous input, while shallow (or partial) parsers usually ex-
pect fully disambiguated input. Some partial parsing systems (e.g., [10], [6], [1],
[14]) allow for the interweaving of disambiguation and parsing.

[5] present a unified formalism for disambiguation and dependency parsing.
Since dependency parsing in that approach is fully reductionistic, i.e., it assumes
that all words have all their possible syntactic roles assigned in the lexicon and
it simply rejects some of these roles, that formalism is basically a pure disam-
biguation formalism. In contrast, the formalism described below is constructive:
it groups constituents into larger constituents.

Previous work that comes closest to our aims is reported in [8, 9] and [7],
where INTEX local grammars [15], normally used for disambiguation, are the
basis for a system that recognises various kinds of noun phrases and handles
agreement within them. However, it is not clear whether these extensions lead
to a lean formalism comparable to the formalism presented below.

3 Formalism

3.1 The Basic Format

In the simplest case, each rule consists of up to 4 parts marked as Left, Match,
Right and Eval:

Left: ;
Match: [pos~~"prep"] [base~"co|kto"];
Right: ;
Eval: unify(case,1,2); group(PG,1,2);

The rule means:



1. find a sequence of two tokens2 such that the first token is an unambiguous
preposition ([pos~~prep]), and the second token is a form of the lexeme co
‘what’ or kto ‘who’ ([base~"co|kto"]);

2. if there exist interpretations of these two tokens with the same value of
case, reject all interpretations of these two tokens which do not agree in case
(cf. unify(case,1,2));

3. if the above unification did not fail, mark thus identified sequence as a syn-
tactic group (group) of type PG (prepositional group), whose syntactic head
is the first token (1) and whose semantic head is the second token (2;
cf. group(PG,1,2)).

Left and Right parts of a rule, specifying the context of the match, may be
empty; in such a case they may be omitted.

Note that, unlike in typical unification-based formalisms, unification and
grouping are decoupled here. In particular, it is possible to reverse the order
of group and unify in the rule above: in this case the rule will always mark
the match as a group and only subsequently unify case values, if possible. This
feature of the formalism is useful, e.g., for dealing with systematic deficiencies
of the morphological analyser used.

3.2 Matching (Left, Match, Right)

The contents of parts Left, Match and Right have the same syntax and seman-
tics. Each of them may contain a sequence of the following specifications:

1. token specification, e.g., [pos~~"prep"] or [base~"co|kto"]; these spec-
ifications are compatible with segment specifications of the Poliqarp [4]
corpus search engine as specified in [11]; in particular, a specification like
[pos~~"subst"] says that all morphosyntactic interpretations of a given
token are nominal (substantive), while [pos~"subst"] means that there ex-
ists a nominal interpretation of a given token;

2. group specification, extending the Poliqarp query language as proposed
in [12], e.g., [semh=[pos~~"subst"]] specifies a syntactic group whose se-
mantic head is a token whose all interpretations are nominal;

3. one of the following specifications: ns: no space; sb: sentence beginning;
se: sentence end;

4. an alternative of such sequences in parentheses, e.g., ([pos~~"subst"] |
[synh=[pos~~"subst"]] se).

2 A terminological note is in order, although its full meaning will become clear only
later: by segment we understand the smallest interpreted unit, i.e., a sequence of
characters together with their morphosyntactic interpretations (lemma, grammatical
class, grammatical categories); syntactic word is a non-empty sequence of segments
and/or syntactic words marked by the action word; token is a segment or a syntactic
word; syntactic group (in short: group) is a non-empty sequence of tokens and/or
syntactic groups, marked as an entity by the action group; syntactic entity is a token
or a syntactic group.



Additionally, each such specification may be modified with one of the three
regular expression quantifiers: ?, * and +.

An example of a possible value of Left, Match or Right might be:

[pos~~"adv"] (
[pos~~"prep"] [pos~"subst"] ns? [pos~"interp"]? se |
[synh=[pos~~"prep"]]

)

The meaning of this specification is: find an adverb followed by a prepositional
group, where the prepositional group is specified as either a sequence of an
unambiguous preposition and a possible noun at the end of a sentence, or an
already recognised prepositional group.

3.3 Conditions and Actions (Eval)

The Eval part contains a sequence of Prolog-like predicates evaluating to true or
false; if a predicate evaluates to false, further predicates are not evaluated and
the rule is aborted. Almost all predicates have side effects, or actions. In fact,
many of them always evaluate to true, and they are ‘evaluated’ solely for their
side effects. In the following, we will refer to those predicates which may have
side effects as actions, and to those which may evaluate to false as conditions.

There are two types of actions: morphosyntactic and syntactic. While mor-
phosyntactic actions delete some interpretations of specified tokens, syntactic
actions group entities into syntactic words (consecutive segments which syn-
tactically behave like single words, e.g., multi-segment named entities, etc.) or
syntactic groups.

Natural numbers in predicates refer to tokens matched by the specifications in
Left, Match and Right. These specifications are numbered from 1, counting from
the first specification in Left to the last specification in Right. For example, in
the following rule, there should be case agreement between the adjective specified
in the left context and the adjective and the noun specified in the right context
(cf. unify(case,1,4,5)), as well as case agreement (possibly of a different case)
between the adjective and noun in the match (cf. unify(case,2,3)).

Left: [pos~~"adj"];
Match: [pos~~"adj"][pos~~"subst"];
Right: [pos~~"adj"][pos~~"subst"];
Eval: unify(case,2,3); unify(case,1,4,5);

The exact repertoire of predicates still evolves, but currently the following
are defined:

agree(<cat> ...,<tok>,...) — a condition checking if the grammatical
categories (<cat> ...) of tokens specified by subsequent numbers (<tok>,...)
agree. It takes a variable number of arguments: the initial arguments, such as
case or gender, specify the grammatical categories that should simultaneously



agree, so the condition agree(case gender,1,2) is stronger than the sequence
of conditions: agree(case,1,2), agree(gender,1,2). Subsequent arguments
of agree are natural numbers referring to entity specifications that should be
taken into account when checking agreement.

unify(<cat> ...,<tok>,...) — a condition (and, simultaneously, an ac-
tion) which checks agreement, just as agree, but also deletes interpretations that
do not agree.

delete(<cond>,<tok>,...) — delete all interpretations of specified tokens
matching the specified condition (for example delete(case~"gen|acc",1)).

leave(<cond>,<tok>,...) — leave only the interpretations matching the
specified condition.

add(<tag>,<base>,<tok>) — add to the specified token the interpretation
<tag> with the base form <base>.

word(<tag>,<base>)— create a new syntactic word comprising of all tokens
matched by the Match specification, and assign it the given tag and base form.

In both cases, <tag> may be a simple complete tag, e.g., conj for a conjunc-
tion or adj:pl:acc:f:sup for a superlative degree feminine accusative plural
form of an adjective, but it may also be a specification of a number of tags. For
example, add(subst:number*:gen:m3, procent, 1) will add 2 (one for each
number) nominal genitive inanimate masculine interpretations to the token re-
ferred by 1, in both cases with the base form procent ‘per cent’. Moreover,
the sequence <tag>,<base> may be repeated any number of times, so, e.g., the
abbreviation fr. may be turned into a syntactic word representing any of the
2×7 number/case values of the noun frank ‘franc’ (the currency), or any of the
2×7×5 number/case/gender values of the (positive degree) adjective francuski
‘French’:

Match: [orth~"fr"] ns [orth~"\."];
Eval: word(subst:number*:case*:m3,frank;

adj:number*:case*:gender*:pos,francuski);

<base> is a sequence of static strings and references to tokens’ base or or-
thographic forms. The base form of a new syntactic word is created by eval-
uating and concatenating all elements of the sequence, for example the action
word(qub, "po " 2.orth) creates a new base form by concatenating po, space
and the orthographic form of the second token.

word(<tok>, <tag_fragment>,<base>)— create a new syntactic word com-
prising of all tokens matched by the Match specification, by copying all interpre-
tations of the token <tok>, adding or replacing <tag_fragment> (for example a
negation marker) in each interpretation of that token, and possibly modyfying
the respective base forms. The original interpretations are not modified, if both
<base> and <tag_fragment> are empty, as in the following rule, which turns
the three tokens of „Rzeczpospolita” (i.e., „, Rzeczpospolita and ”) into a single
word with exactly the same interpretations (and base form) as Rzeczpospolita
(the name of a Polish newspaper):

Match: [orth~"„"] ns? [] ns? [orth~"”"];



Eval: word(3,,);

The orthographic form of the newly created syntactic word is always a simple
concatenation of all orthographic forms of all tokens immediately contained in
that syntactic word, taking into account information about space or its lack
between consecutive tokens.

group(<type>,<synh>,<semh>) — create a new syntactic group with syn-
tactic head and semantic head specified by numbers. The <type> is the categorial
type of the group (e.g., PG), while <synh> and <semh> are references to appro-
priate token specifications in the Match part. For example, the following rule
may be used to create a numeral group, syntactically headed by the numeral
and semantically headed by the noun:3

Left: [pos~~"prep"];
Match: [pos~~"num"] [pos~~"adj"]*

[pos~~"subst"];
Eval: group(NumG,2,4);

Of course, rules should be constructed in such a way that references <synh>
and <semh> refer to specifications of single entities, e.g., [case~~"nom"] or
([pos~~"subst"] | [synh=[pos~~"subst"]]) but not, say, [case~~"nom"]+

In all these predicates, a reference to a token specification takes into account
all tokens matched by that specification, so, e.g., in case 1 refers to the speci-
fication [pos~~adj]*, the action unify(case,1) means that all the adjectives
matched must be rid of all interpretations whose case is not shared by all of
them.

Moreover, the numbers in all predicates are interpreted as referring to tokens;
when a reference is made to a syntactic group, the action is performed on the
syntactic head of that group. For example, assuming that the following rule finds
a sequence of a nominal segment, a multi-segment syntactic word and a nominal
group, the action unify(case,1) will result in the unification of case values of
the first segment, the syntactic word as a whole and the syntactic head of the
group.

Match: ([pos~~"subst"]|[synh=[pos~~"subst"]])+;
Eval: unify(case,1);

The only exception to this rule is the semantic head parameter in the group
action; when it references a syntactic group, the semantic, not syntactic, head is
inherited.

4 Implementation

Since the formalism described above is novel and to some extent still evolving,
its implementation had to be not only reasonably fast, but also easy to modify
and maintain. This section briefly presents such an implementation.
3 A rationale for distinguishing these two kinds of heads is given in [12].



The implementation has been released under the GNU General Public Li-
cense (version 3). The release address is http://nlp.ipipan.waw.pl/Spejd/.

4.1 Input and Output

The parser implementing the specification above currently takes as input the
version of the XML Corpus Encoding Standard assumed in the IPI PAN Corpus
of Polish (http://korpus.pl/; [11]). Rules may modify the input in two possible
ways. First, morphosyntactic actions may reject certain interpretations of certain
tokens; such rejected interpretations are marked by the attribute disamb_sh="0"
added to <lex> elements representing these interpretations. Second, syntactic
actions modify the input by adding <syntok> and <group> elements, marking
syntactic words and groups.

For example, the rule given at the top of §3.1 above may be applied to the
following input sequence (slightly simplified in irrelevant aspects; e.g., the token
co actually has 3 more interpretations, apart from the two given below) of two
tokens Po co ‘why, what for’, lit. ‘for what’, where Po is a preposition which
either combines with an accusative argument or with a locative argument, while
co is ambiguous between, inter alia, a nominative/accusative noun:

<tok id="tA5">
<orth>Po</orth>
<lex><base>po</base>

<ctag>prep:acc</ctag></lex>
<lex><base>po</base>

<ctag>prep:loc</ctag></lex>
</tok>
<tok id="tA6">
<lex><base>co</base>

<ctag>subst:sg:nom:n</ctag></lex>
<lex><base>co</base>

<ctag>subst:sg:acc:n</ctag></lex>
</tok>

The result should have the following effect (bits added by the rule are emphasised ):

<group type="PG"
synh="tA5" semh="tA6">

<tok id="tA5">
<orth>Po</orth>
<lex><base>po</base>

<ctag>prep:acc</ctag></lex>
<lex disamb_sh="0" ><base>po</base>

<ctag>prep:loc</ctag></lex>
</tok>
<tok id="tA6">



<lex disamb_sh="0" ><base>co</base>
<ctag>subst:sg:nom:n</ctag>

</lex>
<lex><base>co</base>

<ctag>subst:sg:acc:n</ctag></lex>
</tok>
</group>

4.2 Algorithm Overview

During the initialisation phase, the parser loads the external tagset specification
and the rules, and converts the latter to a set of compiled regular expressions
and actions/conditions. Then, input files are parsed one by one (for each input
file a corresponding output file containing parsing results is created).

To reduce memory usage, parsing is done by chunks defined in the input files,
such as sentences or paragraphs. In the remainder of the paper we assume the
chunks are sentences.

The parser concurrently maintains two representations for each sentence:
1) an object-oriented syntactic entity tree, used for easy manipulation of enti-
ties (for example, for disabling certain interpretations or creating new syntactic
words) and preserving all necessary information to generate the final output;
2) a compact string for quick regexp matching, containing only the information
important for the rules which have not been applied yet.

Tree Representation The entity tree is initialised as a flat (one level deep)
tree with all leaves (segments and possibly special entities, like no space, sen-
tence beginning, sentence end) connected directly to the root. Application of a
syntactic action means inserting a new node (syntacting word or group) to the
tree, between the root and some of the existing nodes. As the parsing proceeds,
the tree changes its shape: it becomes deeper and narrower.

Morphosyntactic actions do not change the shape of the tree, but also reduce
the string representation length by deleting from that string certain interpreta-
tions. The interpretations are preserved in the tree to produce the final output,
but are not relevant to further stages of parsing.

String Representation The string representation is a compromise between
XML and binary representation, designed for easy, fast and precise matching,
with the use of existing regular expression libraries.4 The representation de-
scribes the top level of the current state of the sentence tree, including only the
4 Two alternatives to this approach were considered: 1) building a custom finite state
automata on binary representation: our previous experience shows that while this
may lead to an extremely fast search engine, it is at the same time costly to main-
tain; 2) operating directly on XML files: the strings to search would be longer, and
matching would be more complex (especially for requirements including negation);
a prototype of this kind was written in Perl and parsing times were not acceptable.



information that may be used by rule matching. For each child of the tree root,
the following information is preserved in the string: type (token / group / spe-
cial) and identifier (for finding the entity in the tree in case an action should be
applied to it). The ensuing part of the string depends on the type of the child:
for a token, it is orthographic forms and a list of interpretations; for a group —
number of heads of the group and lists of interpretations for the syntactic and
semantic head.

Because the tagset used in the IPI PAN Corpus is intended to be human-
readable, the morphosyntactic tags are fairly descriptive and, as a result, they
are rather long. To facilitate and speed up pattern matching, each tag is con-
verted to a relatively short string of fixed width. In the string, each character
corresponds to one morphological category from the tagset (first part of speech,
then number, case, gender, etc.) as, for example, in the Czech positional tag
system [3]. The characters — upper- and lowercase letters, or 0 (zero) for cate-
gories non-applicable to a given part of speech — are assigned automatically, on
the basis of the external tagset definition read at initialisation. A few possible
correspondences are presented in Table 4.2.

Table 1. Examples of tag conversion between human-readable and inner positional
tagset.

IPI PAN tag fixed length tag
adj:pl:acc:f:sup UBDD0C0000000
conj B000000000000
fin:pl:sec:imperf bB00B0A000000
subst:pl:nom:m1 NBAA000000000

Matching (Left, Match, Right) The conversion from the Left, Match and
Right parts of the rule to a regular expression over the string representation is
fairly straightforward. Two exceptions — regular expressions as morphosyntactic
category values and the distinction between existential and universal quantifica-
tion over interpretations — are described in more detail below.

First, the rule might be looking for a token whose grammatical category is
described by a regular expresion. For example, [gender~~"m."] should match
personal masculine (also called virile; m1), animal masculine (m2), and inani-
mate masculine (m3) tokens; [pos~~"ppron[123]+|siebie"] should match all
pronouns (ppron12, i.e., first or second person personal pronouns, ppron3, i.e.,
third person personal pronouns, or forms of the reflexive/reciprocal pronoun
siebie, which happens to have a separate grammatical class in the IPI PAN
Corpus, called siebie); [pos!~~"adj.*"] should match all segments except for
(various classes of) adjectives; etc. Because morphosyntactic tags are converted
to fixed length representations, the regular expressions also have to be converted
before compilation.



To this end, the regular expression is matched against all possible values of
the given category. Since, after conversion, every value is represented as a single
character, the resulting regexp can use square bracket notation for character
classes to represent the range of possible values.

The conversion can be done only for attributes with values from a well-
defined, finite set. Since we do not want to assume that we know all the text
to parse before the compilation of the rules, we assume that the dictionary is
infinite. The assumption makes it difficult to convert requirements with negated
orth or base (for example [orth!~"[Nn]ie"]). As for now, such requirements
are not included in the compiled regular expression, but instead handled by
special predicates in the Eval part.

Second, a segment may have many interpretations and sometimes a rule may
apply only when all the interpretations meet the specified condition (for example
[pos~~"subst"]), while in other cases one matching interpretation should be
enough to trigger the rule ([pos~"subst"]).

In the string interpretation, < and > were chosen as convenient separators
of interpretations and entities, because they should not appear in the input
data (they have to be escaped in XML). In particular, each representation of a
fixed length tag is preceded by <. Assuming that tags representing a nominal
(subst) are translated into fixed length string starting with an N, the univer-
sal specification [pos~~"subst"] will be translated into the regular expression
(<N[^<>]+)+, while the existential specification [pos~"subst"] will be trans-
lated into (<[^<>]+)*(<N[^<>]+)(<[^<>]+)*.

Of course, a combination of existential and universal requirements is a valid
requirement as well, for example: [pos~~"subst" case~"gen|acc"] (all inter-
pretations noun, at least one of them in genitive or accusative case) should trans-
late to: (<N[^<>]+)*(<N.[BD][^<>]+)(<N[^<>]+) (if genitive and accusative
translate to B and D).

Conditions and Actions (Eval) As described in §3.3, when a match is found,
the parser evaluates a sequence of predicates connected to the given rule. Each
predicate may be a condition with no side effects involved, a morphosyntactic
action or a syntactic action. The parser executes the sequence until it encounters
a predicate which evaluates to false (for example, unification of cases fails).

The actions affect both the tree and the string representation of the parsed
sentence. The tree is updated instantly (the cost of update is constant or linear
with respect to match length), but the string update (cost linear to sentence
length) is delayed until it is really needed (at most once per rule).

4.3 Efficiency

The system has been implemented in Java. So far, it has been tested in two prac-
tical applications: valence acquisition from the morphosyntactically annotated
IPI PAN Corpus of Polish [13] and sentiment analysis of product reviews [2].

When given a set of over 90 rules of varying complexity, ♠ processed a 12MB
XML file containing over 56 thousand words in about 42 seconds, which gives



the average of about 1340 words per second (as measured on a contemporary
Intel Core2Duo T7200 laptop). In the process, almost 6800 syntactic words and
over 5600 syntactic groups were marked. While parsing times increase with the
size of the grammar, they are still acceptable.

5 Conclusion

The system presented,♠, is perhaps unique in allowing the grammar developer to
encode morphosyntactic disambiguation and shallow parsing instructions in the
same unified formalism, possibly in the same rule. The formalism is more flexible
than either the usual shallow parsing formalisms, which assume disambiguated
input, or the usual unification-based formalisms, which couple disambiguation
(via unification) with structure building. While the rule sets so far have been
prepared for parsing of Polish, ♠ is fully language-independent and we hope it
will also be useful in the processing of other languages.

References

1. Aït-Mokhtar, S., Chanod, J.-P., Roux C.: Robustness beyond shallowness: incre-
mental deep parsing. Natural Language Engineering, 8:121–144 (2002)

2. Buczyński, A., Wawer, A.: Automated classification of product review sentiments
using bag of words and Sentipejd. In: Kłopotek, M.A., Przepiórkowski, A., Wierz-
choń, S.T., Trojanowski, K. (eds.) Intelligent Information Systems. Warsaw: Insti-
tute of Computer Science, Polish Academy of Sciences (2008)

3. Hajič, J., Hladká, B.: Probabilistic and rule-based tagger of an inflective language
- a comparison. In: Proceedings of the ANLP’97. Washington, DC (1997)

4. Janus, D., Przepiórkowski, A.: Poliqarp: An open source corpus indexer and search
engine with syntactic extensions. In: Proceedings of ACL 2007 Demo Session (2007)

5. Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A. (eds.): Constraint Grammar:
A Language-Independent System for Parsing Unrestricted Text. Berlin: Mouton
de Gruyter (1995)

6. Marimon, M., Porta, J.: PoS disambiguation and partial parsing bidirectional
interaction. In: Proceedings of the Third International Conference on Language
Resources and Evaluation, LREC2000. Athens, Greece: ELRA (2000)

7. Nenadić, G.: Local grammars and parsing coordination of nouns in Serbo-Croatian.
In Proceedings of Text, Dialogue and Speech (TSD) 2000. Springer-Verlag (2000)

8. Nenadić, G., Vitas, D.: Formal model of noun phrases in Serbo-Croatian. BULAG,
23. Presses de l’Université de Franche-Comté, Besançon, France (1998)

9. Nenadić, G., Vitas, D.: Using local grammars for agreement modeling in highly
inflective languages. In: Proceedings of Text, Dialogue and Speech (TSD) (1998)

10. Neumann, G., Braun, C., Piskorski, J.: A divide-and-conquer strategy for shallow
parsing of German free texts. In Proceedings of ANLP-2000. Seattle, Washington
(2000)

11. Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version. Warsaw: Institute
of Computer Science, Polish Academy of Sciences (2004)

12. Przepiórkowski, A.: On heads and coordination in valence acquisition. In: Gel-
bukh, A. (ed.), Computational Linguistics and Intelligent Text Processing (CI-
CLing 2007), Lecture Notes in Computer Science. Berlin: Springer-Verlag (2007)



13. Przepiórkowski, A.: Powierzchniowe przetwarzanie języka polskiego. Akademicka
Oficyna Wydawnicza EXIT. Warsaw (2008)

14. Schiehlen, M.: Experiments in German noun chunking. In: Proceedings of the 19th
International Conference on Computational Linguistics (COLING2002). Taipei
(2002)

15. Silberztein, M.: INTEX: a corpus processing system. In: Fifteenth International
Conference on Computational Linguistics (COLING ’94). Kyoto, Japan (1994)


