You can depend on the symmetry of coordination and that NPs and CPs can be conjoined

Adam Przepiórkowski

(contributors: Katarzyna Kuś, Agnieszka Patejuk, Berke Şenşekerci)

University of Warsaw (Cognitive Studies) Polish Academy of Sciences (Institute of Computer Science)

Form and Meaning of Coordination Göttingen, 5 July 2024

Many competing views both in generative linguistics and in dependency grammars.

- **symmetric**: all conjuncts contribute equally to (morpho)syntactic properties of the coordination,
- **asymmetric**: one (the first) conjunct determines (morpho)syntactic properties of the coordination.

Many competing views both in generative linguistics and in dependency grammars.

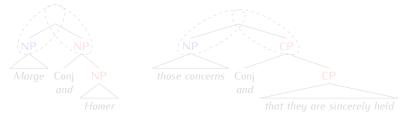
- **symmetric**: all conjuncts contribute equally to (morpho)syntactic properties of the coordination,
- **asymmetric**: one (the first) conjunct determines (morpho)syntactic properties of the coordination.

Many competing views both in generative linguistics and in dependency grammars.

- **symmetric**: all conjuncts contribute equally to (morpho)syntactic properties of the coordination,
- **asymmetric**: one (the first) conjunct determines (morpho)syntactic properties of the coordination.

Many competing views both in generative linguistics and in dependency grammars.

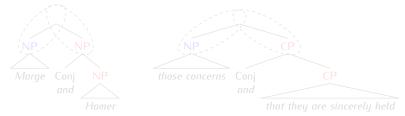
- **symmetric**: all conjuncts contribute equally to (morpho)syntactic properties of the coordination,
- **asymmetric**: one (the first) conjunct determines (morpho)syntactic properties of the coordination.


Many competing views both in generative linguistics and in dependency grammars.

- **symmetric**: all conjuncts contribute equally to (morpho)syntactic properties of the coordination,
- **asymmetric**: one (the first) conjunct determines (morpho)syntactic properties of the coordination.

LFG, HPSG – not illustrated here,

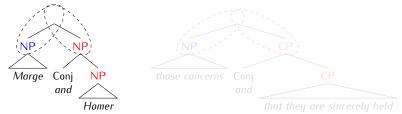
One Neeleman et al. 2023 (mutual adjunction; cf. May 1985):


Running example (attested; the English Web 2015 corpus):

I understand [[NP those concerns] and [CP that they are sincerely held]].

LFG, HPSG – not illustrated here,

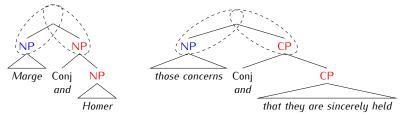
One in the image of the imag


Running example (attested; the English Web 2015 corpus):

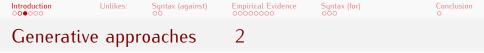
I understand [[NP those concerns] and [CP that they are sincerely held]].

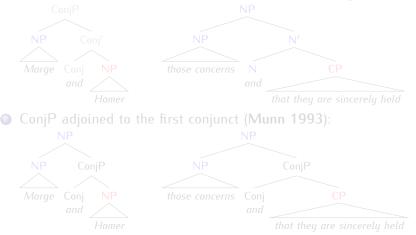
LFG, HPSG – not illustrated here,

Neeleman et al. 2023 (mutual adjunction; cf. May 1985):


Running example (attested; the English Web 2015 corpus):

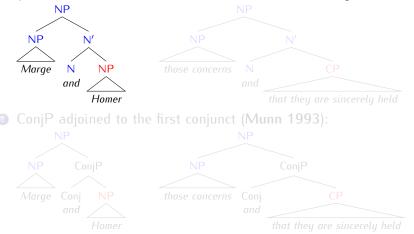
I understand [[NP those concerns] and [CP that they are sincerely held]].

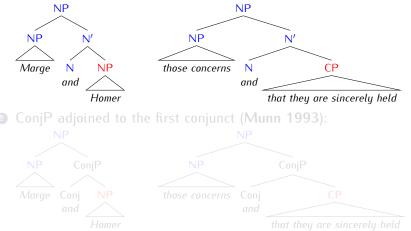

LFG, HPSG – not illustrated here,

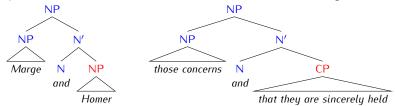

Neeleman et al. 2023 (mutual adjunction; cf. May 1985):

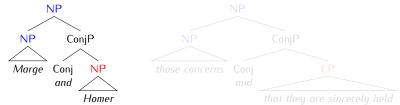
Running example (attested; the English Web 2015 corpus):

• I understand [[NP those concerns] and [CP that they are sincerely held]].

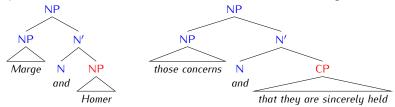




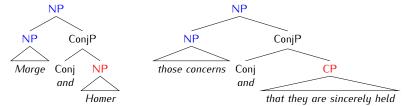




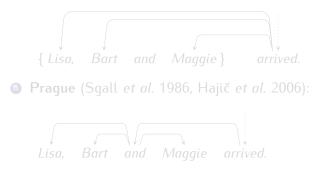
 ConjP behaves as if it were the Specifier, i.e., the first conjunct (Munn 1987, Zoerner 1995, Johannessen 1998, Zhang 2009, 2023):



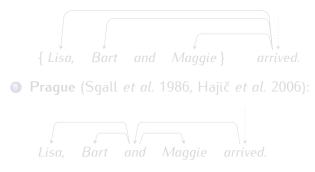
OnjP adjoined to the first conjunct (Munn 1993):



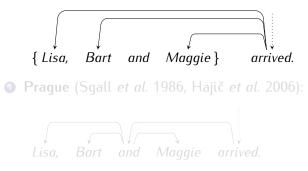
 ConjP behaves as if it were the Specifier, i.e., the first conjunct (Munn 1987, Zoerner 1995, Johannessen 1998, Zhang 2009, 2023):



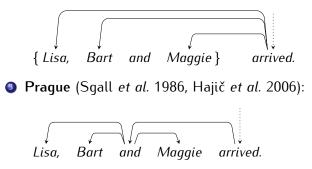
OnjP adjoined to the first conjunct (Munn 1993):

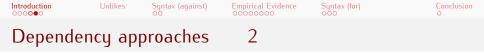


- Tesnière 1959 not illustrated here,
- **Word Grammar** (Hudson 1984, 1988, 1989, 1990):

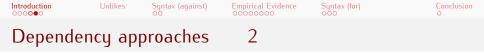


- Tesnière 1959 not illustrated here,
- Word Grammar (Hudson 1984, 1988, 1989, 1990):

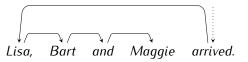



- Tesnière 1959 not illustrated here,
- **Word Grammar** (Hudson 1984, 1988, 1989, 1990):

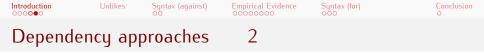
- Tesnière 1959 not illustrated here,
- **Word Grammar** (Hudson 1984, 1988, 1989, 1990):



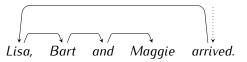
Meaning–Text Theory (Mel'čuk 1988, 2009):



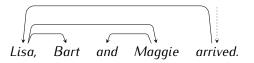
Oniversal Dependencies (de Marneffe et al. 2021):



Meaning–Text Theory (Mel'čuk 1988, 2009):



Oniversal Dependencies (de Marneffe et al. 2021):



Meaning–Text Theory (Mel'čuk 1988, 2009):

Output Universal Dependencies (de Marneffe et al. 2021):

The **outline**:

- argument from coordination of unlikes against symmetric approaches,
- Output the argument on the basis of corpora and experiments,
- argument from coordination of unlikes for symmetric approaches.

The outline:

- argument from coordination of unlikes against symmetric approaches,
- @ debunking the argument on the basis of corpora and experiments,
- argument from coordination of unlikes for symmetric approaches.

The outline:

 argument from coordination of unlikes against symmetric approaches,

ebunking the argument on the basis of corpora and experiments,

argument from coordination of unlikes for symmetric approaches.

The outline:

- argument from coordination of unlikes against symmetric approaches,
- debunking the argument on the basis of corpora and experiments,
 argument from coordination of unlikes for summetric approaches

The **outline**:

- argument from coordination of unlikes against symmetric approaches,
- debunking the argument on the basis of corpora and experiments,
- argument from coordination of unlikes for symmetric approaches.

The **main argument for asymmetric theories** of coordination is based on these 3 '**selectional violation**' examples from Sag *et al.* 1985: 165:

- Pat was annoyed by [[NP the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend on [[NP my assistant] and [CP that he will be on time]].
 - We talked about [[NP Mr. Colson] and [CP that he had worked at the White House]].
- Pat was annoyed **by** [NP the children's noise].
 - You can depend on [NP my assistant].
 - We talked about [NP Mr. Colson].
- Image: Part was annoyed by [CP that their parents did nothing to stop it].

 Image: You can depend on [CP that he will be on time].
 - **•** We talked **about** [CP that he had worked at the White House].

Apparently, **only the category of the first conjunct matters** for the distribution of the coordinate structure.

The **main argument for asymmetric theories** of coordination is based on these 3 'selectional violation' examples from Sag *et al.* 1985: 165:

- Pat was annoyed by [[NP the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend on [[NP my assistant] and [CP that he will be on time]].
 - We talked about [[NP Mr. Colson] and [CP that he had worked at the White House]].
- Pat was annoyed by [NP the children's noise].
 - *Q* You can depend **on** [*NP* my assistant].
 - We talked **about** [NP Mr. Colson].
- Pat was annoyed by [CP that their parents did nothing to stop it].
 You can depend on [CP that he will be on time].
 - ***** We talked **about** [CP that he had worked at the White House].

Apparently, **only the category of the first conjunct matters** for the distribution of the coordinate structure.

The **main argument for asymmetric theories** of coordination is based on these 3 '**selectional violation**' examples from Sag *et al.* 1985: 165:

- Pat was annoyed by [[NP the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend on [[NP my assistant] and [CP that he will be on time]].
 - We talked about [[NP Mr. Colson] and [CP that he had worked at the White House]].
- Pat was annoyed by [NP the children's noise].
 - You can depend on [NP my assistant].
 - We talked **about** [NP Mr. Colson].
- ^{*} Pat was annoyed by [CP that their parents did nothing to stop it].

 ^{*} You can depend on [CP that he will be on time].
 - **•** We talked **about** [CP that he had worked at the White House].

Apparently, **only the category of the first conjunct matters** for the distribution of the coordinate structure.

The **main argument for asymmetric theories** of coordination is based on these 3 '**selectional violation**' examples from Sag *et al.* 1985: 165:

- Pat was annoyed by [[NP the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend on [[NP my assistant] and [CP that he will be on time]].
 - We talked about [[NP Mr. Colson] and [CP that he had worked at the White House]].
- Pat was annoyed by [NP the children's noise].
 - You can depend on [NP my assistant].
 - We talked about [NP Mr. Colson].
- ^{*} Pat was annoyed by [CP that their parents did nothing to stop it].
 ^{*} You can depend on [CP that he will be on time].
 - **9***We talked **about** [*CP* that he had worked at the White House].

Apparently, **only the category of the first conjunct matters** for the distribution of the coordinate structure.

The **main argument for asymmetric theories** of coordination is based on these 3 '**selectional violation**' examples from Sag *et al.* 1985: 165:

- Pat was annoyed by [[NP the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend on [[NP my assistant] and [CP that he will be on time]].
 - We talked about [[NP Mr. Colson] and [CP that he had worked at the White House]].
- Pat was annoyed by [NP the children's noise].
 - You can depend on [NP my assistant].
 - We talked about [NP Mr. Colson].
- ^{*} Pat was annoyed by [CP that their parents did nothing to stop it].
 ^{*} You can depend on [CP that he will be on time].
 - ***** We talked **about** [CP that he had worked at the White House].

Apparently, **only the category of the first conjunct matters** for the distribution of the coordinate structure.

Debunking the argument: a **different structure** of these examples is possible:

- Pat was annoyed [[PP by the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend [[PP on my assistant] and [CP that he will be on time]].
 - We talked [[PP about Mr. Colson] and [CP that he had worked at the White House]].

Compare:

You can depend on [[NP my assistant] and [CP that he will be on time]].
 You can depend [[PP on my assistant] and [CP that he will be on time]].

The acceptability of the crucial examples is explained, if the following are acceptable:

Pat was annoyed [CP that their parents did nothing to stop it].
 You can depend [CP that he will be on time].
 We talked [CP that he had worked at the White House].

Debunking the argument: a **different structure** of these examples is possible:

- Pat was annoyed [[PP by the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend [[PP on my assistant] and [CP that he will be on time]].
 - We talked [[PP about Mr. Colson] and [CP that he had worked at the White House]].

Compare:

- You can depend **on** [[_{NP} my assistant] and [_{CP} that he will be on time]].
- You can depend [[PP on my assistant] and [CP that he will be on time]].

The acceptability of the crucial examples is explained, if the following are acceptable:

Pat was annoyed [CP that their parents did nothing to stop it].
 ?You can depend [CP that he will be on time].
 ?We talked [CP that he had worked at the White House].

Debunking the argument: a **different structure** of these examples is possible:

- Pat was annoyed [[PP by the children's noise] and [CP that their parents did nothing to stop it]].
 - You can depend [[PP on my assistant] and [CP that he will be on time]].
 - We talked [[PP about Mr. Colson] and [CP that he had worked at the White House]].

Compare:

- You can depend **on** [[_{NP} my assistant] and [_{CP} that he will be on time]].
- You can depend [[PP on my assistant] and [CP that he will be on time]].

The acceptability of the crucial examples is explained, if the following are acceptable:

Pat was annoyed [CP that their parents did nothing to stop it].
 ?You can depend [CP that he will be on time].
 ?We talked [CP that he had worked at the White House].

We looked at 8 predicates:

- 3 from Sag et al. 1985: annoyed (by), depend (on), talk (about),
- 4 more more considered in Bruening 2023: account (for), ashamed (of), familiar (with), speak (about), and
- 1 more: *suffer (from)*.

We looked at 8 predicates:

- 3 from Sag et al. 1985: annoyed (by), depend (on), talk (about),
- 4 more more considered in Bruening 2023: account (for), ashamed (of), familiar (with), speak (about), and
- 1 more: *suffer (from)*.

We looked at 8 predicates:

- 3 from Sag et al. 1985: annoyed (by), depend (on), talk (about),
- 4 more more considered in Bruening 2023: account (for), ashamed (of), familiar (with), speak (about), and

• 1 more: *suffer (from)*.

We looked at 8 predicates:

- 3 from Sag et al. 1985: annoyed (by), depend (on), talk (about),
- 4 more more considered in Bruening 2023: account (for), ashamed (of), familiar (with), speak (about), and
- 1 more: *suffer (from)*.

We looked at 8 predicates:

- 3 from Sag et al. 1985: annoyed (by), depend (on), talk (about),
- 4 more more considered in Bruening 2023: account (for), ashamed (of), familiar (with), speak (about), and
- 1 more: *suffer (from)*.

The number of occurrences of predicate plus *that* in English Web 2021 and the number of **true combinations of the predicate with its CP dependent among a 100-hit random sample**:

Predicate	Hits	Sampled	TPs
annoyed	501	100	93
ashamed	4,551	100	85
familiar	316	100	48
account	7,975	100	3
depend	534	100	15
speak	17,636	100	10
suffer	11,603	100	1
talk	13,732	100	6

The number of occurrences of predicate plus *that* in English Web 2021 and the number of **true combinations of the predicate with its CP dependent among a 100-hit random sample**:

Predicate	Hits	Sampled	TPs
annoyed	501	100	93
ashamed	4,551	100	8 5
familiar	316	100	48
account	7,975	100	3
depend	534	100	15
speak	17,636	100	10
suffer	11,603	100	1
talk	13,732	100	6

- No matter what management does in the States, we always have to depend [CP that they are building it to our specs, which isn't always the case].
- ② They respect each other's role and depend [CP that each wolf in the pack will live up to their individual responsibility].
- I... and you may depend [CP that we will endeavor to be your guard].

- Some of us old timers were out at Avis Collier's Store not long ago and were **talking** [CP that we hadn't been to a Serenading Party for about 40 years or better].
- In they were talking [CP that they're going to be the next champion of the world].

- No matter what management does in the States, we always have to depend [CP that they are building it to our specs, which isn't always the case].
- They respect each other's role and depend [CP that each wolf in the pack will live up to their individual responsibility].
- I... and you may depend [CP that we will endeavor to be your guard].

- Some of us old timers were out at Avis Collier's Store not long ago and were **talking** [CP that we hadn't been to a Serenading Party for about 40 years or better].
 - In they were talking [CP that they're going to be the next champion of the world].

- No matter what management does in the States, we always have to depend [CP that they are building it to our specs, which isn't always the case].
- They respect each other's role and depend [CP that each wolf in the pack will live up to their individual responsibility].
- I... and you may depend [CP that we will endeavor to be your guard].

- Some of us old timers were out at Avis Collier's Store not long ago and were **talking** [CP that we hadn't been to a Serenading Party for about 40 years or better].
- ... they were talking [CP that they're going to be the next champion of the world].

- No matter what management does in the States, we always have to depend [CP that they are building it to our specs, which isn't always the case].
- They respect each other's role and depend [CP that each wolf in the pack will live up to their individual responsibility].
- I... and you may depend [CP that we will endeavor to be your guard].

- Some of us old timers were out at Avis Collier's Store not long ago and were talking [CP that we hadn't been to a Serenading Party for about 40 years or better].
- In they were talking [CP that they're going to be the next champion of the world].

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 70: $N_{uk} = 56$, $N_{us} = 13$, $N_{ca} = 1$; F = 24, M = 46).

 $8 \times 8 = 64$ experimental items like these:

- O CP condition:
 - Justin Bieber can **depend** [*CP* that his fans still love his early songs].
 - PP condition: Justin Bieber can depend [PP on the fact [CP that his fans still love his early songs]].

The experiment followed the **Thermometer Method**, argued to be superior to the standard Likert Scale (Featherston 2008, 2009).

Among the fillers, there were 15 'standard items' - 3 sentences for each of the acceptability levels A–E (Featherston 2009, Gerbrich *et al.* 2019).

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 70: $N_{uk} = 56$, $N_{us} = 13$, $N_{ca} = 1$; F = 24, M = 46).

 $8 \times 8 = 64$ experimental items like these:

 CP condition: Justin Bieber can depend [CP that his fans still love his early songs].
 PP condition: Justin Bieber can depend [PP on the fact [CP that his fans still love his early songs]].

The experiment followed the **Thermometer Method**, argued to be superior to the standard Likert Scale (Featherston 2008, 2009).

Among the fillers, there were 15 'standard items' - 3 sentences for each of the acceptability levels A–E (Featherston 2009, Gerbrich *et al.* 2019).

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 70: $N_{uk} = 56$, $N_{us} = 13$, $N_{ca} = 1$; F = 24, M = 46).

 $8 \times 8 = 64$ experimental items like these:

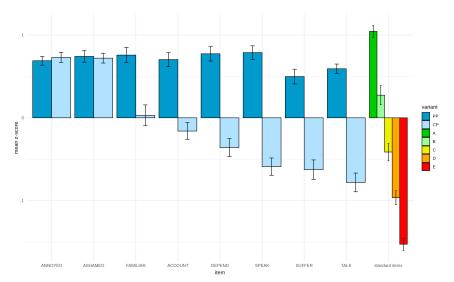
 CP condition: *Justin Bieber can depend* [CP that his fans still love his early songs].
 PP condition: *Justin Bieber can depend* [PP on the fact [CP that his fans still love his early songs]].

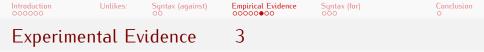
The experiment followed the **Thermometer Method**, argued to be superior to the standard Likert Scale (Featherston 2008, 2009).

Among the fillers, there were 15 '**standard items**' – 3 sentences for each of the acceptability levels A–E (Featherston 2009, Gerbrich *et al.* 2019).

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 70: $N_{uk} = 56$, $N_{us} = 13$, $N_{ca} = 1$; F = 24, M = 46).

 $8 \times 8 = 64$ experimental items like these:


 CP condition: Justin Bieber can depend [CP that his fans still love his early songs].
 PP condition: Justin Bieber can depend [PP on the fact [CP that his fans still love his early songs]].


The experiment followed the **Thermometer Method**, argued to be superior to the standard Likert Scale (Featherston 2008, 2009).

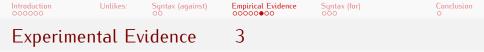
Among the fillers, there were 15 '**standard items**' – 3 sentences for each of the acceptability levels A–E (Featherston 2009, Gerbrich *et al.* 2019).

Average *z*-scores (with 95% confidence intervals):

Experiment 2 (without *annoyed* and *ashamed*, as they very readily combine with a CP)

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 127: $N_{uk} = 62$, $N_{us} = 65$; F = 55, M = 72).

 $6 \times 8 = 48$ experimental items like these:


• **CP** condition:

My children can **depend** [CP that I will always be there for them].

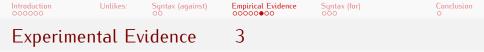
PP & CP condition:

My children can depend [[_{PP} on me] and [_{CP} that I will always be there for them]].

Thermometer method and standard items, as before.

Experiment 2 (without *annoyed* and *ashamed*, as they very readily combine with a CP)

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 127: $N_{uk} = 62$, $N_{us} = 65$; F = 55, M = 72).


- $6 \times 8 = 48$ experimental items like these:
 - O CP condition:

My children can **depend** [CP that I will always be there for them].

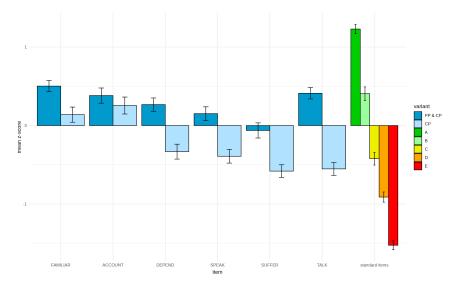
PP & CP condition:

My children can **depend** [PP on me] and PP on me] and PP on me] that I will always be there for them].

Thermometer method and standard items, as before.

Experiment 2 (without *annoyed* and *ashamed*, as they very readily combine with a CP)

Acceptability judgement experiment (Prolific, LimeSurvey, R; N = 127: $N_{uk} = 62$, $N_{us} = 65$; F = 55, M = 72).


- $6 \times 8 = 48$ experimental items like these:

there for them]].

Thermometer method and standard items, as before.

Average *z*-scores (with 95% confidence intervals):

troduction

likes:

Syntax (against 00 Empirical Evidence

Syntax (for) 000 Conclusion O

Summary of Empirical Evidence

	Corpus	Experiment 1		Experiment	2
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B–
account	3	A_	C+	B	B(–)
depend	15	A–	C	B(–)	C
speak	10	A–	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates combine with CPs: robustly (annoyed, ashamed), or less robustly (familiar, account, perhaps depend, speak),
- acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims;
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

oduction	Un
0000	

es: S

Syntax (against)

Empirical Evidence

Syntax (for)

Conclusion O

Summary of Empirical Evidence

	Corpus	Experiment 1		Experiment	
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B–
account	3	A–	C+	В	B(–)
depend	15	A–	C	B(–)	C
speak	10	A–	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates combine with CPs: robustly (annoyed, ashamed), or less robustly (familiar, account, perhaps depend, speak),
- acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims;
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

Introduction 000000	Unlikes:	Syntax (against) 00	Empirical Evidence	Syntax (for) 000	Conclusion O

	Corpus	Corpus Experime		Experiment 2	
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B-
account	3	A–	C+	В	B(–)
depend	15	A_	C	B(–)	C
speak	10	A_	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates combine with CPs: robustly (annoyed, ashamed), or less robustly (familiar, account, perhaps depend, speak),
 acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims;
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

Introduction 000000	Unlikes:	Syntax (against) 00	Empirical Evidence	Syntax (for) 000	Conclusion O

	Corpus	Experiment 1		Experiment	2
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B–
account	3	A–	C+	В	B(–)
depend	15	A–	C	B(–)	C
speak	10	A–	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates combine with CPs: robustly (annoyed, ashamed), or less robustly (familiar, account, perhaps depend, speak),
 acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims:
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

Introduction 000000	Unlikes:	Syntax (against) 00	Empirical Evidence	Syntax (for) 000	Conclusion O

	Corpus	Experiment 1		Experiment	2
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B-	В	B –
account	3	A–	C+	В	B(–)
depend	15	A_	C	B(–)	C
speak	10	A_	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates **combine with CPs**: robustly (*annoyed*, *ashamed*), or less robustly (*familiar*, *account*, perhaps *depend*, *speak*).
- acceptability differences between PP & CP and CP **do not justify** grammaticality vs. ungrammaticality claims;
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

Introduction	Unlikes:	Syntax (against)	Empirical Evidence	Syntax (for)	Conclusion
000000		00	0000000●	000	O

	Corpus	Experiment 1		Experiment 2	
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B –
account	3	A–	C+	В	B(–)
depend	15	A–	C	B(–)	C
speak	10	A–	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates **combine with CPs**: robustly (*annoyed*, *ashamed*), or less robustly (*familiar*, *account*, perhaps *depend*, *speak*),
- acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims;
- the only predicate that comes relatively close to predictions of asymmetric theories is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

Introduction 000000	Unlikes:	Syntax (against) 00	Empirical Evidence	Syntax (for) 000	Conclusion O

	Corpus	Experiment 1		Experiment 2	
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B-
account	3	A–	C+	В	B(–)
depend	15	A–	C	B(–)	C
speak	10	A–	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates combine with CPs: robustly (annoyed, ashamed), or less robustly (familiar, account, perhaps depend, speak),
- acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims;
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

Introduction 000000	Unlikes:	Syntax (against) 00	Empirical Evidence	Syntax (for) 000	Conclusion O

	Corpus	Experiment 1		Experiment 2	
Predicate	% with CP	PP	CP	PP & CP	CP
annoyed	93	A–	A–		
ashamed	85	A–	A–		
familiar	48	A–	B–	В	B–
account	3	A–	C+	В	B(–)
depend	15	A–	C	B(–)	C
speak	10	A–	C(-)	B-	C
suffer	1	B+	C(-)	C+	C–
talk	6	B+	D(+)	В	C(–)

- (most of) the predicates combine with CPs: robustly (annoyed, ashamed), or less robustly (familiar, account, perhaps depend, speak),
- acceptability differences between PP & CP and CP do not justify grammaticality vs. ungrammaticality claims;
- the only predicate that comes **relatively close to predictions of asymmetric theories** is *talk* (but all should behave like that);
- hence, no robust argument *against* symmetric theories from the coordination of unlikes.

- Danny was...
 ...[NP a political radical]. | ...[AP very antisocial]. | ...[PP under suspicion].
- Danny was [NP a political radical] and [AP very antisocial].
- Danny **was** [AP very antisocial] and [NP a political radical].
- Danny was [PP under suspicion] and [NP a political radical].
- Danny **was** [NP a political radical] and [PP under suspicion]
- Danny **was** [**PP** under suspicion] and [AP very antisocial].
- Danny **was** [AP very antisocial] and [PP under suspicion].

- Danny was...
 ...[NP a political radical]. / ...[AP very antisocial]. / ...[PP under suspicion].
- Danny was [NP a political radical] and [AP very antisocial].
- Danny was [AP very antisocial] and [NP a political radical].
- Danny was [PP under suspicion] and [NP a political radical].
- Danny **was** [NP a political radical] and [PP under suspicion]
- Danny was [PP under suspicion] and [AP very antisocial].
- Danny was [AP very antisocial] and [PP under suspicion].

- Danny was...
 ...[NP a political radical]. | ...[AP very antisocial]. | ...[PP under suspicion].
- Danny was [NP a political radical] and [AP very antisocial].
- Danny was [AP very antisocial] and [NP a political radical].
- Danny was [PP under suspicion] and [NP a political radical].
- Danny was [NP a political radical] and [PP under suspicion]
- Danny **was** [**PP** under suspicion] and [AP very antisocial].
- Danny was [AP very antisocial] and [PP under suspicion].

- Danny was...
 ...[NP a political radical]. | ...[AP very antisocial]. | ...[PP under suspicion].
- Danny was [NP a political radical] and [AP very antisocial].
- Danny was [AP very antisocial] and [NP a political radical].
- Danny was [PP under suspicion] and [NP a political radical].
- Danny was [NP a political radical] and [PP under suspicion].
- Danny was [PP under suspicion] and [AP very antisocial].
- Danny was [AP very antisocial] and [PP under suspicion].

For example (Sag et al. 1985, Dalrymple 2017, Neeleman et al. 2023):

- Danny became...
 ... [NP a political radical]. | ... [AP very antisocial]. | *... [PP under suspicion].
- Danny became [NP a political radical] and [AP very antisocial].
 Danny became [NP very antisocial] and [NP a political radical].

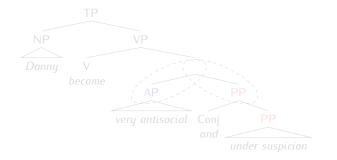
*Danny became [PP under suspicion] and [NP a political radical].
*Danny became [NP a political radical] and [PP under suspicion].
*Danny became [PP under suspicion] and [AP very antisocial].
*Danny became [AP very antisocial] and [PP under suspicion].

For example (Sag et al. 1985, Dalrymple 2017, Neeleman et al. 2023):

- Danny became...
 ... [NP a political radical]. | ... [AP very antisocial]. | *... [PP under suspicion].
- Danny **became** [NP a political radical] and [AP very antisocial].
- Danny **became** [AP very antisocial] and [NP a political radical].

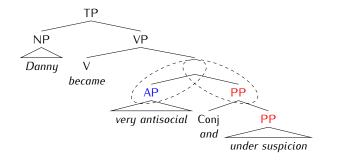
*Danny became [PP under suspicion] and [NP a political radical].
*Danny became [NP a political radical] and [PP under suspicion].
*Danny became [PP under suspicion] and [AP very antisocial].
*Danny became [AP very antisocial] and [PP under suspicion].

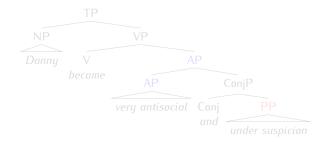
For example (Sag et al. 1985, Dalrymple 2017, Neeleman et al. 2023):


- Danny became...
 ... [NP a political radical]. | ... [AP very antisocial]. | *... [PP under suspicion].
- Danny **became** [NP a political radical] and [AP very antisocial].
- Danny **became** [AP very antisocial] and [NP a political radical].

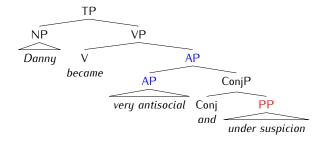
*Danny became [PP under suspicion] and [NP a political radical].
*Danny became [NP a political radical] and [PP under suspicion].
*Danny became [PP under suspicion] and [AP very antisocial].
*Danny became [AP very antisocial] and [PP under suspicion].

Conclusion: (heads of) coordinate structures must make information about categories of all conjuncts transparent.


This is immediately **compatible with (multi-headed) symmetric theories of coordination**, e.g. (Neeleman *et al.* 2023):


Conclusion: (heads of) coordinate structures must make information about categories of all conjuncts transparent.

This is immediately **compatible with (multi-headed) symmetric theories of coordination**, e.g. (Neeleman *et al.* 2023):



However, this is immediately **incompatible with asymmetric theories of coordination**, e.g. (Munn 1993):

However, this is immediately **incompatible with asymmetric theories of coordination**, e.g. (Munn 1993):

- (most of) the crucial "V P [NP & CP]" examples may have the structure "V [PP & CP]",
- which is compatible with symmetric theories of coordination;
- elsewhere, coordination of unlikes provides arguments for symmetric approaches.

- (most of) the crucial "V P [NP & CP]" examples may have the structure "V [PP & CP]",
- which is compatible with symmetric theories of coordination;
- elsewhere, coordination of unlikes provides arguments for symmetric approaches.

- (most of) the crucial "V P [NP & CP]" examples may have the structure "V [PP & CP]",
- which is compatible with symmetric theories of coordination;
- elsewhere, coordination of unlikes provides arguments for symmetric approaches.

- (most of) the crucial "V P [NP & CP]" examples may have the structure "V [PP & CP]",
- which is compatible with symmetric theories of coordination;
- elsewhere, coordination of unlikes provides arguments for symmetric approaches.

- (most of) the crucial "V P [NP & CP]" examples may have the structure "V [PP & CP]",
- which is compatible with symmetric theories of coordination;
- elsewhere, coordination of unlikes provides arguments for symmetric approaches.

Thank you for your attention!

References	Appendix:	Semantics 000	Unlike Categories 00	Unlike Cases 000

- Bondarenko, T. (2021a). The dual life of embedded CPs: Evidence from Russian *čto*-clauses. In N. Dreier, C. Kwon, T. Darnell, and J. Starr, editors, *Proceedings of SALT 31*, pages 304–323.
- Bondarenko, T. (2021b). How do we explain that CPs have two readings with some verbs of speech? In *Proceedings of WCCFL 39*.
- Bruening, B. (2023). Selectional violations in coordination (a response to Patejuk and Przepiórkowski 2023). To appear in *Linguistic Inquiry*.
- Bruening, B. and Al Khalaf, E. (2020). Category mismatches in coordination revisited. *Linguistic Inquiry*, **51**(1), 1–36.
- Bäuerle, R., Schwarze, C., and von Stechow, A., editors (1983). *Meaning, Use and Interpretation of Language*. Walter de Gruyter, Berlin.
- Dalrymple, M. (2017). Unlike phrase structure category coordination. In V. Rosén and K. De Smedt, editors, *The Very Model of a Modern Linguist*, volume 8 of *Bergen Language and Linguistics Studies*, pages 33–55. University of Bergen Library, Bergen.
- de Marneffe, M.-C., Manning, C. D., Nivre, J., and Zeman, D. (2021). Universal

Dependencies. Computational Linguistics, 47(2), 255–308.

- Featherston, S. (2008). Thermometer judgements as linguistic evidence. In C. M. Riehl and A. Rothe, editors, *Was ist linguistische Evidenz*?, pages 69–90. Shaker Verlag, Aachen.
- Featherston, S. (2009). A scale for measuring well-formedness: Why syntax needs boiling and freezing points. In S. Featherston and S. Winkler, editors, *The Fruits of Empirical Linguistics (Volume 1: Process)*, pages 47–73. Mouton de Gruyter, Berlin.

- Gerbrich, H., Schreier, V., and Featherston, S. (2019). Standard items for English judgment studies: Syntax and semantics. In S. Featherston, R. Hörnig, S. von Wietersheim, and S. Winkler, editors, *Experiments in Focus: Information Structure and Semantic Processing*, pages 305–327. Mouton de Gruyter, Berlin.
- Hajič, J., Panevová, J., Hajičová, E., Sgall, P., Pajas, P., Štěpánek, J., Havelka, J., Mikulová, M., Žabokrtský, Z., Ševčíková Razímová, M., and Urešová, Z. (2006). Prague Dependency Treebank 2.0 (PDT 2.0).
- Hudson, R. (1984). Word Grammar. Blackwell, Oxford.
- Hudson, R. (1988). Coordination and grammatical relations. *Journal of Linguistics*, 24(2), 303–342.
- Hudson, R. (1989). Gapping and grammatical relations. *Journal of Linguistics*, 25(1), 57–94.
- Hudson, R. (1990). English Word Grammar. Blackwell, Oxford.
- Hudson, R. (1995). Does English really have case? *Journal of Linguistics*, **31**(2), 375–392. Johannessen, J. B. (1998). *Coordination*. Oxford University Press, Oxford.
- Kratzer, A. (2006). Decomposing attitude verbs. Talk delivered at the Hebrew University of Jerusalem.
- Liefke, K. (2014). A Single-Type Semantics for Natural Language. Ph.D. dissertation, Tilburg University.
- Liefke, K. and Werning, M. (2018). Evidence for single-type semantics an alternative to *e*/*t*-based dual-type semantics. *Journal of Semantics*, **35**(4), 639–685.
- Link, G. (1983). The logical analysis of plurals and mass terms. In Bäuerle et al. (1983),

References	Appendix:	Semantics 000	Unlike Categories 00	Unlike Cases 000
202, 222				

pages 302–323.

Link, G. (1998). *Algebraic Semantics in Language and Philosophy*. CSLI Publications, Stanford, CA.

May, R. (1985). Logical Form: Its Structure and Derivation. MIT Press, Cambridge, MA.

Mel'čuk, I. (1988). *Dependency Syntax: Theory and Practice*. The SUNY Press, Albany, NY.

Mel'čuk, I. (2009). Dependency in natural language. In A. Polguère and I. Mel'čuk, editors, *Dependency in Linguistic Description*, pages 1–110. John Benjamins, Amsterdam.

Moulton, K. (2009). *Natural Selection and the Syntax of Clausal Complementation*. Ph.D. dissertation, University of Massachusetts, Amherst.

Moulton, K. (2015). CPs: Copies and compositionality. *Linguistic Inquiry*, 46(2), 305–342.

- Munn, A. (1987). Coordinate structure and X-bar Theory. *McGill Working Papers in Linguistics*, **4**, 121–140.
- Munn, A. B. (1993). *Topics in the Syntax and Semantics of Coordinate Structures*. Ph.D. dissertation, University of Maryland.
- Neeleman, A., Philip, J., Tanaka, M., and van de Koot, H. (2023). Subordination and binary branching. *Syntax*, **26**(1), 41–84.
- Parrott, J. K. (2009). Danish vestigial case and the acquisition of vocabulary in Distributed Morphology. *Biolinguistics*, 3(2–3), 270–304.

Partee, B. H. (2009). Do we need two basic types? Snippets, 20, 37-41.

Partee, B. H. and Rooth, M. (1983). Generalized conjunction and type ambiguity. In

Bäuerle et al. (1983), pages 361-383.

- Patejuk, A. and Przepiórkowski, A. (2023). Category mismatches in coordination vindicated. *Linguistic Inquiry*, **54**(2), 326–349.
- Przepiórkowski, A. (1999). *Case Assignment and the Complement-Adjunct Dichotomy: A Non-Configurational Constraint-Based Approach.* Ph.D. dissertation, Universität Tübingen.
- Przepiórkowski, A. (2022). Coordination of unlike grammatical cases (and unlike categories). *Language*, **98**(3), 592–634.
- Sag, I. A., Gazdar, G., Wasow, T., and Weisler, S. (1985). Coordination and how to distinguish categories. *Natural Language and Linguistic Theory*, **3**(2), 117–171.
- Sgall, P., Hajičová, E., and Panevová, J. (1986). *The Meaning of the Sentence in Its Semantic and Pragmatic Aspects*. Reidel, Dordrecht.
- Tesnière, L. (1959). Éléments de Syntaxe Structurale. Klincksieck, Paris.
- Weisser, P. (2020). On the symmetry of case in conjunction. Syntax, 23(1), 42–77.
- Zhang, N. (2023). Coordinate Structures. Cambridge University Press, Cambridge.
- Zhang, N. N. (2009). Coordination in Syntax. Cambridge University Press, Cambridge. Zoerner, III, C. E. (1995). Coordination: The Syntax of & P. Ph.D. dissertation, University of California, Irvine.

References	Appendix:	Semantics •00	Unlike Categories 00	Unlike Cases 000
Semantics?	1			

Recall:

Pat was annoyed...

[[*PP* by the children's noise] and [*CP* that their parents did nothing to stop it]]. You can **depend**...

[[PP on my assistant] and [CP that he will be on time]].

We talked...

[[PP] about Mr. Colson] and [CP] that he had worked at the White House]].

Is this really direct coordination?

- PP: e? (NP of type e preceded by a P of type $\langle e, e \rangle$)
- CP: t (or $\langle s, t \rangle$)?

Received wisdom about **the semantics of coordination**: **conjuncts must be of the same semantic types** (Partee and Rooth 1983, Link 1983, 1998).

References	Appendix:	Semantics •00	Unlike Categories 00	Unlike Cases 000
Semantics?	1			

Recall:

Pat was annoyed...

[[*PP* by the children's noise] and [*CP* that their parents did nothing to stop it]]. You can **depend**...

[[PP on my assistant] and [CP that he will be on time]].

We talked...

[[PP about Mr. Colson] and [CP that he had worked at the White House]].

Is this really direct coordination?

- PP: e? (NP of type e preceded by a P of type $\langle e, e \rangle$)
- CP: t (or $\langle s, t \rangle$)?

Received wisdom about **the semantics of coordination**: **conjuncts must be of the same semantic types** (Partee and Rooth 1983, Link 1983, 1998).

References	Appendix:	Semantics •00	Unlike Categories 00	Unlike Cases 000
Semantics?	1			

Recall:

Pat was annoyed...

[[*PP* by the children's noise] and [*CP* that their parents did nothing to stop it]]. You can **depend**...

[[PP on my assistant] and [CP that he will be on time]].

We talked...

[[PP about Mr. Colson] and [CP that he had worked at the White House]].

Is this really direct coordination?

- PP: e? (NP of type e preceded by a P of type $\langle e, e \rangle$)
- CP: t (or ⟨s, t⟩)?

Received wisdom about **the semantics of coordination**: **conjuncts must be of the same semantic types** (Partee and Rooth 1983, Link 1983, 1998).

•
$$[about Mr. Colson] \rightsquigarrow [\lambda x.x](c) = c$$
 (e)

• $\llbracket \text{that he had worked...} \rrbracket \rightsquigarrow \lambda x. \text{content}(x) = \llbracket \text{he had worked...} \rrbracket (\langle e, t \rangle)$

→ *ιx.content(x)* = [*he had worked...*] (e)
 or perhaps:

• $\rightsquigarrow \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$ (e)

- [about Mr. Colson and that he had worked...] (Link 1998)
- → c ⊕ ιx. content(x) = [[he had worked...]] (e
 or perhaps:

• \rightsquigarrow $c \oplus \iota x. fact(x) \land content(x) = \llbracket he had worked... \rrbracket$

•
$$[about Mr. Colson] \rightsquigarrow [\lambda x.x](c) = c$$
 (e)

• \llbracket that he had worked... $\rrbracket \rightsquigarrow \lambda x. content(x) = \llbracket$ he had worked... $\rrbracket (\langle e, t \rangle)$

→ *ιx.content(x)* = [*he had worked...*] (e)
 or perhaps:

• $\rightsquigarrow \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$ (

- [about Mr. Colson and that he had worked...] (Link 1998)
- → c ⊕ ιx. content(x) = [[he had worked...]] (e
 or perhaps:
- \rightarrow c $\oplus \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$

•
$$[about Mr. Colson] \rightsquigarrow [\lambda x.x](c) = c$$
 (e)

• \llbracket that he had worked... $\rrbracket \rightsquigarrow \lambda x. content(x) = \llbracket$ he had worked... $\rrbracket (\langle e, t \rangle)$

• $\rightsquigarrow \iota x. fact(x) \land content(x) = \llbracket he had worked... \rrbracket$ (e

- [about Mr. Colson and that he had worked...] (Link 1998)
- → c ⊕ ιx. content(x) = [[he had worked...]] (e
 or perhaps:
- \rightsquigarrow $c \oplus \iota x. fact(x) \land content(x) = \llbracket he had worked... \rrbracket$

•
$$[about Mr. Colson] \rightsquigarrow [\lambda x.x](c) = c$$
 (e)

• \llbracket that he had worked... $\rrbracket \rightsquigarrow \lambda x. content(x) = \llbracket$ he had worked... $\rrbracket (\langle e, t \rangle)$

•
$$\rightsquigarrow \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$$
 (e)

- [about Mr. Colson and that he had worked...] (Link 1998
- → c ⊕ ιx. content(x) = [he had worked...] (e
 or perhaps:
- \rightarrow c $\oplus \iota x. fact(x) \land content(x) = \llbracket he had worked... \rrbracket$

•
$$[about Mr. Colson] \rightsquigarrow [\lambda x.x](c) = c$$
 (e)

- \llbracket that he had worked... $\rrbracket \rightsquigarrow \lambda x. content(x) = \llbracket$ he had worked... $\rrbracket (\langle e, t \rangle)$
- → *ιx.content(x)* = [[*he had worked...*]] (e) or perhaps:

•
$$\rightsquigarrow \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$$
 (e)

- [[about Mr. Colson and that he had worked...]] (Link 1998) • $\rightsquigarrow c \oplus \iota x. content(x) = [[he had worked...]]$ (e)
- or perhaps: (e)
- \rightsquigarrow $c \oplus \iota x. fact(x) \land content(x) = \llbracket he had worked... \rrbracket$

•
$$[about Mr. Colson] \rightsquigarrow [\lambda x.x](c) = c$$
 (e)

- \llbracket that he had worked... $\rrbracket \rightsquigarrow \lambda x. content(x) = \llbracket$ he had worked... $\rrbracket (\langle e, t \rangle)$
- → *ιx.content(x)* = [[*he had worked...*]] (e) or perhaps:

•
$$\rightsquigarrow \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$$
 (e)

- [about Mr. Colson and that he had worked...] (Link 1998)
- → c ⊕ ιx. content(x) = [[he had worked...]] (e)
 or perhaps:
- \rightsquigarrow $c \oplus \iota x. fact(x) \land content(x) = \llbracket he \ had \ worked... \rrbracket$ (e)

- single basic type o (equivalent to $\langle s, \langle s, t \rangle \rangle$ functions from contextually specified situations to sets of situations)
- $[Mr. Colson] = \{\sigma | \sigma_0 \subseteq \sigma \land Mr. Colson \text{ is in } \sigma\}$
- $[about Mr. Colson] = [Mr. Colson] = {\sigma | \sigma_0 \subseteq \sigma \land Mr. Colson is in \sigma}$
- $\llbracket that he had worked at the White House \rrbracket = \{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. Colson worked at White House in \sigma \}$
- [about Mr. Colson and that he had worked...] = [about Mr. Colson] \cap [[that he had worked...] = { $\sigma | \sigma_0 \equiv \sigma \land Mr.$ Colson is in $\sigma \land$ Mr. Colson worked at White House in σ

• single basic type o (equivalent to $\langle s, \langle s, t \rangle \rangle$ – functions from contextually specified situations to sets of situations)

•
$$[Mr. Colson] = \{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. Colson is in \sigma\}$$

(0)

- $[about Mr. Colson] = [Mr. Colson] = {\sigma | \sigma_0 \subseteq \sigma \land Mr. Colson is in \sigma}$
- \llbracket that he had worked at the White House \rrbracket = $\{\sigma | \sigma_0 \subseteq \sigma \land Mr. \text{ Colson worked at White House in } \sigma\}$
- [about Mr. Colson and that he had worked...] = [about Mr. Colson] \cap [that he had worked...] = { $\sigma | \sigma_0 \equiv \sigma \land Mr.$ Colson is in $\sigma \land$ Mr. Colson worked at White House in σ

• single basic type o (equivalent to $\langle s, \langle s, t \rangle \rangle$ – functions from contextually specified situations to sets of situations)

•
$$\llbracket Mr. \ Colson \rrbracket = \{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. \ Colson \ is \ in \ \sigma\}$$
 (0)

(0)

- $[about Mr. Colson] = [Mr. Colson] = {\sigma | \sigma_0 \subseteq \sigma \land Mr. Colson is in \sigma}$
- \llbracket that he had worked at the White House \rrbracket = $\{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. \text{ Colson worked at White House in } \sigma\}$

• [about Mr. Colson and that he had worked...] = [about Mr. Colson] \cap [that he had worked...] = { $\sigma | \sigma_0 \sqsubseteq \sigma \land Mr$. Colson is in $\sigma \land$ Mr. Colson worked at White House in σ

• single basic type o (equivalent to $\langle s, \langle s, t \rangle \rangle$ – functions from contextually specified situations to sets of situations)

•
$$\llbracket Mr. \ Colson \rrbracket = \{ \sigma | \sigma_0 \sqsubseteq \sigma \land Mr. \ Colson \ is \ in \ \sigma \}$$
 (0)

- $[about Mr. Colson] = [Mr. Colson] = {\sigma | \sigma_0 \subseteq \sigma \land Mr. Colson is in \sigma}$
- \llbracket that he had worked at the White House \rrbracket = $\{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. \text{ Colson worked at White House in } \sigma\}$
- $[\![about Mr. Colson and that he had worked...]\!] = [\![about Mr. Colson]\!] \cap [\![that he had worked...]\!] = \{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. Colson is in \sigma \land Mr. Colson worked at White House in \sigma\}$

(o)

• single basic type o (equivalent to $\langle s, \langle s, t \rangle \rangle$ – functions from contextually specified situations to sets of situations)

•
$$\llbracket Mr. \ Colson \rrbracket = \{ \sigma | \sigma_0 \sqsubseteq \sigma \land Mr. \ Colson \ is \ in \ \sigma \}$$
 (0)

(o)

(0)

- $[\![about Mr. Colson]\!] = [\![Mr. Colson]\!] = \{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. Colson is in \sigma\}$
- \llbracket that he had worked at the White House \rrbracket = $\{\sigma | \sigma_0 \sqsubseteq \sigma \land Mr. \text{ Colson worked at White House in } \sigma\}$
- $[\![about Mr. Colson and that he had worked...]\!] =$ $[\![about Mr. Colson]\!] \cap [\![that he had worked...]\!] =$ $\{\sigma | \sigma_0 \subseteq \sigma \land Mr. Colson is in \sigma \land$ *Mr. Colson worked at White House in \sigma*}

- Pat is [NP a Republican] and [AP proud of it].
- We walked [ADVP slowly] and [PP with great care].
- Pat remembered [NP the appointment] and [CP that it was important to be on time].

At least three mechanisms invoked to explain them away:

- ellipsis (or conjunction reduction), e.g.:
 Pat [<u>vP</u> is a Republican] and [<u>vP</u> is proud of it].
- supercategories, e.g.: Pat is [<u>Pred</u>: NP a Republican] and [<u>Pred</u>: AP proud of it].
- CP as NP, e.g.:

Pat remembered [<u>NP</u> the appointment] and $\left[\sum_{NP} \left[c_{P} \right] \right]$ the the appointment of the on-

- Pat is [NP a Republican] and [AP proud of it].
- We walked [ADVP slowly] and [PP with great care].
- Pat remembered [NP the appointment] and [CP that it was important to be on time].

At least three mechanisms invoked to explain them away

- ellipsis (or conjunction reduction), e.g.:
 Pat [<u>vp</u> is a Republican] and [<u>vp</u> is proud of it].
- supercategories, e.g.: Pat is [<u>Pred</u>: NP a Republican] and [<u>Pred</u>: AP proud of it].
- CP as NP, e.g.:

Pat remembered [<u>NP</u> the appointment] and

[<u>NP</u> [_{CP} that it was important to be on time]].

- Pat is [NP a Republican] and [AP proud of it].
- We walked [ADVP slowly] and [PP with great care].
- Pat remembered [NP the appointment] and [CP that it was important to be on time].

At least three mechanisms invoked to explain them away:

- ellipsis (or conjunction reduction), e.g.:
 Pat [<u>vp</u> is a Republican] and [<u>vp</u> is proud of it].
- supercategories, e.g.: Pat is [<u>Pred</u>: NP a Republican] and [<u>Pred</u>: AP proud of it].

• CP as NP, e.g.: Pat remembered [<u>NP</u> the appointment] and [<u>NP</u> [_{CP} that it was important to be on time]

- Pat is [NP a Republican] and [AP proud of it].
- We walked [ADVP slowly] and [PP with great care].
- Pat remembered [NP the appointment] and [CP that it was important to be on time].

At least three mechanisms invoked to explain them away:

- ellipsis (or conjunction reduction), e.g.:
 Pat [<u>vp</u> is a Republican] and [<u>vp</u> is proud of it].
- supercategories, e.g.: Pat is [<u>Pred</u>: NP a Republican] and [<u>Pred</u>: AP proud of it].

• CP as NP, e.g.: Pat remembered [<u>NP</u> the appointment] and [<u>NP</u> [_{CP} that it was important to be on time]].

- Pat is [NP a Republican] and [AP proud of it].
- We walked [ADVP slowly] and [PP with great care].
- Pat remembered [NP the appointment] and [CP that it was important to be on time].

At least three mechanisms invoked to explain them away:

- ellipsis (or conjunction reduction), e.g.:
 Pat [<u>vp</u> is a Republican] and [<u>vp</u> is proud of it].
- supercategories, e.g.: Pat is [<u>Pred</u>: NP a Republican] and [<u>Pred</u>: AP proud of it].
- CP as NP, e.g.:

Pat remembered [<u>NP</u> the appointment] and $[\underline{NP} \ [CP \ that \ it \ was \ important \ to \ be \ on \ time]].$

- Pat is [NP a Republican] and [AP proud of it].
- We walked [ADVP slowly] and [PP with great care].
- Pat remembered [NP the appointment] and [CP that it was important to be on time].

At least three mechanisms invoked to explain them away:

- ellipsis (or conjunction reduction), e.g.:
 Pat [<u>vp</u> is a Republican] and [<u>vp</u> is proud of it].
- supercategories, e.g.: Pat is [<u>Pred</u>: NP a Republican] and [<u>Pred</u>: AP proud of it].
- CP as NP, e.g.:

Pat remembered [<u>NP</u> the appointment] and [<u>NP</u> [$_{CP}$ that it was important to be on time]].

Neeleman *et al.* 2023: 58:

Bruening & Al Khalaf 2020 argues that coordination of arguments (as opposed to predicates and modifiers) must involve conjuncts that have the same category. It is **not clear**, **however**, **that this claim stands up to scrutiny**. [Patejuk and Przepiórkowski 2023] lists numerous attested examples of unlike-argument coordination.

Bruening 2023: 1:

[Patejuk and Przepiórkowski 2023] [...] successfully show that **conjuncts do not need to match in syntactic category**...

Zhang 2023: 40:

Neeleman *et al.* 2023: 58:

Bruening & Al Khalaf 2020 argues that coordination of arguments (as opposed to predicates and modifiers) must involve conjuncts that have the same category. It is **not clear**, **however**, **that this claim stands up to scrutiny**. [Patejuk and Przepiórkowski 2023] lists numerous attested examples of unlike-argument coordination.

Bruening 2023: 1:

[Patejuk and Przepiórkowski 2023] [...] successfully show that **conjuncts do not need to match in syntactic category**...

Zhang 2023: 40:

Neeleman *et al.* 2023: 58:

Bruening & Al Khalaf 2020 argues that coordination of arguments (as opposed to predicates and modifiers) must involve conjuncts that have the same category. It is **not clear**, **however**, **that this claim stands up to scrutiny**. [Patejuk and Przepiórkowski 2023] lists numerous attested examples of unlike-argument coordination.

Bruening 2023: 1:

[Patejuk and Przepiórkowski 2023] [...] successfully show that conjuncts do not need to match in syntactic category...

Zhang 2023: 40:

Neeleman *et al.* 2023: 58:

Bruening & Al Khalaf 2020 argues that coordination of arguments (as opposed to predicates and modifiers) must involve conjuncts that have the same category. It is **not clear**, **however**, **that this claim stands up to scrutiny**. [Patejuk and Przepiórkowski 2023] lists numerous attested examples of unlike-argument coordination.

Bruening 2023: 1:

[Patejuk and Przepiórkowski 2023] [...] successfully show that **conjuncts do not need to match in syntactic category**...

Zhang 2023: 40:

- [Him] and [I] are fighting. not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)
- Ta jook-sis [jõe] ja [puu-ni]. (Estonian) 3SG run-3SG river.GEN and tree-TERM 'He went to the river and the tree.' suspended affixation

- [Him] and [I] are fighting. not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)
- Ta jook-sis [jõe] ja [puu-ni]. (Estoniar 3SG run-3SG river.GEN and tree-TERM 'He went to the river and the tree.' suspended affixation

Weisser 2020 argues that **only the same morphological cases may be coordinated**. For example:

• [Him] and [I] are fighting.

not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)

Ta jook-sis [jõe] ja [puu-ni].
 3SG run-3SG river.GEN and tree-TERM
 'He went to the river and the tree.'
 suspended affixation

- [Him] and [I] are fighting. not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)
- Ta jook-sis [jõe] ja [puu-ni]. (Estonian)
 3SG run-3SG river.GEN and tree-TERM
 'He went to the river and the tree.'
 suspended affixation

- [Him] and [I] are fighting. not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)
- Ta jook-sis [jõe] ja [puu-ni]. (Estonian) 3SG run-3SG river.GEN and tree-TERM 'He went to the river and the tree.' suspended affixation

- [Him] and [I] are fighting. not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)
- Ta jook-sis [jõe] ja [puu]-ni. (Estonian) 3SG run-3SG river.GEN and tree.GEN-TERM 'He went to the river and the tree.' suspended affixation

- [Him] and [I] are fighting. not a case system, but rather allomorphy (Hudson 1995, Parrott 2009)
- Ta jook-sis [jõe] ja [puu]-ni. (Estonian) 3SG run-3SG river.GEN and tree.GEN-TERM 'He went to the river and the tree.' suspended affixation

Coordination of unlike cases

Przepiórkowski 2022: examples of coordination of unlike cases in Polish and other languages.

• Dajcie [całą świnię] i [wina]!

• * Widziałem [całą świnię] i [wina].

• * Obawiałem się [wina] i [całą świnię].

Przepiórkowski 2022: examples of **coordination of unlike cases in Polish** and other languages.

For example (Przepiórkowski 1999), the normally **accusative** direct object of *dać* 'give' may also be in (partitive) **genitive**, so:

• Dajcie [całą świnię] i [wina]! (Polish) give.IMP.2PL whole.ACC.SG.F pig.ACC.SG.F and wine.GEN.SG.N 'Serve a/the whole pig and (some) wine!'

On the other hand, the direct object of *widzieć* 'see' must be **accusative**, so:

• **Widziałem [całą świnię] i [wina].* (Polish) saw.1ST.M whole.ACC.SG.F pig.ACC.SG.F and wine.GEN.SG.N intended: 'I saw a/the whole pig and (some) wine.'

Similarly, the argument of *obawiać się* 'fear, be afraid' must be **genitive**, so:

• **Obawiałem się [wina]* i [*całą świnię*]. (Polish) feared.1ST.M wine.GEN.SG.N and whole.ACC.SG.F pig.ACC.SG.F intended: 'I was afraid of (consuming) (some) wine and a/the whole pig.'

Przepiórkowski 2022: examples of **coordination of unlike cases in Polish** and other languages.

For example (Przepiórkowski 1999), the normally **accusative** direct object of *dać* 'give' may also be in (partitive) **genitive**, so:

• Dajcie [całą świnię] i [wina]! (Polish) give.IMP.2PL whole.ACC.SG.F pig.ACC.SG.F and wine.GEN.SG.N 'Serve a/the whole pig and (some) wine!'

On the other hand, the direct object of *widzieć* 'see' must be **accusative**, so:

• * Widziatem [całą świnię] i [wina]. (Polish) saw.1ST.M whole.ACC.SG.F pig.ACC.SG.F and wine.GEN.SG.N intended: 'I saw a/the whole pig and (some) wine.'

Similarly, the argument of *obawiać się* 'fear, be afraid' must be **genitive**, so:

• **Obawiałem się [wina] i [całą świnię].* (Polish) feared.1ST.M wine.GEN.SG.N and whole.ACC.SG.F pig.ACC.SG.F intended: 'I was afraid of (consuming) (some) wine and a/the whole pig.'

Przepiórkowski 2022: examples of **coordination of unlike cases in Polish** and other languages.

For example (Przepiórkowski 1999), the normally **accusative** direct object of *dać* 'give' may also be in (partitive) **genitive**, so:

• Dajcie [całą świnię] i [wina]! (Polish) give.IMP.2PL whole.ACC.SG.F pig.ACC.SG.F and wine.GEN.SG.N 'Serve a/the whole pig and (some) wine!'

On the other hand, the direct object of *widzieć* 'see' must be **accusative**, so:

• * Widziatem [całą świnię] i [wina]. (Polish) saw.1ST.M whole.ACC.SG.F pig.ACC.SG.F and wine.GEN.SG.N intended: 'I saw a/the whole pig and (some) wine.'

Similarly, the argument of *obawiać się* 'fear, be afraid' must be **genitive**, so:

• * *Obawiałem się [wina] i [całą świnię].* (Polish) feared.1ST.M wine.GEN.SG.N and whole.ACC.SG.F pig.ACC.SG.F intended: 'I was afraid of (consuming) (some) wine and a/the whole pig.'

Conclusion: (heads of) coordinate structures must make information about grammatical cases of all conjuncts transparent.

Again, this is:

- immediately incompatible with asymmetric theories of coordination,
- immediately compatible with multi-headed symmetric theories of coordination.

Conclusion: (heads of) coordinate structures must make information about grammatical cases of all conjuncts transparent.

Again, this is:

- immediately incompatible with asymmetric theories of coordination,
- immediately compatible with multi-headed symmetric theories of coordination.

Conclusion: (heads of) coordinate structures must make information about grammatical cases of all conjuncts transparent.

Again, this is:

- immediately incompatible with asymmetric theories of coordination,
- immediately compatible with multi-headed symmetric theories of coordination.