Multipurpose Linguistic Web Service for Polish

Maciej Ogrodniczuk, Michat Lenart
Introduction

Numerous actions taken throughout Europe to fulfil the CLARIN mission of creating, coordinating
and making language resources and technology available and readily useable for scholars in the
humanities and social sciences resulted in making various language processing tools available
online, most often in the form of Web services. Following this direction, the Linguistic Engineering
Group at the Institute of Computer Science, Polish Academy of Sciences (ICS PAS) provided
common interface to several offline tools for linguistic processing of Polish in the form of a Web
service offering multi-level stand-off annotation (hence the service is further referred to as
the Multiservice).

The Multiservice represents linguistic properties in a newly developed TEI P5-based format which
offers high flexibility of TEI and the power of the embedded feature structure formalism. The scope
of operation is determined by the underlying offline tools, which currently offer segmentation
(paragraph and sentence splitting, tokenization, identification of compound word forms),
lemmatization, morphological analysis (all with Morfeusz SGJP morphological analyser),
morphosyntactic disambiguation (TaKIPI and Pantera taggers), named entity recognition
(statistical NER tool), shallow parsing (Spejd) and deep parsing of Polish (Swigra) — all available as
annotation layers in the target output format.

Architecture of the Online Service

The offline tools are bound together in a common infrastructure, capable of chaining them and
presenting results in the unified format. Language processing is triggered by requests sent to the
Web service, enqueued and handled in asynchronous manner to allow processing large amounts of
text. Invoking one of the available methods results in returning the request token (identifier) which
can be used to check the request status and retrieve the result when processing completes.

Each part of the processing chain is defined by operation type (i.e. linguistic function such as
tagging or shallow parsing), requested tool name (e.g. “TaKIPI” or “Pantera” for tagging, since
there can be many variant tools of the same type configured) and a map of properties specific to the
provided tool. By using chains, one request can trigger several (interrelated or independent)
operations at once, e.g. “segment, lemmatize, morphologically analyze and tag text with Pantera,
then perform shallow parsing with Spejd, possibly using disambiguation information provided by
the tagger”).

Linguistic Representation

A common representation binding the tools together is based on the format implemented for the
National Corpus of Polish (see http://nkjp.pl) — a stand-off, TEI P5-encoded annotation storing
different levels of description in separate, interlinked files similarly to PAULA or MAF.
For interchange reasons the Multiservice uses its “packaged” version, with all annotations saved in
a single file under a <t ei Cor pus> element (forming “a temporary collection of annotation layers”).

Below we present a sample partial description from the morphosyntactic layer
(see http://nlp.ipipan.waw.pl/TEI4NKJP/ for more detailed and complete examples):

<seg xm :id="msegl" corresp="s-segl">
<fs type="norph">
<f name="interps">
<vAl t >
<fs type="lex" xm:id="msegl-Ilex">
<f name="base" ><string>l ato</string></f>
<f name="ct ag"><synbol val ue="subst"/></f>



<f name="nsd"><synbol val ue="pl:gen:n" xm:id="mseg 1-nsd"/>
</fs>
<fs type="lex" xm:id="mseg2-|ex">
<f name="base" ><string>rok</string></f>
<f name="ct ag"><synbol val ue="subst"/></f>
<f name="nsd"><synbol val ue="pl:gen:mB" xm:id="mseqg_2-nsd"/>
</fs>
</vA t >
</f>
<f name="di sanb" >
<fs feats="#pantera" type="tool report">
<f fVal ="#m seg_2-nsd" nane="choice"/>
<f name="interpretation">
<string>rok:subst: pl:gen: n8</string>

The results of processing can be also output in a popular WebLicht Text Corpus Format (TCF).

Interface and Usage

The Multiservice is intended to be used via a dedicated API. Additionally, a simple Web interface
has been prepared to facilitate online tests.

The interaction with the service consists of 4 steps:
(1) user sends a processing request with the linguistic function name and its parameters;

(2) the service generates a token for the request (used for further operation), stores the request
in the queue and returns the token to the user;

(3) the user keeps querying the service about the status of execution of a request identified with
a given token until the status shows that the execution stopped — because of error or ended
successfully;

(4) if execution failed, the user retrieves an error message from the service; if execution
succeeded, the user retrieves the result from the service.

The pull execution method gives potential interfaces far more flexibility and allows for better
control over annotation processes as compared to callback-based implementations which is
important with respect to using Web services for processing larger collection of texts which may
result in long processing times.

Dedicated Web interface (http://chopin.ipipan.waw.pl:8083/WSWebClient/) can be also used to
test execution of the service. After constructing the chain and starting the analysis, the Web
application checks periodically the status of the request. When it ended execution, the result is
retrieved and displayed to the user. In case of a failure, an appropriate error message is presented.

Further Work

Further technical work will concentrate on integration of a wider range of input and output formats
with multiple encodings and integrated converters as well as plugging in additional annotation
components, including coreference resolvers or word-sense disambiguators, currently under active
development.

Research activities could further delve into aspects of maintaining semantic interoperability of the
representation format (including issues related to Polish morphosyntax vs. e.g. ISOCat Data
Category Registry) as well as Web service chaining issues such as algorithms for automated chain
detection.



