
Efficient Mining of Jumping Emerging Patterns
with Occurrence Counts for Classification

 Lukasz Kobyliński and Krzysztof Walczak

Institute of Computer Science, Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warszawa, Poland
{L.Kobylinski, K.Walczak}@ii.pw.edu.pl

Abstract. In this paper we propose an efficient method of discovering
Jumping Emerging Patterns with Occurrence Counts for the use in clas-
sification of data with numeric or nominal attributes. This new extension
of Jumping Emerging Patterns proved to perform well when classifying
image data and here we experimentally compare it to other methods,
by using generalized border-based pattern mining algorithm to build the
classifier.

Keywords: data mining, emerging patterns, image representation, clas-
sification

1 Introduction

Recently there has been a strong progress in the area of rule- and pattern-
based classification algorithms, following the very fruitful research in the area of
association rules and emerging patterns. One of the most recent and promising
methods is classification using jumping emerging patterns (JEPs). It is based
on the idea that JEPs, as their support changes sharply from one dataset to
another, carry highly discriminative information that allows creating classifiers,
which associate previously unseen records of data to one of these datasets. As
JEPs have been originally conceived for transaction databases, where each data
record is a set of items, a JEP-based classifier is not usually directly applicable
to relational databases, i.e. containing numeric or nominal attributes. In such
case an additional discretization step is required to transform the available data
to transactional form.

In this article we address the problem of efficiently discovering JEPs and
using them directly for supervised learning in databases, where the data can
be described as multi-sets of features. This is an enhancement of the transac-
tional database representation, where instead of a binary relation between items
and database records, an occurrence count is associated with every item in a
set. Example real-world problems that could be approached in this way include
market-basket analysis (quantities of bought products), as well as text and mul-
timedia data mining (numbers of occurrences of particular features). We use a
new type of JEPs to accomplish this task – the jumping emerging patterns with
occurrence counts (occJEPs) – show both the original semi-näıve algorithm and

a new border-based algorithm for finding occJEPs and compare their discrimi-
native value with other recent classification methods.

The rest of the paper is organized as follows. Section 2 outlines previous work
done in the field, while Section 3 gives an overview of the concept of emerging pat-
terns in transaction databases. In Sections 4–7 we introduce jumping emerging
patterns with occurrence counts (occJEPs), present their discovery algorithms
and describe the chosen method of performing classification with a set of found
occJEPs. Section 8 presents experimental results of classification and a compar-
ison of some of the most current classifiers. Section 9 closes with a conclusion
and discussion on possible future work.

2 Previous Work

The number of papers concerning emerging patterns and the more general con-
cept known as contrast patterns is growing rapidly since the original introduc-
tion of EPs by Dong and Li in [1]. Emerging patterns have been defined there
as itemsets, for which supports increase significantly from one dataset to an-
other. This idea has become the subject of interest of many researchers, as the
patterns proved to be a very accurate alternative to previously proposed rule-
and tree-based classifiers. The first classification algorithm based on EP mining
– Classification based on Aggregating Emerging Patterns (CAEP) – has been
proposed in [2].

Efficient mining of emerging patterns has been studied in [3], while more
accurate classification algorithm has been proposed in [4]. In [5] DeEPS, a new,
lazy learning scheme for EP-based classification has been presented. A particu-
larly good performance of classification has been achieved using only a subset of
EPs, the jumping emerging patterns [6]. Mining efficiency of such patterns has
been further improved in [7–9].

More recently, a rough set theory approach to pattern mining has been pre-
sented in [10] and a method based on the concept of equivalence classes in [11].

Many applications of EPs have been proposed to date, with a particularly
fruitful research in the area of bioinformatics, specifically classification and find-
ing relationships in gene data. The first EP-based algorithms concerning analysis
of such data have been proposed in [12, 13].

The concept of recurrent items in transactional systems has been presented
in the area of multimedia data analysis in [14] in the context of association rules,
while general and efficient algorithms for discovering rules with recurrent items
have been studied in [15] and [16]. The extension of the definition of jumping
emerging patterns to include recurrent items and using them for building clas-
sifiers has been proposed in [17].

3 Emerging Patterns

Emerging patterns may be briefly described as patterns, which occur frequently
in one set of data and seldom in another. We now give a formal definition of
emerging patterns in transaction systems.

Let a transaction system be a pair (D, I), where D is a finite sequence of
transactions (T1, . . . , Tn) (database), such that Ti ⊆ I for i = 1, . . . , n and I
is a non-empty set of items (itemspace). A support of an itemset X ⊂ I in a
sequence D = (Ti)i∈K⊆{1,...,n} ⊆ D is defined as:

suppD(X) =
|{i ∈ K : X ⊆ Ti}|

|K|
. (1)

Given two databases D1, D2 ⊆ D the growth rate of an itemset X ⊂ I from
D1 to D2 is defined as:

GRD1→D2
(X) =

0 if suppD1

(X) = 0 and suppD2
(X) = 0,

∞ if suppD1
(X) = 0 and suppD2

(X) 6= 0,
suppD2

(X)

suppD1
(X) otherwise.

(2)

Given a minimum growth rate ρ, we define an itemset X ⊂ I to be a ρ-
emerging pattern (ρ-EP) from D1 to D2 if GRD1→D2

(X) > ρ. Furthermore, we
say that an itemset X is a jumping emerging pattern (JEP), when its growth
rate is infinite, that is GRD1→D2

(X) =∞. Having a minimum support threshold
ξ, we define a strong ξ-jumping emerging pattern to be a JEP from D1 to D2

for which suppD1
(X) = 0 and suppD2

(X) > ξ. A set of all JEPs from D1 to D2

is called a JEP space and denoted by JEP (D1, D2).

Example 1. For the example database given by Table 1, havingD1 = (T1,2,3), D2 =
(T4,5), the set of minimal JEPs from D1 to D2 is equal to: {{black}, {brown},
{red, white}}. A minimal JEP is a jumping emerging pattern X, such that no
proper subset of X is a JEP, e.g. in the case of {red, white} neither {red} nor
{white} are JEPs.

Table 1. Transaction database example. Ti – transactions with binary items, T r
i –

transactions with recurrent items.

i Ti T r
i

D1 1 blue, green, white, yellow 8 · blue, 4 · green, 3 · white, 1 · yellow
2 beige, red, yellow 10 · beige, 3 · red, 3 · yellow
3 white, magenta 12 · white, 4 ·magenta

D2 4 blue, brown, white 6 · blue, 2 · brown, 8 · white
5 black, white, red, yellow 9 · black, 2 · white, 3 · red, 2 · yellow

4 Jumping Emerging Patterns with Occurrence Counts

Let a transaction system with recurrent items be a pair (Dr, I), where Dr is a
database and I is an itemspace (the definition of itemspace remains unchanged).
We define database Dr as a finite sequence of transactions (T r

1 , . . . , T
r
n) for i =

1, . . . , n. Each transaction is a set of pairs T r
i = {(ti, qi); ti ∈ I}, where qi :

I → N is a function, which assigns the number of occurrences to each item of
the transaction. Similarly, a multiset of items Xr is defined as a set of pairs
{(x, p); x ∈ I}, where p : I → N. We say that x ∈ Xr ⇐⇒ p(x) ≥ 1 and
define X = {x : x ∈ Xr}. We will write Xr = (X, P) to distinguish X as the set
of items contained in a multiset Xr and P as the set of functions, which assign
occurrence counts to particular items.

The support of a multiset of items Xr in a sequence Dr = (T r
i)i∈K⊆{1,...,n} ⊆

Dr is defined as:

suppD(Xr, θ) =
|{i ∈ K : Xr

θ
⊆ T r

i }|
|K|

, (3)

where
θ
⊆ is an inclusion relation between a multiset Xr = (X, P) and a trans-

action T r = (T, Q) with an occurrence threshold θ ≥ 1:

Xr
θ
⊆ T r ⇐⇒ ∀x∈I q(x) ≥ θ · p(x). (4)

We will assume that the relation ⊆ is equivalent to
1
⊆ in the context of two

multisets.

Example 2. The support of a multiset of items Xr = {1 · white, 2 · yellow} for
threshold θ = 1 in transaction sequence D1 = (T r

1,2,3) of database given by Ta-
ble 1 is equal to: suppD1

(Xr, 1) = 0. Similarly, for D2 = (T r
4,5), suppD2

(Xr, 1) =
1. Having the threshold θ = 2, suppD1

(Xr, 2) = 0 and suppD2
(Xr, 2) = 0.

Let a decision transaction system be a tuple (Dr, I, Id), where (Dr, I ∪ Id)
is a transaction system with recurrent items and ∀T r∈Dr |T ∩ Id| = 1. Elements
of I and Id are called condition and decision items, respectively. A support
for a decision transaction system (Dr, I, Id) is understood as a support in the
transaction system (Dr, I ∪ Id).

For each decision item c ∈ Id we define a decision class sequence Cc =
(T r
i)i∈K , where K = {k ∈ {1, . . . , n} : c ∈ Tk}. Notice that each of the

transactions from Dr belongs to exactly one class sequence. In addition, for
a database D = (T r

i)i∈K⊆{1,...,n} ⊆ Dr, we define a complement database
D′ = (T r

i)i∈{1,...,n}−K .
Given two databases D1, D2 ⊆ Dr we call a multiset of items Xr a jumping

emerging pattern with occurrence counts (occJEP) fromD1 toD2, if suppD1
(Xr, 1)

= 0 ∧ suppD2
(Xr, θ) > 0, where θ is the occurrence threshold. A set of all occ-

JEPs with a threshold θ from D1 to D2 is called an occJEP space and denoted by

occJEP (D1, D2, θ). We distinguish the set of all minimal occJEPs as occJEPm,
occJEPm(D1, D2, θ) ⊆ occJEP (D1, D2, θ). Notice also that occJEP (D1, D2, θ)
⊆ occJEP (D1, D2, θ − 1) for θ ≥ 2. In the rest of the paper we will refer to
multisets of items as itemsets and use the symbol Xr to avoid confusion.

Example 3. Taking into consideration D1 = (T r
1,2,3) and D2 = (T r

4,5) from Ta-
ble 1, the set of minimal occJEPs from D1 to D2 with threshold θ = 1 is equal to:
{{1·black}, {1·brown}, {1·blue, 4·white}, {1·red, 1·white}, {1·white, 2·yellow}}.
Changing the threshold to θ = 2 results in reducing the set of patterns to:
{{1 · black}, {1 · brown}, {1 · blue, 4 ·white}, {1 · red, 1 ·white}}. This is because
suppD1

({1 · white, 2 · yellow}, 1) = 0 and suppD2
({1 · white, 2 · yellow}, 1) > 1,

but suppD2
({1 · white, 2 · yellow}, 2) = 0.

Occurrence Threshold The introduction of an occurrence threshold θ allows for
differentiating transactions containing the same sets of items with a specified
tolerance margin of occurrence counts. It is thus possible to define a difference
in the number of occurrences, which is necessary to consider such a pair of
transactions as distinct sets of items.

For the example image database given by Table 1 we can see that the dif-
ferences between counts of such items as white and yellow may be too small
to assume they represent a general pattern present in the database that would
allow building a classifier. Setting the threshold to a higher value results in a
smaller number of patterns, but the discovered ones have a greater confidence.

5 A Semi-Näıve Mining Algorithm

Our previous method of discovering occJEPs, introduced in [17], is based on the
observation that only minimal patterns need to be found to perform classifica-
tion. Furthermore, it is usually not necessary to mine patterns longer than a
few items, as their support is very low and thus their impact on classification
accuracy is negligible. This way we can reduce the problem to: (a) finding only
such occJEPs, for which no patterns with a lesser number of items and the same
or lower number of item occurrences exist; (b) discovering patterns of less than
δ items.

Let Cc be a decision class sequence of a database Dr for a given decision item
c and C ′c a complement sequence to Cc. We define D1 = C ′c, D2 = Cc and the
aim of the algorithm to discover occJEPm(D1, D2, θ). We begin by finding the
patterns, which are not supported in D1, as possible candidates for occJEPs.
In case of multi-item patterns at least one of the item counts of the candidate
pattern has to be larger than the corresponding item count in the database. We
can write this as:

Xr = (X,P) is an occJEP candidate ⇐⇒ ∀T r=(T,Q)∈D1
∃x∈X p(x) > q(x).

Table 2 shows an example set of conditions for single and multi-item occJEP
candidates.

Table 2. Finding occJEPs in a transaction database with recurrent items. Example
conditions for single-item patterns and patterns consisting of two items.

D1 q(i1) q(i2) q(i3)

T r
1 3 12 3
T r
2 0 16 11
T r
3 5 19 4
T r
4 2 14 13

cond(p(i1)) cond(p(i2), p(i3))

p(i1) > 3 p(i2) > 12 ∨ p(i3) > 3
p(i1) > 0 p(i2) > 16 ∨ p(i3) > 11
p(i1) > 5 p(i2) > 19 ∨ p(i3) > 4
p(i1) > 2 p(i2) > 14 ∨ p(i3) > 13

The first step of the algorithm is then to create a set of conditions in the
form of [p(ij) > q1(ij)∨ . . .∨ p(ik) > q1(ik)]∧ . . .∧ [p(ij) > qn(ij)∨ . . .∨ p(ik) >
qn(ik)] for each of the candidate itemsets Xr = (X,P), X ⊆ 2I , where j and
k are subscripts of items appearing in a particular Xr and n is the number of
transactions in D1. Solving this set of inequalities results in its transformation
to the form of [p(ij) > rj ∧ . . .∧ p(ik) > rk]∨ . . .∨ [p(ij) > sj ∧ . . .∧ p(ik) > sk],
where r and s are the occurrence counts of respective items. The counts have to
be incremented by 1, to fulfill the condition of suppD1

(Xr, θ) = 0.

Example 4. For the previously introduced example of D1 from Table 2, we can
see that cond(p(i1)) resolves to p(i1) > 5 and cond(p(i1), p(i2)) to p(i2) > 19 ∨
p(i3) > 13 ∨ (p(i2) > 14 ∧ p(i3) > 11) ∨ (p(i2) > 16 ∧ p(i3) > 4). Notice that
resolved conditions for pattern length l also contain all conditions for l− 1. The
resulting candidates for minimal patterns, after incrementing the occurrence
counts, are thus the following: Xr

1 = {6 · i1}, Xr
2 = {20 · i2}, Xr

3 = {14 · i3},
Xr

4 = {15 · i2, 12 · i3}, Xr
5 = {17 · i2, 5 · i3}.

Having found the minimum occurrence counts of items in the candidate
itemsets, we then calculate the support of each of the itemsets in D2 with
a threshold θ. The candidates, for which suppD2

(X, θ) > 0 are the minimal
occJEPs(D1, D2, θ).

Example 5. Continuing the above example, we see from Table 3 that the support
of candidate patterns suppD2

(Xr
1, 3) > 0, suppD2

(Xr
3, 2) = 0 and suppD2

(Xr
5, 1) >

0. Xr
1 and Xr

5 are thus minimal occJEPs with threshold values θ = 3 and θ = 1
respectively. By the definition of occJEPs, Xr

1 is also an occJEP for θ ∈ [1, 3].
Other minimal occJEPs are Xr

3 and Xr
4 for θ = 1, as their respective supports

in D2 are equal to 1/4.

6 Border-Based Mining Algorithm

The border-based occJEP discovery algorithm is an extension of the EP-mining
method described in [3]. Similarly, as proved in [7] for regular emerging patterns,
we can use the concept of borders to represent a collection of occJEPs. This is
because the occJEP space S is convex, that is it follows: ∀Xr, Zr ∈ Sr ∀Y r ∈
2S

r

Xr ⊆ Y r ⊆ Zr ⇒ Y r ∈ Sr. For the sake of readability we will now onward

Table 3. Finding occJEPs in a transaction database with recurrent items. Calculating
the support count of candidate itemsets in complementary database.

D2 p(i1) p(i2) p(i3)

T r
1 11 15 4
T r
2 18 16 12
T r
3 12 17 5
T r
4 23 14 14

φ(Xr
1, T

r, 3) φ(Xr
3, T

r, 2) φ(Xr
5, T

r, 1)

0 0 0
1 0 0
0 0 1
1 0 0

suppD2
= 1/2 suppD2

= 0 suppD2
= 1/4

denote particular items with consecutive alphabet letters, with an index indicat-
ing the occurrence count, and skip individual brackets, e.g. {a1b2, c3} instead of
{{1 · i1, 2 · i2}, {3 · i3}}.

Example 6. S = {a1, a1b1, a1b2, a1c1, a1b1c1, a1b2c1} is a convex collection of
sets, but S ′ = {a1, a1b1, a1c1, a1b1c1, a1b2c1} is not convex. We can partition it
into two convex collections S ′1 = {a1, a1b1} and S ′2 = {a1c1, a1b1c1, a1b2c1}.

A border is an ordered pair < L,R > such that L and R are antichains,
∀Xr ∈ L ∃Y r ∈ R Xr ⊆ Y r and ∀Xr ∈ R ∃Y r ∈ L Y r ⊆ Xr. The collection of
sets represented by a border < L,R > is equal to:

[L,R] = {Y r : ∃Xr ∈ L,∃Zr ∈ R such that Xr ⊆ Y r ⊆ Zr}. (5)

Example 7. The border of collection S, introduced in earlier example, is equal
to [L,R] = [{a1}, {a1b2c1}].

The most basic operation involving borders is a border differential, defined
as:

< L,R >=< {∅},R1 > − < {∅},R2 > . (6)

As proven in [7] this operation may be reduced to a series of simpler opera-
tions. For R1 = {U1, . . . , Um}:

< Li,Ri > = < {∅}, {U r
i } > − < {∅},R2 > . (7)

< L,R > = <

m⋃
i=1

Li,
m⋃
i=1

Ri > . (8)

A direct approach to calculating the border differential would be to expand
the borders and compute set differences.

Example 8. The border differential between [{∅}, {a1b2c1}] and [{∅}, {a1c1}] is
equal to [{b1}, {a1b2c1}]. This is because:

[{∅}, {a1b2c1}] = {a1, b1, b2, c1, a1b1, a1b2, a1c1, b1c1, b2c1, a1b1c1, a1b2c1}
[{∅}, {a1c1}] = {a1, c1, a1c1}

[{∅}, {a1b2c1}] − [{∅}, {a1c1}] = {b1, b2, a1b1, a1b2, b1c1, b2c1, a1b1c1, a1b2c1}

6.1 Algorithm optimizations

On the basis of optimizations proposed in [3], we now show the extensions nec-
essary for discovering emerging patterns with occurrence counts. All of the ideas
presented there for reducing the number of operations described in the context
of regular EPs are also applicable for recurrent patterns. The first idea allows
avoiding the expansion of borders when calculating the collection of minimal
itemsets Min(S) in a border differential S = [{∅}, {U r}]− [{∅}, {Sr

1, . . . , S
r
k}]. It

has been proven in [3] that Min(S) is equivalent to:

Min(S) = Min({
⋃
{s1, . . . , sk} : si ∈ U r − Sr

i , 1 ≤ i ≤ k}). (9)

In the case of emerging patterns with occurrence counts we need to define
the left-bound union and set theoretic difference operations between multisets
of items Xr = (X, P) and Y r = (Y, Q). These operations guarantee that the
resulting patterns are still minimal.

Definition 1. The left-bound union of multisets Xr ∪ Y r = Zr. Zr = (Z,R),
where: Z = {z : z ∈ X ∨ z ∈ Y } and R = {r(z) = max(p(z), q(z))}.

Definition 2. The left-bound set theoretic difference of multisets Xr−Y r = Zr.
Zr = (Z,R), where: Z = {z : z ∈ X ∧ p(z) > q(z)} and R = {r(z) = q(z) + 1}.

Example 9. For the differential: [{∅}, {a1b3c1d1}]− [{∅}, {b1c1}, {b3d1}, {c1d1}].
U = {a1b3c1d1}, S1 = {b1c1}, S2 = {b3d1}, S3 = {c1d1}. U − S1 = {a1b2d1},
U − S2 = {a1c1}, U − S3 = {a1b1}. Calculating the Min function:

Min([{∅}, {a1b3c1d1}]− [{∅}, {b1c1}, {b3d1}, {c1d1}]) =

= Min({a1a1a1, a1a1b1, a1c1a1, a1c1b1, b2a1a1,
b2a1b1, b2c1b1, d1a1a1, d1a1b1, d1c1a1, d1c1b1}) =

= Min({a1, a1b1, a1c1, a1b1c1, a1b2, a1b2, b2c1, a1d1, a1b1d1, a1c1d1, b1c1d1}) =

= {a1, b2c1, b1c1d1} .

Similar changes are necessary when performing the border expansion in an
incremental manner, which has been proposed as the second possible algorithm
optimization. The union and difference operations in the following steps need to
be conducted according to Definitions 1 and 2 above, see Algorithm 1.

Lastly, a few points need to be considered when performing the third opti-
mization, namely avoiding generating nonminimal itemsets. Originally, the idea
was to avoid expanding such itemsets during incremental processing, which are
known to be minimal beforehand. This is the case when the same item is present
both in an itemset in the old L and in the set difference U−Si (line 3 of the incre-
mental expansion algorithm above). In case of recurrent patterns this condition
is too weak to guarantee that all patterns are still going to be generated, as we
have to deal with differences in the number of item occurrences. The modified
conditions of itemset removal are thus as follows:

Algorithm 1: Incremental expansion

Input : U r, Sr
i

Output: L
1 L ←− {{x} : x ∈ U r − Sr

1}
2 for i = 2 to k do
3 L ←− Min{Xr ∪ {x} : Xr ∈ L, x ∈ U r − Sr

i}
4 end

1. If an itemset Xr in the old L contains an item x from T r
i = U r − Sr

i and its
occurrence count is equal or greater than the one in T r

i , then move Xr from
L to NewL.

2. If the moved Xr is a singleton set {(x, p(x))} and its occurrence count is the
same in L and T r

i , then remove x from T r
i .

Example 10. Let U r = {a1b2}, Sr
1 = {a1}, Sr

2 = {b1}. Then T r
1 = U r−Sr

1 = {b1}
and T r

2 = U r − Sr
2 = {a1b2}. We initialize L = {b1} and check it against T r

2 .
While T r

2 contains {b2}, {b1} may not be moved directly to NewL, as this would
falsely result in returning {b1} as the only minimal itemset, instead of {a1b1, b2}.
Suppose Sr

1 = {a1b1}, then initial L = {b2} and this time we can see that {b2}
does not have to be expanded, as the same item with at least equal occurrence
count is present in T r

2 . Thus, {b2} is moved directly to NewL, removed from T r
2

and returned as a minimal itemset.

The final algorithm, consisting of all proposed modifications, is presented
below as Algorithm 2.

6.2 Discovering occJEPs

Creating an occJEP-based classifier involves discovering all minimal occJEPs to
each of the classes present in a particular decision system. We can formally define
the set of patterns in a classifier occJEP θC for a given occurrence threshold θ
as: occJEP θC =

⋃
c∈Id occJEPm(C ′c, Cc, θ), where Cc ⊆ Dr

L is a decision class
sequence for decision item c and C ′c is a complementary sequence in a learning
database Dr

L.
To discover patterns between two dataset pairs, we first need to remove non-

maximal itemsets from each them. Next, we multiply the occurrence counts of
itemsets in the background dataset by the user-specified threshold. Finally, we
need to iteratively call the Border-differential function and create a union of the
results to find the set of all minimal jumping emerging patterns with occurrence
counts from C ′c to Cc (see Algorithm 3).

Example 11. Consider a learning database Dr
L containing transactions of three

distinct classes: C1, C2, C3 ⊂ Dr
L. C1 = {b2, a1c1}, C2 = {a1b1, c3d1} and C3 =

{a3, b1c1d1}. We need to discover occJEPs to each of the decision class sequences:
occJEPm(C2∪C3, C1, θ), occJEPm(C1∪C3, C2, θ) and occJEPm(C1∪C2, C3, θ).

Algorithm 2: Border differential

Input : < {∅}, {U r} >, < {∅}, {Sr
1, . . . , S

r
k} >

Output: L
1 T r

i ←− U r − Sr
i for 1 ≤ i ≤ k

2 if ∃T r
i = {∅} then

3 return < {}, {} >
4 end
5 L ←− {{x} : x ∈ T r

1}
6 for i = 2 to k do
7 NewL←− {Xr = (X,P (X)) ∈ L : X ∩ Ti 6= ∅ ∧ ∀x ∈ (X ∩ Ti) p(x) ≥ t(x)}
8 L ←− L−NewL
9 T r

i ←− T r
i − {x : {(x, p(x))} ∈ NewL}

10 foreach Xr ∈ L sorted according to increasing cardinality do
11 foreach x ∈ Ti do
12 if ∀Zr ∈ NewL suppZr(Xr ∪ {x}, 1) = 0 then
13 NewL←− NewL ∪ (Xr ∪ {x})
14 end

15 end

16 end
17 L ←− NewL
18 end

Suppose θ = 2. Calculating the set of all minimal patterns involves invoking
the Discover-minimal-occJEPs function three times, in which the base Border-
differential function is called twice each time and the resulting occJEPs are as
follows: {a1c1} to class 1, {c3, a1b1} to class 2 and {a3, b1c1, b1d1} to class 3.

7 Performing Classification

Classification of a particular transaction in the testing database Dr
T is performed

by aggregating all minimal occJEPs, which are supported by it [9]. A scoring
function is calculated and a category label is chosen by finding the class with
the maximum score:

score(T r, c) =
∑
Xr

suppCc
(Xr), (10)

where Cc ⊆ Dr
T and Xr ∈ occJEPm(C ′c, Cc), such that Xr ⊆ T r. It is possible to

normalize the score to reduce the bias induced by unequal sizes of particular de-
cision sequences. This is performed by dividing the calculated score by a normal-
ization factor: norm-score(T r, c) = score(T r, c)/base-score(c), where base-score
is the median of scores of all transactions with decision item c in the learning
database: base-score(c) = median{score(T r, c), for each T r ∈ Cc ⊆ Dr

L}.

Algorithm 3: Discover minimal occJEPs

Input : C′
c, Cc, θ

Output: J
1 for Sr

i ∈ R do
2 Sr

i ←− (Si, s(x) · θ)
3 end
4 J ←− {∅}
5 for Lr

i ∈ L do
6 J ←− J ∪ Border-differential(< {∅}, {Lr

i} >,< {∅}, {Sr
1, . . . , S

r
k} >)

7 end

8 Experimental Results

We have used two types of data with recurrent items to assess the performance
of the proposed classifier. The first is a dataset used previously in [17], which
consists of images, represented by texture and color features, classified into four
categories: flower, food, mountain and elephant. The data contains ca. 400 in-
stances and 16 recurrent attributes, where each instance is an image represented
by 8 types of texture and 8 types of color features, possibly occurring multiple
times on a single image. The second dataset used for experiments represents
the problem of text classification and has been generated on the basis of the
Reuters-21578 collection of documents.

8.1 Image Dataset

The image dataset is a collection of images made available by the authors of the
SIMPLIcity CBIR system [18], consisting of 1 000 photographs, which are JPEG
color image files, having a resolution of 384 × 256 pixels. An example selection
of photographs is presented on Figure 1.

Fig. 1. Example images from the SIMPLIcity test database

Feature Representation We have used a tile-based, symbolic representation of
photographs to enable using classification methods developed for transactional
data in the domain of images. The images are uniformly divided into a grid of
x× y tiles, where x is the number of rows and y is the number of columns, and
for each of the tiles the color and texture features are calculated.

Color features are represented by a histogram calculated in the HSV color
space, with the hue channel quantized to h discrete ranges, while saturation and
value channels to s and v ranges respectively. In effect, the representation takes
the form of a h × s × v element vector of real values between 0 and 1. For the
representation of texture we use a feature vector consisting of mean and standard
deviation values calculated from the result of filtering an original image with a
bank of Gabor functions. These filters are scaled and rotated versions of the
base function, which is a product of a Gaussian and a sine function. By using m
orientations and n different scales we get a feature vector consisting of mean (µ)
and standard deviation (σ) values of each of the filtered images and thus having
a size of 2×m× n values.

In the next step we aggregate all calculated image features and employ a
clustering algorithm to reduce the number of values into a chosen number of
groups. In this way, we create a dictionary that consists of the most representa-
tive color and texture features of the images in the learning set. The clustering is
performed using the k-Means algorithm with a histogram intersection measure
for comparing color feature vectors fc and Gabor feature distance for comparing
texture feature vectors ft. Centroids resulting from the clustering operation be-
come the elements of the dictionary and are labeled B1, . . . , Bk in case of color
and T1, . . . , Tk in case of texture features, where k is the feature dictionary size.
These identifiers are then used to describe the images in the database by as-
sociating an appropriate label with every tile of each image. This is performed
by finding the closest centroid to a feature vector calculated for a given image
tile, using appropriate distance measures for each of the features. The dictionary
created for the learning set is reused during the classification phase.

Figure 2 presents an example of such a symbolic image representation, show-
ing labels of its individual tiles and the representation of the whole image as a
binary database transaction and a database transaction with recurrent items.
Figure 3 compares and contrasts representations of images belonging to two
different categories: flower and food.

Results We have used the following parameter values for the experiments: images
partitioned into 8 × 8 tiles (x = y = 8), the sizes of feature vectors |fc| = 162
(h = 18, s = 3, v = 3) and |ft| = 48 (m = 6, n = 4) values. The dictionary
size was set at k = 8 values. The parameters are dataset dependent: the number
of tiles should be chosen based on the resolution of analyzed images and the
dictionary size reflects the diversity of the dataset.

The accuracy achieved by applying the classifier based on jumping emerg-
ing patterns with occurrence counts for several threshold values and compared
with other frequently used classification methods is presented in Table 4. All
experiments have been conducted as a ten-fold cross-validation using the Weka

DB Representation

D B1, B2, B3, B4,
B6, B7, B8

T1, T2, T3, T4,
T7, T8

Dr 1 ·B1, 2 ·B2, 8 ·B3, 3 ·B4,
41 ·B6, 3 ·B7, 6 ·B8

1 · T1, 5 · T2, 4 · T3, 11 · T4,
5 · T7, 38 · T8

Fig. 2. A symbolic representation of an image from the food dataset. D – binary
transaction system, Dr – transaction system with recurrent items.

Database Representation

D1 T r
1 = {37 ·B2, 15 ·B3, 1 ·B5, 11 ·B7, 1 · T1, 59 · T2, 4 · T4}
T r
2 = {2 ·B1, 8 ·B2, 25 ·B4, 4 ·B6, 24 ·B7, 1 ·B8, 58 · T2, 5 · T4, 1 · T7}
T r
3 = {4 ·B2, 36 ·B3, 6 ·B5, 6 ·B6, 12 ·B8, 1 · T1, 52 · T2, 11 · T4}

D2 T r
4 = {34 ·B2, 10 ·B3, 4 ·B5, 3 ·B7, 13 ·B8,

1 · T1, 18 · T2, 3 · T3, 33 · T4, 9 · T6}
T r
5 = {4 ·B1, 17 ·B2, 8 ·B3, 3 ·B5, 12 ·B6, 12 ·B7, 8 ·B8,

4 · T1, 21 · T2, 38 · T4, 1 · T6}
T r
6 = {1 ·B1, 11 ·B2, 9 ·B3, 2 ·B4, 10 ·B5, 2 ·B6, 9 ·B7, 20 ·B8,

3 · T1, 9 · T2, 6 · T3, 13 · T4, 7 · T5, 4 · T6, 3 · T7, 19 · T8}

Fig. 3. Examples of flower (upper row, D1) and food (bottom row, D2) images, along
with their symbolic representation (numbered from left to right).

package [19], having discretized the data into 10 equal-frequency bins for all
algorithms, except the occJEP method. The parameters of all used classifiers
have been left at their default values. The results are not directly comparable
with those presented in [17], as currently the occJEP patterns are not limited
to any specific length and the seed number for random instance selection during
cross-validation was different than before.

Table 4. Classification accuracy of four image datasets. The performance of the clas-
sifier based on jumping emerging patterns with occurrence counts (occJEP) compared
to: regular jumping emerging patterns (JEP), C4.5 and support vector machine (SVM),
each after discretization into 10 equal-frequency bins.

method θ accuracy (%)
flower/ flower/ flower/ food/ food/ elephant/

food elephant mountain elephant mountain mountain

1 89.50 84.38 90.63 - 73.00 -
1.5 94.79 96.35 98.44 78.50 87.00 87.50

occJEP 2 97.92 98.96 97.92 88.00 91.00 88.50
2.5 92.71 97.92 95.31 83.00 90.50 85.50

3 89.06 97.92 95.31 74.00 87.00 80.50

JEP - 95.83 91.67 96.35 88.50 93.50 83.50
C4.5 - 93.23 89.58 85.94 87.50 92.50 82.00
SVM - 90.63 91.15 93.75 87.50 84.50 84.50

8.2 Text Dataset

We have used the ApteMod version of the Reuters corpus [20], which originally
contains 10788 documents classified into 90 categories, to assess the performance
of our classifier. As the categories are highly imbalanced (the most common class
contains 3937 documents, while the least common only 1), we have presented
here the results of classification of the problem reduced to differentiating between
the two classes with the greatest number of documents and all other combined,
i.e. the new category labels are earn (36.5% of all instances), acq (21.4%) and
other (42.1%).

Feature Representation Document representation has been generated by: stem-
ming each word in the corpus using the Porter’s stemmer, ignoring words, which
appear on the stoplist provided with the corpus, and finally creating a vector
containing the number of occurrences of words in the particular document.

Results We have selected the 100 most relevant attributes from the resulting
data, as measured by the χ2 statistic, and sampled randomly 215 instances for
cross-validation experiments, the results of which are presented in Table 5.

Table 5. Classification accuracy of the Reuters dataset, along with precision and recall
values for each of the classes, and the number of discovered emerging patterns / C4.5
tree size

earn acq other
method θ accuracy precision recall precision recall precision recall patterns

1 85.12 96.2 84.7 76.6 96.1 95.5 89.4 10029
1.5 85.58 96.2 84.7 77.8 96.1 95.5 90.4 9276

occJEP 2 84.65 96.2 87.9 78.9 95.7 96.6 91.5 7274
2.5 84.19 96.2 87.9 77.6 95.7 96.6 90.4 7015
10 83.72 98.00 86.2 79.3 97.9 95.5 91.3 3891

JEP - 66.98 86.8 55.0 46.2 47.1 70.7 85.3 45870
C4.5 - 73.49 92.9 65.0 67.5 52.9 69.2 88.5 51
SVM - 86.98 98.1 85.0 85.4 68.6 82.8 97.1 -

9 Conclusions and Future Work

We have proposed an extension of the border-based emerging patterns mining al-
gorithm to allow discovering jumping emerging patterns with occurrence counts.
Such patterns may be used to build accurate classifiers for transactional data
containing recurrent attributes. By avoiding both discretization and using all
values from the attribute domain, we considerably reduce the space of items and
exploit the natural order of occurrence counts. We have shown that areas that
could possibly benefit from using such an approach include image and text data
classification.

The presented results show that the proposed classifier may achieve equal
or better performance than well-known tree-based C4.5 algorithm and support
vector machines (SVMs). The approach is most promising in the area of multi-
media data mining, as it allows reasoning about quantitative features of images
and possibly – after further research – also about their spatial relationships.

Another advantage of using a pattern-based classifier over other algorithms
is the ability to analyze the created classifier, which describes the differences
between two sets of data in a way easily understandable by a human. This
greater insight into problem domain is an important point in many applications,
e.g. bioinformatics.

The biggest drawback of the method lies in the number of discovered patterns,
which is however less than in the case of regular JEPs found in discretized data. It
is thus a possible area of future work to reduce the set of discovered patterns and
further limit the computational complexity without influencing the classification
accuracy.

References

1. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and
differences. In: KDD ’99: Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining, New York, NY, USA, ACM
(1999) 43–52

2. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerg-
ing patterns. In Arikawa, S., Furukawa, K., eds.: Proceedings of Second Interna-
tional Conference on Discovery Science. Volume 1721 of Lecture Notes in Computer
Science., Springer-Verlag (1999) 30–42

3. Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset
pairs. Knowledge and Information Systems 8(2) (2005) 178–202

4. Li, J., Dong, G., Ramamohanarao, K.: Instance-based classification by emerging
patterns. In: Proceedings of 4th European Conference on Principles of Data Min-
ing and Knowledge Discovery, PKDD 2000. Lecture Notes in Computer Science,
Springer-Verlag (2000) 191–200

5. Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A new instance-based
lazy discovery and classification system. Machine Learning 54(2) (2004) 99–124

6. Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping
emerging patterns for classification. Knowledge and Information Systems 3(2)
(2001) 1–29

7. Li, J., Ramamohanarao, K., Dong, G.: The space of jumping emerging patterns
and its incremental maintenance algorithms. In: ICML ’00: Proceedings of the
Seventeenth International Conference on Machine Learning, San Francisco, CA,
USA, Morgan Kaufmann Publishers Inc. (2000) 551–558

8. Fan, H., Ramamohanarao, K.: An efficient single-scan algorithm for mining essen-
tial jumping emerging patterns for classification. In Cheng, M.S., Yu, P.S., Liu, B.,
eds.: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Volume
2336 of Lecture Notes in Computer Science., Springer-Verlag (2002) 456–462

9. Fan, H., Ramamohanarao, K.: Fast discovery and the generalization of strong
jumping emerging patterns for building compact and accurate classifiers. IEEE
Transactions on Knowledge and Data Engineering 18(6) (2006) 721–737

10. Terlecki, P., Walczak, K.: On the relation between rough set reducts and jumping
emerging patterns. Information Sciences 177(1) (2007) 74–83

11. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and
delta-discriminative emerging pattern. In: Proceedings of 13th International Con-
ference on Knowledge Discovery and Data Mining, San Jose, California (2007)
430–439

12. Li, J., Wong, L.: Emerging patterns and gene expression data. Genome Informatics
12 (2001) 3–13

13. Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression
profiles using the concept of emerging patterns. Bioinformatics 18 (2002) 725–734

14. Zäıane, O.R., Han, J., Zhu, H.: Mining recurrent items in multimedia with progres-
sive resolution refinement. In: Proceedings of the 16th International Conference
on Data Engineering, San Diego, CA, USA (2000) 461–470

15. Ong, K.L., Ng, W.K., Lim, E.P.: Mining multi-level rules with recurrent items using
FP’-Tree. In: Proceedings of the Third International Conference on Information,
Communications and Signal Processing. (2001)

16. Rak, R., Kurgan, L.A., Reformat, M.: A tree-projection-based algorithm for multi-
label recurrent-item associative-classification rule generation. Data and Knowledge
Engineering 64(1) (2008) 171–197

17. Kobyliński, L., Walczak, K.: Jumping emerging patterns with occurrence count
in image classification. In Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A., eds.:
Pacific-Asia Conference on Knowledge Discovery and Data Mining. Volume 5012
of Lecture Notes in Artificial Intelligence., Springer-Verlag (2008) 904–909

18. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Trans. on Patt. Anal. and Machine Intell. 23
(2001) 947–963

19. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edn. Morgan Kaufmann, San Francisco (2005)

20. Lewis, D.D., Williams, K.: Reuters-21578 corpus ApteMod version

