
Using Tree Transducers for Detecting Errors
in a Treebank of Polish

Katarzyna Krasnowska, Witold Kieraś, Marcin Woliński, and Adam Przepiórkowski

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. The paper presents a modification — aimed at highly inflectional
languages — of a recently proposed error detection method for syntactically
annotated corpora. The technique described below is based on Synchronous
Tree Substitution Grammar (STSG), i.e. a kind of tree transducer grammar. The
method involves induction of STSG rules from a treebank and application of their
subset meeting a certain criterion to the same resource. Obtained results show that
the proposed modification can be successfully used in the task of error detection
in a treebank of an inflectional language such as Polish.

1 Introduction

Treebanks are an important type of linguistic resource and are currently maintained
or developed for numerous languages. Given their crucial role in the task of training
probabilistic parsers and, hence, in many natural language processing applications, it is
necessary to ensure their high quality. One of the ways to eradicate erroneous structures
in a treebank is to develop a method of automated detection of wrongly annotated
structures once the resource is created. In this work, we decribe such a method of
finding errors in a syntactically annotated corpus and present the results of using it
on a treebank of Polish. The paper is divided into two parts: § 2 introduces the method
of error detection, and § 3 describes the experiment conducted on the treebank and its
results.

2 An STSG-Based Approach to Error Detection

2.1 Synchronous Tree Substitution Grammars

A Synchronous Tree Substitution Grammar [1] is a set of rules which can be seen as
a tree transducer. Each rule comprises of a pair of elementary trees 〈τ1, τ2〉 and a one-to-
one alignment between their frontier (leaf) nodes. τ1 and τ2 are called source and target.
The derivation starts with two tree roots, left and right (initially with no children), and
results in a pair of complete trees. Rule application substitutes source and target into
aligned nodes in the left and the right tree, respectively. In order to allow a substitution
to be performed, the labels of the substitution node and the substituted tree’s root must
be identical.

Given a treebank with annotation and structural errors, a set of STSG rules can
be induced from it and then used for error detection and correction. The following

P. Sojka et al. (Eds.): TSD 2012, LNCS 7499, pp. 119–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



120 K. Krasnowska et al.

subsection describes the basic methods of obtaining an STSG grammar introduced by
Cohn and Lapata [2] and its application for treebank correction according to Kato and
Matsubara [3]. Proposed modifications and extensions are explained in the subsequent
subsection.

2.2 The Basic Procedure

When inducing an STSG from a syntactically annotated corpus, a pseudo parallel
corpus is first created [2]. Let T be the set of all syntactic trees in the treebank. The
pseudo parallel corpus Para(T ) is then the set of all pairs of subtrees found in T
such that the two trees in the pair have the same root label and yield (i.e. the terminal
sequence dominated by the root), but differ in structure. Formally, Para(T ) is given by:

Para(T ) = {〈τ, τ ′〉 | τ, τ ′ ∈
⋃

σ∈T

Sub(σ )

∧ τ �= τ ′

∧ yield(τ ) = yield(τ ′)
∧ root (τ ) = root (τ ′)},

where Sub(σ ) is the set of all subtrees of σ .
From each tree pair 〈τ1, τ2〉 ∈ Para(T ), an STSG rule is extracted as follows. First,

an alignment C(τ1, τ2) between the nodes of the two trees is determined:

C(τ, τ ′) = {〈η, η′〉 | η ∈ Nodes(τ ) ∧ η′ ∈ Nodes(τ ′)
∧ η �= root(τ ) ∧ η′ �= root(τ ′)
∧ label(η) = label(η′)
∧ yield(η) = yield(η′)}.

Then, for each node pair 〈η1, η2〉 ∈ C(τ1, τ2), the descendants of both η1 and η2 are
deleted. If τ1 and τ2 still differ after this operation, the rule 〈τ1, τ2〉 is added to the
grammar.

Rules extracted this way must be filtered so as to eliminate the ones which
would create errors instead of correcting them. For this purpose, we follow Kato and
Matsubara [3] in using a Score function predicting the soundness of a rule. Given a rule
〈τ1, τ2〉, its Score is calculated as:

Score(〈τ1, τ2〉) = f (τ1)

f (τ1) + f (τ2)
,

where f (τ ) is the frequency of τ in the corpus. Only rules whose Score is not lower
than a fixed threshold are taken into account.

The resulting set of rules represents structures which are probably erroneous (sources
of rules) and their correct counterparts (targets).



Detecting Errors in a Treebank of Polish 121

2.3 Adaptation to a Treebank of Polish

The treebank we work with is Składnica [4]. It is a bank of constituency trees for Polish
currently consisting of about 8,200 trees but still under development. The treebank
is being developed in a semi-automatic manner. Sets of candidate parse trees are
generated by a parser and subsequently one tree is selected by human annotators.
This procedure probably leads to a different type of inconsistencies than in a treebank
built fully manually. The structures annotators can choose are limited by the grammar,
which should make the trees more uniform than those created manually. On the other
hand, when a complete tree is presented to the annotator, it is a considerable piece of
information, so he or she can easily overlook problems in the details.

Unlike Kato and Matsubara [3], when constructing the pseudo parallel corpus,
we compared the yield of the trees in terms of morphosyntactic tags rather than
orthographic forms. There were several reasons for choosing such an approach. First,
the treebank is currently relatively small, therefore an insufficient number of sentences
with a common subsequence of words can be found in it to produce relevant STSG rules.
Moreover, Polish inflection makes it even less probable to have two strictly identical
word sequences in a corpus (see Figure 1 for an example). The sparseness of the pseudo
parallel corpus resulting from these problems can be overcome by abstracting from the
orthographic and base forms of the words, and using morphosyntactic tags instead.
This way we gain more material for STSG rule extraction since we are capable to draw
a parallel between analogous phrases which use different words (e.g. very small house
vs. rather thick book).

As an exception to this decision, particles are not replaced by their tags, but, instead,
represented by their base forms (which often are their only possible forms). This was
motivated by the fact that particles play important and at the same time very different
role in the structure of sentences; compare, e.g., the negative marker nie and the
subjunctive marker by, both analysed as particles.

Another feature of Składnica which requires special treatment is the fact that
nonterminal nodes contain not only syntactic categories, but also morphosyntactic
features such as gender, number or case. These must be taken into account while
extracting and applying STSG rules in order to reflect modifier node agreement and
avoid overgeneralisation of rules. A selected subset of feature values of nonterminal
nodes is therefore preserved in the pseudo parallel corpus and in the extracted rules.

(a) (b)
NP

NP

pies
subst:nom:sg

ADJP

ADJP

zły
adj:nom:sg

ADVP

bardzo
adv

NP

NP

psów
subst:gen:pl

ADJP

złych
adj:gen:pl

ADVP

bardzo
adv

Fig. 1. Two syntactic trees for the NP “very bad dog” (a) in the nominative singular and (b) in the
genitive plural. Even though these sentences clearly represent inconsistent bracketings, no rule
would be derived from such trees if orthographic forms of lexemes were taken into consideration.



122 K. Krasnowska et al.

On the other hand, if rules were kept in such a detailed form, two problems would
appear. First, a rule, e.g., for noun phrases in the accusative case, would not be matched
by a linguistically relevant structure isomorphic with its source, but occurring, say, in
the instrumental. What is more, redundant rules would be created for each combination
of morphosyntactic features. As a solution, once a rule is extracted, its feature values are
substituted with variables, but retaining any information about agreement, by using the
same variable where necessary. Figure 2 shows one example of such an extracted STSG
rule, with particular values of number, case, gender and person replaced by variables.

3 Experiments on Składnica

A set of 38 rules with Score 0.5 or higher was extracted from the treebank. 323
structures matching the source of some rule were found in 302 trees (in 283 trees
one rule was matched, in 17 trees — 2 rules, and in 2 trees — 3 rules). Constructions
recognised as errors, as well as proposed corrections (i.e. targets of the matched rules),
were manually examined and classified into 5 categories presented and explained in
Table 1.

Classification into ERR and INC is motivated by the question of how many of the
structures found by the algorithm are syntactically incorrect, thus belonging to the ERR
class, and how many represent theoretically possible bracketings which, however, are
not compliant with the annotation conventions of the treebank (e.g. binary trees for
multiple-modifier NPs detected by the rule in Figure 2); in the latter case the class is
INC. 185 structures in total were assigned to classes other than FP, which means that
they were wrongly annotated.

Taking into account the classification introduced in Table 1, we propose the following
measures of precision:

NP
number x
case y
gender z
person v

NP
number x
case y
gender z
person v

NP
number x
case y
gender z
person v

ADJP
number x
case y
gender z

ADJP
number x
case y
gender z

�

NP
number x
case y
gender z
person v

NP
number x
case y
gender z
person v

ADJP
number x
case y
gender z

ADJP
number x
case y
gender z

Fig. 2. An example rule flattening the structure of an NP modified by two ADJPs. The source tree
is inconsistent with annotation guidelines. The rule matches if the ADJPs agree with the NP in
number, case and gender.



Detecting Errors in a Treebank of Polish 123

Table 1. Classification of structures found using the STSG rules

Category Occurrences Comment

ERR0 74 22.9% An error in annotation was found and the proposed modi-
fication was correct.

INC0 89 27.6% An inconsistency in annotation was found and the pro-
posed modification was correct.

ERR1 18 5.6% An error in annotation was found, but the proposed modi-
fication was incorrect.

INC1 4 1.2% An inconsistency in annotation was found, but the pro-
posed modification was incorrect.

FP 134 42.7% A false positive — correct structure pointed out as
erroneous.

P0 = ERR0 + INC0

ALL
,

P1 = ERR0 + INC0 + ERR1 + INC1

ALL
,

Perr = ERR0 + ERR1

ALL
,

where ALL stands for all structures retrieved by the rules. The P0 measure is more
restrictive and only accepts correct modifications, whereas P1 takes into consideration
all correctly recognized wrong structures.

As far as recall is concerned, it is difficult to estimate it without manually inspecting
the whole treebank for errors and inconsistencies. In the case of Składnica, such an
experiment was performed by its authors [4] on a random sample of 100 sentences and
18 trees were considered wrong. We therefore assume, for the sake of estimating recall,
that the whole treebank contains ∼18% (1366) erroneous or inconsistent structures.

Table 2 shows the P0 and P1 precisions, as well as the estimated recall (R∼) and
F-measure values. For calculating R∼ and F-measure, all correctly detected wrong
trees were treated as true positives (as in P1). The measures were calculated for the
results of applying all 38 rules mentioned above (i.e. Score threshold 0.5), as well as
only those with Score equal or above 0.6, 0.7, 0.8 and 0.9. The results show that P1 can
be increased by raising the threshold, with the obvious trade-off in R∼. The highest F-
measure was achieved for the 0.6 threshold (R∼ was the same as for 0.5 threshold, i.e.
13.54%, with a slight increase in P1: 57.63% as compared to 57.28%). Increasing the
threshold to 0.9 yielded a very high P1 precision of 86.62% at the expense of relatively
poor R∼ and F-measure.

22 rules (58% out of 38) achieved a 100% P1 score, and 18 (47%) — a 100%
P0 score. The score was lower than 50% for 10 rules in case of P1 and for 12
rules in case of P0. The average rule’s P1 and P0 precision were 70.4% and 59.2%,
respectively. The plot in Figure 3 shows per-rule P1 and P0 results. Figure 4 presents



124 K. Krasnowska et al.

Table 2. Precision, recall and F-measure for different Score thresholds

Score threshold P0 P1 R∼ F-measure

0.5 50.46% 57.28% 13.54% 21.91%
0.60 50.78% 57.63% 13.54% 21.93%
0.7 50.63% 57.59% 13.32% 21.64%
0.8 51.95% 59.09% 13.32% 21.74%
0.9 78.17% 86.62% 9.00% 16.31%

a comparison between P1 and Perr precision (i.e. whether a rule detected more errors
or inconsistencies). Rule ordering is the same in both plots.

4 Related Work

Finding errors in manually annotated corpora is a task actively pursued for well
over a decade. Initial research was concerned with finding errors at the level of
morphosyntactic annotation, e.g. [5,6,7]; while the methodology of these three works
differs considerably, they are all based on the same underlying idea: if similar (in
some well-defined way) inputs receive different annotations, the less frequent of these
annotations are suspected of being erroneous.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

rule

P1
P0

Score

Fig. 3. Per-rule precisions P1 and P0

Soon, some of the methods proposed for morphosyntax were generalised to the
task of verifying syntactic annotations. In this context, an important line of work is
research by Dickinson and Meurers [8,9,10,11]. Before turning to the STSG-based
approach described in this work, we had performed some preliminary experiments
based on two methods of error detection they proposed: variation n-grams [7] and
immediate dominance sets [9]. These did not, however, yield promising results, perhaps
because of data sparsity (the combination of relatively small treebank and relatively rich
morphology); in fact, both precision and recall were very low.1

1 Obviously, these early experiments do not amount to any real evaluation of the methods in
question. Rather, the aim of such preliminary experiments was to indicate which method seems
to give the quickest returns.



Detecting Errors in a Treebank of Polish 125

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

rule

P1
Perr

Fig. 4. Per-rule precisions P1 and Perr

5 Conclusion

A method of error detection based on the Synchronous Tree Substitution Grammar
formalism was implemented and tested on a treebank of Polish. The system found
185 wrongly annotated structures, achieving a precision of 57.63%. As compared to
the work of Kato and Matsubara [3], who achieved a precision of 71.9% with their
system, corresponding to a total of 331 structures as erroneous, the present result is
worse. Nevertheless, it is worth mentioning that they worked on the Wall Street Journal
sections of Penn Treebank, which is not only a bigger, but also was created for English,
which has a much simpler inflection. We therefore believe that the precision of the
current system is relatively satisfying.

As far as recall is concerned, we do not know of any previous results that ours
could be compared to, but it is clear that there is still room for improvement. This
could be achieved by finding a way to further generalise the extracted rules without
loss of information crucial to retaining reasonable precision. For instance, replacing
morphosyntactic features in word-level tags with variables, extending the special
treatment of particles to other non-inflected parts of speech, or using base forms
during the construction of the pseudo parallel corpus (when searching for subtrees with
identical yield) all seem worth an experiment.

Although the method presented above gives relatively satisfying results, we are
aware that it recognises only certain classes of inconsistencies. In the current treebank,
there exist some serial annotation errors that cannot be found using this technique;
wrong classification of verbal dependents as arguments or adjuncts is a typical example.
The relatively small size of Składnica is also a problem since there is not enough
training data to extract rules that can report some less frequent errors. Hence, the need
for further research is clear.

Acknowledgements. The work described in this paper is partially supported by the
DG INFSO of the European Commission through the ICT Policy Support Programme,
Grant agreement no.: 271022, as well as by the POIG.01.01.02-14-013/09 project co-
financed by the European Union under the European Regional Development Fund.



126 K. Krasnowska et al.

References

1. Eisner, J.: Learning non-isomorphic tree mappings for machine translation. In: Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics, ACL 2003, vol. 2,
pp. 205–208. Association for Computational Linguistics, Stroudsburg (2003)

2. Cohn, T., Lapata, M.: Sentence compression as tree transduction. Journal of Artificial
Intelligence Research 34, 637–674 (2009)

3. Kato, Y., Matsubara, S.: Correcting errors in a treebank based on synchronous tree
substitution grammar. In: Proceedings of the ACL 2010 Conference Short Papers, ACLShort
2010, pp. 74–79. Association for Computational Linguistics, Stroudsburg (2010)

4. Woliński, M., Głowińska, K., Świdziński, M.: A preliminary version of Składnica — a
treebank of Polish. In: Vetulani, Z. (ed.) Proceedings of the 5th Language & Technology
Conference, Poznań, pp. 299–303 (2011)

5. van Halteren, H.: The detection of inconsistency in manually tagged text. In: Proceedings of
the 2nd Workshop on Linguistically Interpreted Corpora (LINC 2000) (2000)

6. Eskin, E.: Automatic corpus correction with anomaly detection. In: Proceedings of the 1st
Meeting of the North American Chapter of the Association for Computational Linguistics
(NAACL 2000), Seattle, WA, pp. 148–153 (2000)

7. Dickinson, M., Meurers, W.D.: Detecting errors in part-of-speech annotation. In: Proceed-
ings of the 10nth Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2003), Budapest, pp. 107–114 (2003)

8. Dickinson, M., Meurers, W.D.: Detecting inconsistencies in treebanks. In: Nivre, J., Hinrichs,
E. (eds.) Proceedings of the Second Workshop on Treebanks and Linguistic Theories (TLT
2003), Växjö, Norway, pp. 45–56 (2003)

9. Dickinson, M., Meurers, W.D.: Prune diseased branches to get healthy trees! How to find
erroneous local trees in a treebank and why it matters. In: Civit, M., Kübler, S., Martí,
M.A. (eds.) Proceedings of the Fourth Workshop on Treebanks and Linguistic Theories (TLT
2005), Barcelona, pp. 41–52 (2005)

10. Boyd, A., Dickinson, M., Meurers, D.: On detecting errors in dependency treebanks.
Research on Language and Computation 6, 113–137 (2008)

11. Dickinson, M., Lee, C.M.: Detecting errors in semantic annotation. In: Proceedings of
the Sixth International Conference on Language Resources and Evaluation, LREC 2008,
Marrakech, ELRA (2008)


	Using Tree Transducers for Detecting Errors in a Treebank of Polish
	Introduction
	An STSG-Based Approach to Error Detection
	Synchronous Tree Substitution Grammars
	The Basic Procedure
	Adaptation to a Treebank of Polish

	Experiments on Składnica
	Related Work
	Conclusion
	References




