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Abstract. We propose a new image classi�cation scheme based on the
idea of mining jumping emerging substrings between classes of images
represented by visual features. Jumping emerging substrings (JES) are
string patterns, which occur frequently in one set of string data and
are absent in another. By representing images in symbolic manner, ac-
cording to their color and texture characteristics, we enable mining of
JESs in sets of visual data and use mined patterns to create e�cient and
accurate classi�ers. In this paper we describe our approach to image rep-
resentation and provide experimental results of JES-based classi�cation
of well-known image datasets.

1 Introduction

Knowledge Discovery in Databases is a process concerning a broad range of types
of data that needs to be processed every day. Originally, quantitative and textual
data was in the center of interest for developing e�cient and e�ective methods of
�nding interesting relationships. Today, analysis and understanding of enormous
amounts of collected multimedia data seem to be the most pressing problem in
the �eld of KDD.

As many methods for processing non-multimedia data have already been
proposed, it is interesting to see how well they perform in the domain of visual
data. Mining in such databases requires additional steps to represent visual in-
formation in symbolic form that is adequate for existing methods. In this paper
we assess the performance of a data mining method, which has been developed
focusing on textual data, in the task of image classi�cation. For that purpose we
propose an approach to image representation, a method of building a classi�er
and using it to perform classi�cation of visual data.

Emerging substrings (ESs) [1] are patterns that can be used to di�erenti-
ate classes of data consisting of sequences of symbols. The idea originates from
emerging patterns (EPs) [2], a data mining method of extracting patterns that
occur frequently in one class of data and seldom in another. Emerging patterns
is an approach to KDD that proved to perform very well in the tasks of clas-
si�cation and prediction of large sets of data, many times much better than
classical methods, such as rule- and tree-based classi�ers. Emerging substrings



allow additionally to reason about sequences of symbols or objects in data, which
is an important feature of a visual data mining method. Speci�cally, we can rea-
son about the spatial arrangement of objects on a particular image. On these
grounds we expect an ES-based classi�er to perform better in the task of image
classi�cation than previously proposed methods based on the idea of emerg-
ing patterns. In particular, we suggest using a subset of emerging substrings �
jumping emerging substrings � to build classi�ers capturing the most distinctive
features of two data sets.

In what follows we �rst outline work conducted previously in the �eld of
pattern-based image classi�cation (Section 2), then give the necessary de�nitions
of jumping emerging substrings (Section 3). Next, we describe image represen-
tation used in our experiments (Section 4), the proposed classi�cation method
(Section 5) and compare it with other known approaches (Section 6). Finally,
we conclude with possibilities of further research (Section 7).

2 Previous Work

The idea of mining emerging substrings as means of capturing interesting re-
lationships in textual data has been proposed in [1]. It was motivated by the
earlier concept of emerging patterns, proposed in [2], which have been success-
fully used in classi�cation of a variety of datasets. While the original algorithm
for mining ESs was based on su�x trees, a generalized, linear-time solution has
been proposed in [3]. This result, based on su�x arrays and longest common
pre�x (lcp) tables, has been later improved in [4].

To the best of our knowledge emerging substrings have not been previously
studied in the context of image classi�cation, while our own experiments concern-
ing mining jumping emerging patterns in multimedia data have been presented
in [5].

3 Jumping Emerging Substrings

Here we cite only the essential de�nitions of JESs, used in further parts of the
paper. Please refer to [1] for complete formal de�nition.

A sequence is a non-empty string with �nite length over an alphabet Σ =
{a1, a2, . . . , am}. The length of a sequence is the number of symbols contained
in it. Having a string s = s1s2 . . . sk of length k and a sequence T = t1t2 . . . tl of
length l, we say that s is a substring of T, denoted as s v T if ∃i ∈ 1 . . . (l−k+1)
such that s1s2 . . . sk = titi+1 . . . ti+k−1. If s 6= T , s is a proper substring of T ,
denoted as s < T .

A database D is a set of sequences Ti, each associated with a class la-
bel cTi ∈ C = {c1, c2, . . . , cn}, where C is the set of all labels. The support
of a string s in a database D is the fraction of sequences in D that s is a

substring of: suppD(s) = |{T∈D: svT}|
|D| . Given two databases D1, D2 ⊆ D we

say that a string s is a jumping emerging substring (JES) from D1 to D2 if



suppD1
(s) = 0 ∧ suppD2

(s) > 0. The task of JES mining is to �nd all strings
having a given minimum support θ in D2, being a JES from D1 to D2. We will
denote this set of strings as JES(D1, D2, θ). Furthermore, we can distinguish the
set of only minimal JESs, that is sequences, for which no frequent substrings ex-
ist: JESm(D1, D2, θ) = {T ∈ JES(D1, D2, θ) : ¬∃s ∈ JES(D1, D2, θ) s < T}.

Table 1 shows a simple two-class database and its jumping emerging sub-
strings. Based on the above de�nition, we look at all possible substrings of
strings in class A and �nd these, which are not present in class B. Similarly,
we check for JESs from class B to A. The string �ac� would be the only JES,
if we were to �nd only jumping emerging substrings with minimum support
of 1. Finally, we reduce the set of discovered patterns to only minimal JESs:
JESm(DA, DB , 1/2) = {b, e}, JESm(DB , DA, 1/2) = {ac}.

Table 1: Example database and its jumping emerging substrings

class A class B

acd cde
ac ab

JES support direction
class A class B

b 0 1/2 A → B
e 0 1/2 A → B
ab 0 1/2 A → B
ac 1 0 B → A
de 0 1/2 A → B
acd 1/2 0 B → A
cde 0 1/2 A → B

4 Image Representation

We have compared two approaches to calculation of image features: using both a
color descriptor and a texture descriptor based on Gabor �lters (as in MPEG-7
standard), and a SIFT descriptor. In both cases we divide the images into a
rectangular x× y grid and calculate features in each of the resulting tiles.

In the �rst approach color and texture features are calculated separately.
Image colors are represented by a histogram calculated in the HSV color space,
with the hue channel quantized to h discrete ranges, while saturation and value
channels to s and v ranges respectively. In e�ect, the representation takes the
form of a h × s × v element vector of real values between 0 and 1. For the
representation of texture we use a feature vector consisting of mean and standard
deviation values calculated from the result of �ltering an original image with a
bank of Gabor functions. These �lters are scaled and rotated versions of the
base function, which is a product of a Gaussian and a sine function. By using m
orientations and n di�erent scales we get a feature vector consisting of mean (µ)
and standard deviation (σ) values of each of the �ltered images and thus having



a size of 2 ×m × n values. In our experiments a vector size of 2 × 6 × 4 = 48
values has been used for texture and 18× 3× 3 = 162 for color representation.

SIFT is a local feature descriptor, proposed in [6], which has been widely
used for image representation in classi�cation, recognition and retrieval tasks.
Using the VLFeat open implementation [7], we have calculated SIFT features of
the center point of each of the image tiles for H, S and V color channels, having
a constant scale and orientation set for the descriptor. The feature vector size
for every point is thus equal to 3× 128 values.

Having calculated features of each of the images in both the training and
testing set, we have created a visual dictionary of the most representative color
and texture features. The dictionary is built by clustering corresponding feature
values into a chosen number of groups. Resulting centroids become the elements
of the dictionary and are labeled with unique symbols. These identi�ers are then
used to describe the images in the database by associating an appropriate label
with every tile of each image. This is performed by �nding the closest centroid
to a feature vector calculated for a given image tile. The same dictionary is used
during both the learning and classi�cation phases.

Figure 1 illustrates the used method of image representation. A regular grid
of points is used to calculate images features, which are then clustered to create
the dictionary. In the case of MPEG-7 features, values representing color and
texture are clustered separately and labeled B1, B2, . . . , Bn and T1, T2, . . . , Tn

respectively. These labels are then used to describe each of the grid tiles.

Fig. 1: An example of features calculation and symbolic image representation

5 JES-based Classi�cation

In our approach classi�cation is a two-step process. The �rst phase consists of
building a classi�er on the basis of the learning dataset. We use image repre-
sentation described in the previous section to associate sets of strings to each of
the images in the dataset and then mine minimal jumping emerging substrings
between respective classes in the database. The strings are formed by taking into



account horizontal, vertical and diagonal sequences of symbols of representation
of a particular image (see Fig. 2).
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Fig. 2: Representation used to mine JESs between classes of images. Strings are
formed by considering horizontal, vertical and diagonal sequences of symbols.

In the second phase, we use the created classi�er to assign images from the
testing set to respective categories. This is done by aggregating all minimal
JESs that match the representation of a particular image and determining the
majority class of the patterns. The winning category is then assigned to the
example.

Formally, for a multi-class set of images, represented as a learning database
of strings with associated class labels DL =

⋃
c Cc, where Cc is a database

containing images of class c and C ′c is its complementary database, and a test
set DT , we can formally write the algorithm as follows:

1. For each c ∈ C:
(a) Discover minimal JESm(C ′c, Cc, θ)
(b) For each test image T ∈ DT : calculate score(T, c) =

∑
X suppCc

(X),
where X ∈ JES(C ′c, Cc) such that X v T .

2. Assign image T to a class c, which has the maximum score.

6 Experimental Results

We have used two di�erent datasets to assess the performance of the proposed
JES-based image classi�cation approach. Firstly, we have prepared a synthetic
two-class set of images, which consists of photographs containing the same ob-
ject, positioned randomly on a static background. On the images of class A the
object is oriented vertically, while in class B � horizontally (see Fig. 3). Each of
the classes contains ca. 60 images.



Fig. 3: A synthetic test database with two classes of images

Table 2: Classi�cation accuracy of the synthetic dataset

method minimum MPEG-7 features SIFT features
support accuracy (%) patterns no. accuracy (%) patterns no.

0.250 95.33 92 69.33 80
0.200 96.67 156 79.67 140
0.150 97.50 229 87.00 198

JES 0.100 98.33 352 86.00 574
0.050 99.17 1175 85.67 1830
0.025 99.17 3304 85.33 10934
0.010 99.17 20797 85.33 10934
0.005 99.17 20797 85.33 10934

C4.5 - 93.46 - 57.00 -
SVM - 96.67 - 65.00 -

The database has been prepared to validate the idea behind using JESs for
image classi�cation and the chosen image representation method. While the ob-
ject and background are exactly the same in each of the classes, in our approach
we are able to capture more data about their relationship than using regular
methods, which do not take spatial information into consideration. As presented
in Table 2 JES-based classi�er performs much better, regardless of used feature
descriptor.

All experiments have been performed as a ten-fold cross validation, where the
feature dictionary is recreated in every iteration. The images have been divided
into 8× 8 tiles and the dictionary size has been limited to 16 values. In the case
of this synthetic database, SIFT features have resulted in worse classi�cation
performance than the color and Gabor-based texture features, mostly because
of the sparse grid used to calculate values in particular points. For comparison
purposes, we have used the same locations for calculation of SIFT and MPEG-7



features. Classi�cation with other methods than emerging substrings and emerg-
ing patterns has been carried out using the Weka package [8] and the LIBSVM
library [9] with default parameter values.

Table 3: Classi�cation accuracy of the SIMPLIcity dataset with MPEG-7 fea-
tures

method minimum accuracy (%)
support �ower/ �ower/ �ower/ food/ food/ elephant/

food elephant mountain elephant mountain mountain

0.250 92.26 93.68 96.37 30.50 83.50 58.00
0.200 94.79 95.26 96.89 41.00 89.50 66.00
0.150 96.37 97.89 96.89 63.50 93.00 74.50

JES 0.100 97.94 98.95 96.89 85.00 94.00 89.00
0.050 98.47 98.95 96.89 93.00 95.50 92.00
0.025 98.47 98.95 96.89 93.00 96.00 93.50

0.005 98.47 98.95 96.89 93.00 95.50 93.50

occJEP [5] - 97.92 98.96 97.92 88.00 91.00 88.50
JEP [5] - 95.83 91.67 96.35 88.50 93.50 83.50
C4.5 - 93.23 89.58 85.94 87.50 92.50 82.00
SVM - 90.63 91.15 93.75 87.50 84.50 84.50

Secondly, we have included results of classi�cation of a dataset used in our
earlier experiments in [5], namely the image database created by the authors of
the SIMPLIcity CBIR system [10] (see Fig. 4). This set consists of 10 categories
of photographs, 100 images in each class. As reported in Table 3, our current
approach is in each case giving better results than any of the others. It may be
noted that lowering the minimum support value when mining JESs improves the
classi�cation accuracy only to certain point, above which there is no additional
gain of discovering greater number of patterns.

Fig. 4: Example images from the SIMPLIcity test database



7 Conclusions and Future Work

In this paper we have proposed an approach to image classi�cation that combines
the methods used for sequence and text mining with image analysis and showed
that such methodology may give promising results, surpassing the performance
of other data mining methods. Using jumping emerging substrings to distinguish
images of di�erent classes in a database has a clear advantage over other pattern-
based methods, thanks to its ability to capture spatial relationships between
visual features. It is important to note that optimal (linear-time) algorithms
exist to mine JESs between sets of sequential data. Furthermore, the proposed
approach may be used in conjunction with di�erent feature descriptors, as long
as the images are expressed by a matrix of a �nite number of symbols.

The following aspects of the described method could be enhanced in future
work: invariance to scale by providing multiple layers of symbolic representation
of an image, each calculated using a descriptor of a di�erent scale; using a dense
grid of points for SIFT and multiple orientations to achieve better results than
the MPEG-7 approach.

References

1. Chan, S., Kao, B., Yip, C.L., Tang, M.: Mining emerging substrings. In: Proceed-
ings of the Eighth International Conference on Database Systems for Advanced
Applications. (2003) 119�126

2. Dong, G., Li, J.: E�cient mining of emerging patterns: Discovering trends and
di�erences. In: KDD '99: Proceedings of the �fth ACM SIGKDD international
conference on Knowledge discovery and data mining, New York, NY, USA, ACM
(1999) 43�52

3. Fischer, J., Heun, V., Kramer, S.: Optimal string mining under frequency con-
straints. In: Proceedings of the 10th European Conference on Principles and
Practice of Knowledge Discovery in Databases. Volume 4213 of Lecture Notes in
Arti�cial Intelligence. (2006) 139�150

4. Fischer, J., Mäkinen, V., Välimäki, N.: Space e�cient string mining under fre-
quency constraints. In: Proceedings of the 8th IEEE International Conference on
Data Mining, Los Alamitos, CA, USA, IEEE Computer Society (2008) 193�202

5. Kobyli«ski, �., Walczak, K.: E�cient mining of jumping emerging patterns with
occurrence counts for classi�cation. In Chan, C.C., Grzymaªa-Busse, J.W., Ziarko,
W.P., eds.: International Conference on Rough Sets and Current Trends in Com-
puting. Volume 5306 of LNAI., Springer-Verlag (2008) 419�428

6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60(2) (2004) 91�110

7. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms. http://www.vlfeat.org/ (2008)

8. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edn. Morgan Kaufmann, San Francisco (2005)

9. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

10. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Trans. on Patt. Anal. and Machine Intell. 23
(2001) 947�963


