

 Int. J. Data Mining, Modelling and Management, Vol. 5, No. 2, 2013 103

 Copyright © 2013 Inderscience Enterprises Ltd.

Annotation tools for syntax and named entities in the
National Corpus of Polish

Jakub Waszczuk*
Institute of Computer Science,
Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warsaw, Poland
and
Institute of Informatics,
University of Warsaw,
ul. Banacha 2, 02-097 Warsaw, Poland
E-mail: jw235843@students.mimuw.edu.pl
*Corresponding author

Katarzyna Głowińska
Institute of Computer Science,
Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warsaw, Poland
E-mail: k.glowinska@gmail.com

Agata Savary
Laboratoire d’Informatique,
Université François Rabelais Tours,
3 pl. Jean-Jaurés, 41000 Blois, France
E-mail: agata.savary@univ-tours.fr

Adam Przepiórkowski and Michał Lenart
Institute of Computer Science,
Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warsaw, Poland
and
Institute of Informatics,
University of Warsaw,
ul. Banacha 2, 02-097 Warsaw, Poland
E-mail: adamp@ipipan.waw.pl
E-mail: michal.lenart@gmail.com

Abstract: The ongoing National Corpus of Polish project assumes several
levels of linguistic annotation. We present the technical environment and
methodological background developed for the three upper annotation levels:
the levels of syntactic words, syntactic groups and named entities. We show
how knowledge-based platforms Spejd and Sprout are used for the automatic

 104 J. Waszczuk et al.

pre-annotation of the corpus and discuss some particular problems faced during
the preparation of the parser grammar, which contains over 1,000 rules and is
one of the largest chunking grammars for Polish. We also show how the tree
editor TrEd has been customised for manual post-editing of annotations and for
further revision of discrepancies. Our XML format converters and customised
archiving repository ensure an automatic data flow and efficient corpus file
management. We discuss the inter-annotator agreement in the manually
annotated data, and present the first results of a CRF classifier trained on these
data.

Keywords: corpus annotation; National Corpus of Polish; shallow parsing;
chunking; named entity recognition; NER.

Reference to this paper should be made as follows: Waszczuk, J.,
Głowińska, K., Savary, A., Przepiórkowski, A. and Lenart, M. (2013)
‘Annotation tools for syntax and named entities in the National Corpus of
Polish’, Int. J. Data Mining, Modelling and Management, Vol. 5, No. 2,
pp.103–122.

Biographical notes: Jakub Waszczuk is an MSc student in Computer Science
at the University of Warsaw. He works as a Programmer at the Institute of
Computer Science, Polish Academy of Sciences. His current scientific interests
include algorithms, machine learning methods and natural language processing.

Katarzyna Głowińska obtained her PhD in Linguistics from the University of
Warsaw, Poland in 1999. She has participated in various research projects in
the field of computational linguistics, dedicated to information extraction,
machine translation and corpus annotation. Her current scientific interests are
morphology and syntax of Polish, as well as semantics.

Agata Savary received her MSc in Computer Science from the University of
Warsaw and PhD in Computer Science from the University of Marne-la-Vallée,
France in 2000. She is currently an Associate Professor at the François Rabelais
University in Tours, France. Her research interests include language resources,
multi-lingual processing of multi-word expressions, named-entity recognition
and XML document correction.

Adam Przepiórkowski obtained his MSc in Computer Science from the
University of Warsaw and PhD in Linguistics at the University of Tübingen,
Germany. He is currently an Associate Professor at the Institute of Computer
Science of the Polish Academy of Sciences, where he is the Head of the
Linguistic Engineering Group, and at the Institute of Informatics at the
University of Warsaw. His research interests include corpus linguistics,
syntactic parsing and formal linguistics.

Micha l Lenart studies Computer Science at the University of Warsaw. He
currently works as a Programmer at the Institute of Computer Science, Polish
Academy of Sciences.

This paper is a revised and expanded version of a paper entitled ‘Tools and
methodologies for annotating syntax and named entities in the National Corpus
of Polish’ presented at International Multiconference on Computer Science and
Information Technology, Wisła, Poland, 18–20 October 2010.

Annotation tools for syntax and named entities 105

1 Introduction

The National Corpus of Polish (Pol. Narodowy Korpus Języka Polskiego; NKJP;
http://nkjp.pl/) is a 3.5-year project (2007–2011), involving a consortium of four
partners coordinated by the Institute of Computer Science, Polish Academy of Sciences
(Przepiórkowski et al., 2008, 2010). The aim of the project is to create a one billion
(109) word corpus of Polish annotated at various levels, with a 300-million-word
balanced subcorpus and a number of annotation tools. The following linguistic
annotation levels are distinguished: segmentation (word-level and sentence-level),
morphosyntax, word sense disambiguation (limited to around 100 lexemes), syntactic
words (SWs), syntactic groups (SGs) and named entities (NEs).

The level of SWs, such as reflexive and analytical verb forms (Przepiórkowski,
2008), is built on top of the morphosyntactic level. SGs (also called syntactic phrases),
such as nominal, prepositional or clause-level groups, are constructed on top of SWs.
Finally, NEs, i.e., proper names of persons, geographical features and organisations, as
well as temporal expressions, refer, again, to the level of morphosyntactically annotated
segments (cf., Section 3).

A 1-million-word balanced subcorpus has undergone, at all these levels, automatic
pre-annotation and manual correction of the pre-annotation results. We refer to this
process, in short, as manual annotation. Further, the 1-million-word manually annotated
subcorpus serves as a training corpus for various annotation tools (e.g., for the
PANTERA tagger; cf., Acedanski, 2010). The current paper gives an overview of
methodologies and tools used for the semi-manual annotation of the 1-million corpus at
the last three – broadly syntactic – levels. It also presents the first results of a machine
learning method for named-entity recognition trained on the manually revised data.

2 Related work

Some of the first treebanks were constructed completely manually, by drawing trees
for particular sentences; this is the case, for example, for the Penn Treebank (PTB) of
English (Marcus et al., 1993), the German Negra/Tiger Treebank (Brants et al., 2002)
and the Prague Dependency Treebank (Böhmová et al., 2003). Some treebanks were
created by converting existing treebanks to the new linguistic theory; for example, parts
of roughly Chomskyan PTB were converted to Head-driven phrase structure grammar,
lexical functional grammar and constraint categorial grammar. Nowadays, however, a
frequent way of developing new treebanks consists in the automatic parsing of texts
and the manual selection of the right parse. If such a parse does not exist, the best
result may be manually modified and included in the treebank, and the grammar may be
appropriately extended. For example, Kordoni and Zhang (2009) reports that the ERG
grammar (Flickinger, 2002) covers around 80% of the Wall Street Journal part of PTB,
with sentences not adequately covered by the grammar serving as the basis for further
grammar development.

The outcome of the effort reported here will not constitute a typical treebank, as
the annotation in NKJP stops at the partial (or shallow) syntactic markup (cf., e.g.,
Abney, 1991, 1996, as well as Przepiórkowski, 2008), where structural ambiguity is not
an issue; in fact, there is a separate project carried out at the same institute, aiming
at the construction of a full constituency treebank on the basis of the same 1-million

106 J. Waszczuk et al.

word subcorpus; cf., Swidzinski and Wolinski (2010). Hence, the approach mentioned
above, focusing on disambiguation, is not directly applicable to the task at hand, but the
general semi-manual iterative methodology is similar: parse sentences using a manually
constructed grammar, ask annotators to correct the results of parsing by hand, and use
error and omission reports for the improvement of the grammar, before applying it to
the next batch of sentences.

There are many multi-level corpora developed by now, typically containing
morphosyntactic, (deep) syntactic and some semantic and/or discourse representation.
For example, the Prague Dependency Treebank mentioned above has these three
levels (called morphological, analytical and tectogrammatical), currently extended
further to include coreference (Nedoluzhko et al., 2009) and high-level inter-clausal
structure (Lopatková et al., 2009). The current project adopts a more fine-grained and
conservative approach, with three levels between morphosyntax and deep syntax proper:
possibly multi-segment SWs, NEs and possibly partial SGs. We claim that this gradual
procedure makes it possible to better control the quality of the linguistic annotation.

Furthermore, at the level of NEs, the annotation strategies adopted here are rather
fine-grained, namely, not just the longest-matching occurrences of NEs are annotated,
but also all recursively embedded ones, and, moreover, overlappingly coordinated NEs
(as in North and South America) are appropriately marked (cf., Savary et al., 2010;
Savary and Piskorski, 2010).

Finally, let us note that, while only partial syntactic structures are annotated here,
SGs contain the kind of information not usually found in treebanks, namely, they mark
both syntactic and semantic heads. For example, in the case of prepositional groups,
the preposition serves as the syntactic head (because it governs the case inflection of
its arguments), but the semantic head is the most meaningful word within the argument
of this preposition. Arguments for the usefulness of this kind of annotation, and further
details, may be found, e.g., in Przepiórkowski (2006, 2008).

3 Annotation data flow

The three levels of syntactic annotation in the NKJP are organised into two parallel data
flows: one for SWs and SGs (henceforth, syntactic annotation in the narrower sense),
and the other for NEs.

The main differences between the data flows show up during the pre-processing
step – different tools, with different input specifications, are used for automatic
pre-annotation. In the case of syntactic annotation (Figure 1) a shallow parsing system
called Spejd is used to extract SWs and SGs from the underlying morphosyntax level
(cf., Section 4.1). For the task of NE recognition, another platform, Sprout, is used (see
Section 4.2).

Spejd takes structured text with segmentation and morphosyntax information as
input. It requires a specific input format (called IPI format in Figure 1) that can
be automatically obtained from the NKJP morphosyntax level. Conversely, Sprout
requires pure text as input, which complicates the whole process of data conversion (see
Figure 2). The NEs, identified by means of lexical resources and grammar rules, are
marked in a Sprout-specific output together with cardinal numbers of the beginning and
ending characters. The converter consults the segmentation level in order to translate
text ranges into token identifiers.

Annotation tools for syntax and named entities 107

Figure 1 Data flow in the syntactic annotation task of the NKJP corpus

Figure 2 Data flow in the NEs annotation task of the NKJP corpus

After the pre-processing step, files have to be prepared for manual annotation. In both
data flows, annotators use a tree editor TrEd (see Section 5) to examine and correct
results of automatic annotation. Again, files have to be translated to TrEd-readable PML
formats (http://ufal.mff.cuni.cz/jazz/PML/doc/). For ergonomic reasons, it is important
to present the annotator with text portions of uniform length, thus easily manageable.
Therefore, the converter divides every text that is too large into files of a limited
number of sentences corresponding to roughly one hour of human annotation effort. Text
splitting is designed so as to keep together all sentences appearing in one paragraph.

108 J. Waszczuk et al.

Finally, PML files are transferred to corpus files management system (see
Section 5.3) which is responsible for distributing files between annotators and for storing
results of consecutive annotation steps.

Two annotators work on each corpus fragment. An adjudicator reviews any cases of
disagreement and chooses the correct annotation. Each annotator and adjudicator works
off-line with TrEd installed locally, connecting to the subversion repository only to send
results of his or her work or to download new files.

Figure 3 TEI-P5-conformant annotation for the named entity Irlandzka Armia Republikańska
‘Irish Republican Army’

<teiCorpus
xmlns:xi="http://www.w3.org/2001/XInclude" xmlns="http://www.tei-c.org/ns/1.0">
<xi:include href="NKJP_1M_header.xml"/>
<TEI>

<xi:include href="header.xml"/>
<text><body>
<p xml:id="named_1-p" corresp="ann_words.xml#words_1-p">

<s xml:id="named_1.34-s" corresp="ann_words.xml#words_1.34-s">
<seg xml:id="named_1.34-s_n2">

<fs type="named">
<f name="ne_type"><symbol value="orgName"/></f>
<f name="orth"><string>Irlandzka Armia Republikańska</string></f>
<f name="base"><string>Irlandzka Armia Republikańska</string></f>
<f name="certainty"><symbol value="high"/></f>

</fs>
<ptr target="named_1.34-s_n3"/> <!-- Irlandzka -->
<ptr target="ann_morphosyntax.xml#morph_1.2-seg"/> <!-- Armia -->

<ptr target="ann_morphosyntax.xml#morph_1.3-seg"/> <!-- Republikańska -->
</seg>
<seg xml:id="named_1.34-s_n3">

<fs type="named">
<f name="derived">

<fs type="derivation">
<f name="derivType"><symbol value="relAdj"/></f>
<f name="derivedFrom"><string>Irlandia</string></f>

</fs>
</f>
<f name="ne_type"><symbol value="placeName"/></f>
<f name="ne_subtype"><symbol value="country"/></f>
<f name="orth"><string>Irlandzka</string></f>
<f name="base"><string>irlandzki</string></f>
<f name="certainty"><symbol value="high"/></f>

</fs>
<ptr target="ann_morphosyntax.xml#morph_1.1-seg"/>

</seg>
</s>

</p>
</body></text></TEI>

</teiCorpus>

The last stage consists of converting the PML files with validated annotation into the
final TEI-P5-conformant NKJP format. Here, the subfiles have to be merged into files
corresponding to the initial texts and embedded XML elements (NEs and SGs) get
transformed into pointers (for stand-off annotation). Entities at different annotation levels
are marked as ⟨seg⟩ments, and their inclusions as ⟨ptr⟩ links. The SW annotation

Annotation tools for syntax and named entities 109

level (Lwords) is based on the level of morphosyntactic items (Lmorphosyntax). The
SG level (Lgroups) builds on Lwords, i.e., the scope of a given SG in text is defined
by its ⟨ptr⟩ references to segments defined at the levels Lwords and Lgroups (the
latter in the case of embedded SGs). The same should hold for the final version
of the named-entity level (Lnamed). However, since the SW, SG and NE levels are
being developed simultaneously, the current version of Lnamed relates to Lmorphosyntax

instead of Lwords. For instance, in Figure 3, the organisation name Irlandzka Armia
Republikańska ‘Irish Republican Army’ points to ⟨seg⟩ments morph 1.2-seg (Armia
‘army’) and morph 1.3-seg (republikańska ‘republican’) at the Lmorphosyntax level
(in file ann morphosyntax.xml), and to ⟨seg⟩ment named 1.34-s n3 (Irlandzka
‘Irish’) defined just below at the Lnamed level. Both NEs have a set of attributes
defining their types (ne type), subtypes, if any (ne subtype), corpus occurrence forms
(orth), lemmas (base), and the degree of annotator’s certainty with respect to this
annotation (certainty). Additionally, the derivational adjective Irlandzka ‘Irish’ is
assigned its type of derivation (derivType) and its derivational base Irlandia ‘Ireland’
(derivedFrom).

4 Automatic annotation

4.1 Shallow parsing with Spejd

Syntactic annotation of the National Corpus of Polish consists of combining words into
constituents: first at the level of SWs, then at the level of SGs (possibly embedded).
At the former, fine-grained word-level tokens are replaced by coarse-grained SWs (e.g.,
analytical tense and mood forms, reflexive verbs, discontinuous conjunctions). The
tagset at this level differs somewhat from the tagset of word-level segments in order
to allow for broader grammatical classes and more traditional grammatical categories,
such as tense, mood and reflexivity. The complete tagset for SWs and the list of SGs
distinguished in NKJP are presented in G lowińska and Przepiórkowski (2010).

At the SG level, for every identified group a syntactic head (SynHead) and a
semantic head (SemHead) are selected. Only accurately recognisable groups are marked,
so that the shallow grammar resulting from the manual correction process can be
reliably applied to the whole 1-billion-word corpus. For example, a nominal phrase
consisting of a noun and a prepositional phrase, e.g., dom z ogrodem ‘a house with a
garden’, is always treated as two SGs (dom and z ogrodem), with no attempt to solve
PP-attachment ambiguities. An exception is made for compound prepositions consisting
of two prepositions and an interposed noun (e.g., w odniesieniu do ‘in reference to’)
and for elective constructions (e.g., jeden z najlepszych ‘one of the best’).

The manually constructed grammar, for both SWs and SGs, is encoded in
the shallow parsing system Spejd (http://nlp.ipipan.waw.pl/Spejd/) (Buczyński and
Przepiórkowski, 2008), a novel open source tool for simultaneous morphological
disambiguation (this functionality is not used in this project) and partial parsing with
unification.

Spejd rules form a cascade, with the output of one rule constituting the input of
the next. Therefore, rule ordering is crucial. For example, since nominal groups are
embedded in prepositional-nominal groups, the rules for the former precede those for
the latter.

110 J. Waszczuk et al.

Spejd rules are created in a conservative fashion, in order to avoid excessive
matching and detect errors at the underlying morphosyntactic level. First, as the
parser finds a match for a lemma, it is usually checked for grammatical class.
Second, rules are made maximally specific in that some SGs are divided into several
subtypes. For example there are 11 types of nominal groups, e.g., NGa (Noun+Adj),
NGk (Noun+and+Noun), NGn (Noun+Num), NGb (Noun+Brev), NGx (PPron3+Adj, e.g.,
something special). Thus, instead of the plain NG, a disjunction of subtypes is given in
the rule, i.e., NGa|NGk|NGn|NGb.

A Spejd rule may consist of five elements: Rule (rule identifier), Left (left context),
Match (specification), Right (right context), Eval (conditions and operations). Context
specification is optional.

Two types of syntactic operations are available: word, which joins tokens into SWs,
and group, which joins SWs into SGs.

The word operation has two mandatory arguments:

1 information about a token in accordance with the tagset (i.e., grammatical class and
grammatical category values; pieces of information are separated by colons)

2 the base form of the resulting SW.

These two arguments may be preceded by an optional argument: reference to the
token which provides some morphological information for the whole SW. In this case,
the second argument determines how this information should be modified. In Spejd,
the token to which the rule refers in this way must be unique – it is impossible to
inherit information from different components. For example, the analytical future tense
(e.g., będę szedł ‘I will walk’) is a combination of future auxiliary (będzie) and past
participle (praet). All the information is taken from the bedzie form, except for the
gender, which should be taken from the praet form. A solution to this problem is a
multiplication of rules. An example of a rule for future tense forms in the feminine (f)
is presented below, where the operator ˜ means equal, && denotes logical conjunction.
Here, the gender, instead of being inherited from the third component, is explicitly fixed
to be feminine. Similar rules have to be created for all other possible genders.

Rule "analytical future tense:
bedzie + się + praet (f)"

Match: [pos˜"bedzie"] [base˜"się"]
[pos˜"praet" && aspect˜"imperf"
&& gender˜"f"];

Eval: word(1,Verbfin:fut:ind:refl:f,3.base);

The group operation (as in example below corresponding to, e.g., po tych trzech
zdaniach ‘after these three sentences’), has three arguments:

1 the type of the SG

2 the reference to the SynHead of the phrase (po ‘after’)

3 the reference to its SemHead (zdaniach ‘sentences’).

Annotation tools for syntax and named entities 111

Rule "PrepNumG: Prep + Adj + Num + Noun"
Match: [pos˜"Prep"] [pos˜"Adj|Pact|Ppas"]

[pos˜"Num|Numcol"]
([pos˜"Noun"] | [type="NG"]);

Eval: unify(case number gender,2,3,4);
unify(case,1,3);
group(PrepNumG,1,4);

See Table 1 for breakdown of Spejd rules into various types.

Table 1 Taxonomy and quantities of Spejd rules

Syntactic words Syntactic groups Total
Multiword entities Abbreviations Others
339 383 123 247 1,092

Spejd rules are applied to a corpus when its underlying morphosyntactic level has
already been disambiguated manually. We fully benefit from this fact in our rules.
The information about context is used to a smaller degree. Rules are based mainly on
morphological information of the matched items themselves. As a result, our grammar
performs very well on a good-quality disambiguated corpus. However, if applied to a
non- or poorly-disambiguated corpus, it would require more context-specific rules.

4.2 NER with Sprout

As discussed in Savary and Piskorski (2010), the automatic pre-annotation of NEs in
NKJP is done by the general-purpose knowledge-based NLP platform Sprout (Becker
et al., 2002). This tool offers several convenient features such as:

1 a rather rich grammar formalism with finite-state operators, unification and
cascading

2 a very fast gazetteer lookup

3 an XML-based output, called Sproutput, in the form of typed feature structures
whose type hierarchy can be defined by the user.

Existing Polish named entity grammar and resources for Sprout (Piskorski, 2005) have
been extended and adapted for the annotation task in NKJP. They include a gazetteer of
about 300,000 inflected forms (55,000 lemmas), and 120 grammar rules for six types
and eight subtypes:

1 personal names (persName) with subtypes forname, surname, and additional name
(addName)

2 names of organisations (orgName)

3 names of geographical objects such as rivers, mountains, etc. (geogName)

4 names of geo-political units (placeName) with subtypes district, settlement,
region, country, and bloc

5 date expressions

6 time expressions.

112 J. Waszczuk et al.

For types (2) to (4) relational adjectives (relAdj), as well as inhabitants or member
names (persDeriv) are also covered. The latter categories are systematically attached
to their derivation base names (e.g., warszawski ‘Warsaw-related’ and warszawiak
‘inhabitant of Warsaw’ are marked as derived from Warszawa ‘Warsaw’). Note that
this attachment is context-dependent and cannot always be unambiguously done by an
external lexicon. For instance ostrowski is an adjective related to several Polish towns:
Ostrów Wielkopolski, Ostrów Mazowiecka, etc., while europejski ‘European’ can refer
to Europa ‘Europe’ or to Unia Europejska ‘European Union’.

The results of the Sprout grammar application to NKJP show the overall precision
of 71%, recall of 35%, and F-measure of 47% when all attributes of a NE are taken
into account. If only the types and subtypes are considered, the corresponding results
come up to 78%, 38% and 51% for precision, recall and F-measure, respectively (see
Section 7).

5 Manual post-editing

Manual post-editing of annotations is the most labor-intensive subtask and
requires efficient and user-friendly tools. We have evaluated several annotation
platforms such as synpathy (http://www.lat-mpi.eu/tools/synpathy), MMAX
(http://mmax2.sourceforge.net), and GATE (Wilcock, 2009), before selecting the tree
editor TrEd (http://ufal.mff.cuni.cz/˜pajas/tred/) (Pajas and Štěpánek, 2008) for the
following reasons:

1 admitting pre-annotated input and multi-level annotation

2 customisable open XML-based abstract data format (PML)

3 easy manipulation of tree representations

4 ergonomic customisable graphical user’s interface

5 parallel edition of concurrent annotations

6 rich documentation

7 technical reliability.

5.1 Annotator’s workbench

Two separate annotator’s workbenches have been prepared within TrEd, one for SWs
and SGs (Figure 4), and the other for NEs. Both workbenches can be used either in
the annotation mode or in the adjudication mode for revision of previous annotations.
In the central part of a TrEd’s window, the annotation tree of the sentence is shown.
Nodes are situated on horizontal levels, the lowest of which corresponds to segments of
the morphosyntactic annotation. Higher level nodes represent:

1 SWs dominated by possibily embedded SGs

2 NEs possibly embedded in other NEs, respectively.

Annotation tools for syntax and named entities 113

Native TrEd facilities allow the annotator to add or remove nodes, draw edges between
them, edit type-specific node attributes, and rapidly navigate between sentences and
files. For both workbenches an NKJP-proper TrEd extension allows for grouping
multiple nodes at a time, adding nodes of specific types and subtypes, rapidly modifying
attribute values, etc. It also provides a PML schema defining the corresponding PML
format and a stylesheet with tree visualisation rules. For instance, in Figure 4 the
SynHead of each constituent is marked in green and the SemHead is marked with a
triangle. Thus, Władze (‘authorities’) is both a SynHead and a SemHead while do (‘till’)
is a SynHead and wtorku (‘Tuesday’) a SemHead only.

When closing a reviewed file, final checkups are performed via TrEd:

1 in the SW/SG workbench groups with missing SynHeads and SemHeads are reported

2 in the NE workbench the format and completeness of attributes are checked.

Figure 4 Syntactic annotation with the use of the TrEd editor for the sentence “The authorities in
Grozny claim that 600,000 men of 15 to 65 years of age will turn up to arms till
Tuesday” (see online version for colours)

5.2 Revision of annotations

As mentioned above, each text of the gold standard subcorpus is to be annotated at each
level by two annotators. Cases of disagreement are further reviewed and resolved by
an adjudicator (called super-annotator), who is usually a person with rich experience in
annotation at that particular level. In order to maximise the objectivity of judgement,
the general principle is that:

1 the two annotators of the same text know nothing about each other’s results, except
what they may learn via the discussion list

2 a super-annotator cannot review any portion of the corpus that he or she has
previously annotated.

In order for the annotator’s work to be most effective, a set of macros and keyboard
shortcuts were developed to automatically find discrepancies in two annotations of
the same text, as well as to automatically transfer an annotation between two files.
Figure 5 shows a TrEd screenshot with two NE annotations of the same sentence,
containing recursively embedded organisation and location names. The lower window,

114 J. Waszczuk et al.

corresponding to the annotator a2, was chosen as the final version of the annotation.
However, the upper window, corresponding to the annotator a1, contains a node for
the country name France that has not been annotated as a NE by a2. Using a single
keyboard shortcut we can transfer the missing node to the lower window, over the node
France and under the node Radio France Nationale, so that the remaining nodes remain
intact. The automatic detection and transfer of discrepancies act not only on missing or
dislocated nodes, but also on a node’s attributes. In Figure 5 the next difference to be
highlighted will be the node over Europa that has been assigned different types (here
a2 chose the correct type, thus the annotation by a1 will not be transferred). The same
types of macros exist for the revision of discrepancies in annotated SWs and SGs.

Figure 5 Comparing two NE annotations in TrEd for the same sentence “He collaborated with
Radio France Nationale and the Polish Station of the Free Europe Radio” (see online
version for colours)

5.3 Management of corpus files

Corpus files management system consists of two main components. The first one is the
svn repository, where all files earmarked for annotation are stored. The second element

Annotation tools for syntax and named entities 115

is a textual database (versioned XML file), which contains all information regarding the
current state of annotation.

Every annotator has access to their own private directory in the repository. There
they keep currently annotated files, which they can modify and send back to a target
directory for completed files. As a rule, every file will be examined by two different
annotators. The annotator does not have the necessary permissions to run all svn
operations – they can edit files in the private directory, but cannot add, move or delete
files in the repository. The additional functionality – downloading files for annotation
and sending off the completed files – is performed by a special message.txt file,
placed in the private directory.

This file works as an interface between the annotator and the subversion server.
For example, in order to download five files to their private directory, the annotator
has to add the checkout = 5 line to the message.txt file, and run svn commit
and svn update on the directory. The rest of the work – finding appropriate files
and moving them throughout the repository – is performed on the server side by
means of a post-commit subversion hook (process run on server after every commit
operation). Another command, checkin, can be used to send off annotated files. For
super-annotation, similar commands, s checkout and s checkin, exist. The s checkout
command will download a chosen number of files to compare, while s checkin will
send the corrected version back to the target directory for super-annotated files. While
the message.txt file can be modified by the annotator directly, a client-side GUI
application – with [s]checkout and [s]checkin functionality – has been developed for
annotators’ convenience. It fills out the message.txt file automatically, thus saving the
annotator’s effort of editing additional commands manually.

The database – a versioned db.xml file – keeps track of every important repository
operation. The information about every new file placed in the repository is stored
automatically in the database. When files are downloaded or sent off by annotators, their
name and the operation date are also saved in the database. There are two main reasons
for saving this kind of information in a separate file. First, it allows to quickly find
the information about the current state of the annotation, which is important, e.g., for
the implementation of the server-side part of the [s]checkout/[s]checkin operations.
Second, it simplifies searching the repository – most of the important information can be
obtained from the database, without looking into the repository itself. Integrity between
the repository and the database is ensured – no two post-commit processes which modify
the repository or the database can run simultaneously.

To simplify querying the database, another tool has been developed. It takes, as
command-line arguments, a number of various searching parameters – annotator’s name
and file name (as regular expressions), file status (checked in or checked out), checkin
date range, etc. Another option can be used to extract the number of sentences and words
from particular files (in this case the tool has to consult the repository, because files
statistics are not stored in the database). Additionally, the tool can be used to find files
left for annotation (that is, files which have not been downloaded by two annotators yet).

116 J. Waszczuk et al.

6 Inter-annotator agreement

The inter-annotator agreement is a classical quality indicator in an annotation task:

1 the clearer and the more detailed the annotation guidelines are, the fewer
ambiguities, underspecifications and contradictions need to be resolved by the
annotators

2 the better the project methodology is, the clearer the annotation procedures and
requirements are, and the better the chance of coherent actions among independent
annotators.

This indicator also allows to estimate the cost of the super-annotation: the higher it is,
the less discrepancies need to be revised by an adjudicator.

The inter-annotator agreement, despite its intuitive simplicity, is a rather complex
notion in an annotation task like ours. The weighted kappa measure (Cohen, 1960) is
not easily applicable here because it assumes that the units to be annotated are known
beforehand. In our task, annotators first have to identify the boundaries of existing SWs,
groups and names before they categorise them, thus there is no a priori list of units
for which different annotations are to be compared (see Bejček and Straňák, 2010) for
similar considerations on annotating multi-word expressions). Therefore, we use simpler
classical information retrieval measures. If annotators a1 and a2 have annotated the
same corpus text, we admit that annotations produced by a1 constitute the reference
corpus and calculate the precision and the recall of a2 with respect to this reference.
Note that if we invert the roles of both annotators, we obtain complementary results:
the precision (recall) of a2 with respect to a1 is equal to the recall (precision) of a1
with respect to a2. Thus, the F-measure of a1 wrt a2 is equal to the F-measure of a2
wrt a1.

Estimating the precision/recall, however, is not quite straightforward in our task. As
mentioned before, each unit (SW, SG or NE) is assigned an annotation tree whose leaves
are segments from the morphosyntactic annotation level, the tree’s height can exceed
1 and its every node obtains a set of attributes (syntactic and semantic head, lemma,
derivational base, etc.). We assume that an annotation tree node is correct with respect
to the reference corpus if the latter contains a node which:

• has the same attributes

• covers the same, possibly non-adjacent, segments on the morphosyntactic level.

Thus, a parent node may be correct even if its subnodes are incorrect or incomplete.
Consider, for instance, the named entity Instytutu Podstaw Informatyki Polskiej
Akademii Nauk ‘Institute of Computer Science of the Polish Academy of Sciences -
genitive’ and suppose that:

• annotator a1 has created a node of type orgName covering all six words with the
lemma Instytut Podstaw Informatyki Polskiej Akademii Nauk, and an embedded
node of type orgName covering the last three words with the lemma Polska
Akademia Nauk ‘Polish Academy of Sciences’:
[Instytutu Podstaw Informatyki [Polskiej Akademii Nauk]orgName]orgName

Annotation tools for syntax and named entities 117

• annotator a2 has created the same nodes as a1 but, additionally, he also created an
embedded orgName node covering the first three words with the lemma Instytut
Podstaw Informatyki ‘Institute of Computer Science’
[[Instytutu Podstaw Informatyki]orgName [Polskiej Akademii Nauk]orgName]orgName

We assume then that two out of three NEs have been correcly annotated by a1 wrt a2 (P1 = 1,
R1 = 2/3). If, however, a1 made a mistake in the lemma of a name (e.g., *Polska Akademia
Nauka) then only one name will be considered correct (P1 = 1/2, R1 = 1/3).

Results of the inter-annotator agreement based on the above assumptions are given in
Table 2. Persons, which are the most numerous NEs, correspond to all NEs of type persName,
and possibly any of its three subtypes. Locations represent all NEs of types geogName or
placeName (and any of its five subtypes). Organisations relate to type orgName. Temporal
expressions designate types date and time. Finally, derivations embrace items having the
attribute derivType (equal to either relAdj or persDeriv), and relative to any type and/or
subtype. Unsurprisingly, the inter-annotator agreement is much higher for the syntactic annotation
(SWs and SGs) than for the NEs, the annotation of which is largely of a semantic nature. Note
also that the admitted agreement measure is rather severe as only fully equivalent nodes are
considered as correctly annotated. We are considering a more fine-grained weighted measure
which would allow for a partial agreement on segments or arguments within two nodes. Thus,
nodes covering partially overlapping segments or having partially equivalent attributes would not
be considered as totally unrelated and the agreement ratio would certainly increase.

Table 2 Inter-annotator agreement results

Syntactic Syntactic Named entities
words groups Persons Locations Organisations Temporal expr. Derivations Overall
0.99 0.91 0.89 0.78 0.69 0.88 0.71 0.83

7 ML-based NER

While machine learning-based (ML-based) named entity recognition (NER) is not a new subject,
the interest in automatic recognition of nested NEs has been rather limited. In Alex et al.
(2007), a few simple methods for recognition of such nested NEs have been described (all
reduce the problem to layered sequence tagging). Finkel and Manning (2009) proposed a more
refined discriminative constituency parser, with constituents for each named entity. The prototype
described here is intended to be a baseline system for nested NER in NKJP corpus. Thus,
following Alex et al. (2007), a relatively simple joined label tagging method has been chosen for
the prototype implementation. Additionally, a comparison of rule-based and ML-based methods
has been performed. It reveals some possibilities of incorporating both methods in a future more
comprehensive NER system.

7.1 Prototype

The prototype has been constructed on the basis of the joined label tagging method described in
Alex et al. (2007). This method involves modelling and recognising nested NEs by means of a
conventional sequence tagger. Other methods have been proposed in the article – e.g., layering,
cascading – but only the cascading method outperformed the joined label tagging method.
Furthermore, the cascading method proved to be better only for some particular configurations of
cascade layers. Therefore, the simplest method seemed most appropriate for our baseline system.

In the joined label tagging method, the nested NER task is reduced to the task of sequence
tagging in the following way:

118 J. Waszczuk et al.

• each named entity is represented by its subtype (or type, when subtype is not
present). Optional information about derivation type is also preserved.

• standard BIO-encoding method (Ramshaw and Marcus, 1995) is used to represent
NEs on each level of nesting

• labels from all levels of nesting are joined to form one, complex label.

For example, the named entity structure for the phrase Polska Akademia Nauk ‘Polish Academy
of Sciences’:

[[Polska]placeName−>country(relAdj) AkademiaNauk]orgName

will be translated into a list of joined tags:

[B country@relAdj#B orgName, I orgName, I orgName]

Linear-chain conditional random fields (CRFs) formalism has been used for modelling and
recognising joined labels. In CRFs each word is represented with a list of observations. The
choice of types of observations is important for the quality of modelling and should be well
adapted to the character of the specific task – here, NER in Polish language. For now, the
following list of observations has been used to obtain initial results: orthographic form, lemma,
previous lemma, before-previous lemma, next lemma, capitalisation, part of speech, prefixes of
length three to five, suffixes of length three to five. It could be further extended with: word
case, presence of one-word NEs in the gazetteer, additional orthographic information, etc.

For each word observation, two types of features have been used in our
experiments – (observation, labeli−1, labeli) and (observation, labeli), where i represents the
position of a particular word in the sentence.

7.2 Preliminary results

Prototype validation has been performed on the part of 1-million-word subcorpus manually
annotated with NEs. For sentences not yet super-annotated, one of the two manually constructed
NE structures was arbitrarily selected. The validation corpus consisted of 82,212 sentences,
i.e., 1,159,970 words and 81,176 NEs. Many of the observation types listed above depend on
morphosyntactic annotation. Therefore, results described below relate only to the situation when
morphosyntactic annotation (of similar, manual-annotation quality) is available. For the prototype
validation, a K-fold cross-validation has been used (with K = 5). First, the validation corpus
was split at the level of files into five samples of similar size, i.e., with both number of sentences
and number of NEs greater than 15,000. During each phase of the validation process:

• K − 1 corpus samples are used to train the CRF model

• the remaining sample is randomly divided into two parts of similar size – dev
and eval

• each model acquired throughout the iterative training process is evaluated on the
dev part

• the model with the highest F-measure on the dev part constitutes the result of the
training algorithm.

Final evaluation of the respective eval parts yielded average precision of 80.5%, recall of 74.5%,
and F-measure of 77.3%. All statistics have been computed on the level of NEs, not of labels.
A recognised NE was considered to be correct if the following properties were the same as in
the manual annotation version:

Annotation tools for syntax and named entities 119

1 its text range (i.e., the list of the segments from the morphosyntactic level assigned
to this NE)

2 its type and subtype, if any

3 its derivation type (relAdj or persDeriv), if any.

To compare Sprout-based and CRF-based NER, a filtered subcorpus was prepared. It contained
only those files, which had been transferred to the files management repository after the last
correction of Sprout rules. Evaluation of Sprout performed on the entire corpus would be biased,
since earlier files constituted a basis for later improvement of rules. Sprout with the last version
of rules was run again on every file from the selected corpus. Sprout’s results for each file
were compared to the gold standard version of the same file, i.e., the super-annotated version if
it already existed, or one of the two human-annotated versions otherwise. Then, the precision,
recall and F-measure were calculated with respect to the same rules as in case of CRF model’s
evaluation.

Table 3 shows the compared results of both Sprout and the average performances of
the five CRF models obtained by the method described above. The basic units in both
cases are not individual tokens but whole NEs, possibly multi-word or embedded. The CRF
method significantly outperforms Sprout for recall in all NE categories. In terms of precision,
Sprout obtains slightly better results for temporal expressions only. Note that Sprout rules are
intended to cover not only the categorisation of NEs into types and sybtypes, but also more
subtle morphosyntactic and semantic phenomena: lemmatisation, normalisation (for dates) and
assignment of semantically motivated derivation bases. In the context of the fully automatic
annotation of the 1-billion main corpus we think that a hybrid – data-based and rule-based
annotation method – would be the most useful. In such a model, the CRF-based tool would
be mainly responsible for the identification and categorisation of NEs, while the grammar rules
could provide lemmas, normal forms and derivation bases of recognised NEs. The development
of such a module is one of our major plans.

Table 3 Compared results of NE annotation by Sprout and CRF

NE category Sprout CRF (average of five models)
Precision Recall F-measure Precision Recall F-measure

Persons 0.80 0.33 0.47 0.85 0.80 0.82
Locations 0.76 0.46 0.57 0.77 0.70 0.73
Organisations 0.62 0.24 0.35 0.66 0.60 0.63
Temporal expr. 0.85 0.57 0.68 0.82 0.78 0.80
Derivations 0.79 0.58 0.67 0.80 0.72 0.76
Overall 0.78 0.38 0.51 0.80 0.74 0.77

8 Present outcome and future work

The manual revision of annotation at the SW, SG and NE levels has recently been completed.
The revised files have been converted to the final TEI-P5 format. The final revised version
of the 1-million-word gold-standard subcorpus contains about 990,000 SWs, 305,000 SGs and
75,000 NEs.

The 1-billion-word main corpus will be further annotated, first with a morphosyntactic tagger
trained on the gold standard subcorpus, then with enhanced Spejd grammar. Its annotation on
the NE level will be done by machine learning tools trained on the 1-million gold standard
subcorpus (cf., Section 7).

120 J. Waszczuk et al.

Tools for verifying the consistency between different annotation levels are being developed.
They will allow to check if:

1 references from one annotation level point at segments existing in other levels

2 orthographic forms (orth) and base forms (base), as well as paragraphs are
non-empty

3 morphosyntactic tags are coherent with the admitted tagsets.

Upon accomplishment of all annotation levels the NKJP 1-milion-word gold standard subcorpus
will be published integrally under an open licence. The 1-billion-word corpus, however, is
subject to various source text copyright constraints and thus can be publicly accessible via a
web concordancer only (http://nkjp.pl/index.php?page=6&lang=1).

In the future, we hope to extend the scope of annotation in NKJP. First of all, new NE
categories like products, events, quantities and measures, etc., should be taken into account.
Second, new annotation levels will be added, starting with the coreference level, which will
build upon the levels of SGs and NEs.

9 Conclusions

We have presented the methodology and the technical environment developed for the annotation
tasks in the National Corpus of Polish at three levels: SWs and SGs (annotated jointly), as
well as NEs. Two rule-based annotation platforms, Spejd and Sprout, are used to automatically
pre-annotate the corpus. The Spejd grammar developed within this study and currently containing
about 1090 rules is among the largest chunking grammars for Polish. The Sprout grammar for
NER is a result of the adaptation of an existing information extraction grammar to the annotation
task.

An interoperable tree editor TrEd allows for manual correction of annotations by human
experts, as well as for the revision of dual annotations by an adjudicator. NKJP-proper
extensions, macros, keyboard shortcuts and stylesheets for TrEd have been developed. Although
no particular usability tests have been performed, the feedback from annotators shows that these
custom TrEd components enhance both the annotator’s and the adjudicator’s workbench. Several
XML-to-XML converting tools enable the necessary processing chains between Spejd, Sprout,
TrEd and the NKJP TEI-P5-conformant encoding standard.

A central versioning repository with custom facilities is responsible for the corpus file
management. We think that its architecture is an interesting alternative to web graphical interfaces
used in other annotation projects:

1 it reduces the server’s load

2 the annotators do not have to rely on high-capacity internet connections – they only
connect to the server for down- and uploading the files to be annotated.

Here, again, automatic procedures have been developed, such as repository access statistics,
automatic creation of file lists, coherence verification, etc. They reduce the annotators’ efforts
with respect to the manipulated files, facilitate the project management and ensure the security
of the corpus.

A prototype of a machine-learning tool for NER has been developed, trained and evaluated
on the gold-standard double-annotated and partially revised NE level. Its initial results show
a precision of 80% and a recall of 74%. It is one of the first methods in the international
community dedicated to recursively embedded NEs, and probably the first comprehensive
machine-learning method for Polish NER (see also Marcińczuk and Piasecki, 2010).

Annotation tools for syntax and named entities 121

While the project is still ongoing, we think that its solid technical and organisational
environment gives it a good chance to succeed. This assumption has been confirmed by good
results of the inter-annotator agreement, particularly in the two syntactic levels (SWs and SGs).
We also believe that this environment, or substantial parts of it, can be reused or adapted for
other annotation tasks.

Acknowledgements

This research was funded in 2007–2011 by a research and development grant R17-003-03 from
the Polish Ministry of Science and Higher Education.

References
Abney, S. (1991) ‘Parsing by chunks’, in Robert Berwick, Steve Abney and Carol Tenny (Eds.):

Principle-Based Parsing, pp.257–278. Kluwer.
Abney, S. (1996) ‘Partial parsing via finite-state cascades’, Natural Language Engineering, Vol. 2,

No. 4, pp.337–344.
Acedański, S. (2010) ‘A morphosyntactic brill tagger with lexical rules for inflectional languages’, in

Proceedings of the 7th International Conference on Natural Language Processing, IceTAL 2010,
Reykjavík, Iceland, LNAI, Springer-Verlag, Berlin.

Alex, B., Haddow, B. and Grover, C. (2007) ‘Recognising nested named entities in biomedical text’,
in BioNLP ’07: Proceedings of the Workshop on BioNLP 2007, Association for Computational
Linguistics, Morristown, NJ, USA, pp.65–72.

Becker, M., Drożdżyński, W., Krieger, H-U., Piskorski, J., Schäfer, U. and Xu, F. (2002)
‘SProUT – shallow processing with typed feature structures and unification’, in Proceedings of
ICON 2002, Mumbay, India.

Beǰcek, E. and Straňák, P. (2010) ‘Annotation of multiword expressions in the Prague Dependency
Treebank’, Language Resources and Evaluation, Vol. 44, Nos. 1–2, pp.7–21.

Böhmová, A., Hajič, J., Hajičová, E. and Hladká, B. (2003) ‘The Prague Dependency Treebank:
three-level annotation scenario’, in Anne Abeillé (Ed.): Treebanks: Building and Using Parsed
Corpora, Vol. 20 of Text, Speech and Language Technology, pp.103–127, Kluwer, Dordrecht.

Brants, S., Dipper, S., Hansen, S., Lezius, W. and Smith, G. (2002) ‘The TIGER Treebank’,
in Proceedings of the Workshop on Treebanks and Linguistic Theories, Sozopol.

Buczyński, A. and Przepiórkowski, A. (2008) ‘Demo: an open source tool for shallow parsing and
morphosyntactic disambiguation’, in Proceedings of LREC 2008, Marrakech.

Cohen, J. (1960) ‘A coefficient of agreement for nominal scales’, Educational and Psychological
Measurement, Vol. 20, No. 1, pp.37–46.

Finkel, J.R. and Manning, C.D. (2009) ‘Nested named entity recognition’, in EMNLP ’09: Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, Morristown, NJ, USA, pp.141–150.

Flickinger, D. (2002) ‘On building a more efficient grammar by exploiting types’, in Stephan Oepen,
Dan Flickinger, Jun’ichi Tsujii and Hans Uszkoreit (Eds.): Collaborative Language Engineering,
pp.1–17, CSLI Publications, Stanford, CA.

G lowińska, K. and Przepiórkowski, A. (2010) ‘The design of syntactic annotation levels in the
National Corpus of Polish’, in Proceedings of LREC 2010, Valletta, Malta.

Kordoni, V. and Zhang, Y. (2009) ‘Annotating Wall Street Journal texts using a hand-crafted deep
linguistic grammar’, in Proceedings of the Third Linguistic Annotation Workshop (LAW III) at
ACL-IJCNLP 2009, Singapore, pp.170–173.

122 J. Waszczuk et al.

Lopatková, M., Klyueva, N. and Homola, P. (2009) ‘Annotation of sentence structure; capturing
the relationship among clauses in Czech sentences’, in Proceedings of the Third Linguistic
Annotation Workshop (LAW III) at ACL-IJCNLP 2009, Singapore, pp.74–81.

Marcińczuk, M. and Piasecki, M. (2010) ‘Study on named entity recognition for Polish based on
hidden Markov models’, Lecture Notes in Computer Science, Vol. 6231, pp.142–149, Springer.

Marcus, M.P., Santorini, B. and Marcinkiewicz, M. (1993) ‘Building a large annotated corpus of
English: the Penn Treebank’, Computational Linguistics, Vol. 19, No. 2, pp.313–330.

Nedoluzhko, A., Mirovský, J. and Pajas, P. (2009) ‘The coding scheme for annotating extended
nominal coreference and bridging anaphora in the Prague Dependency Treebank’, in Proceedings
of the Third Linguistic Annotation Workshop (LAW III) at ACL-IJCNLP 2009, Singapore.

Pajas, P. and Šťepánek, J. (2008) ‘Recent advances in a feature-rich framework for treebank
annotation’, in Proceedings of COLING’08, Manchester.

Piskorski, J. (2005) ‘Named-entity recognition for Polish with SProUT’, in LNCS, Vol. 3490,
Proceedings of IMTCI 2004, Warsaw, Poland.

Przepiórkowski, A. (2006) ‘On heads and coordination in a partial treebank’, in Proceedings of the
Second Workshop on Treebanks and Linguistic Theories (TLT 2006), Prague.

Przepiórkowski, A., Górski, R.L., Lewandowska-Tomaszczyk, B. and Łaziński, M. (2008) ‘Towards
the National Corpus of Polish’, in Proceedings of LREC 2008, Marrakech.

Przepiórkowski, A. (2008) Powierzchniowe przetwarzanie języka polskiego, Akademicka Oficyna
Wydawnicza EXIT, Warsaw.

Przepiórkowski, A., Górski, R.L., Łaziński, M. and Pęzik, P. (2010) ‘Recent developments in the
National Corpus of Polish’, in Proceedings of LREC 2010, Valletta, Malta.

Ramshaw, L.A. and Marcus, M.P. (1995) ‘Text chunking using transformation-based learning’,
in Proceedings of the Third Workshop on Very Large Corpora (ACL 1995), pp.82–94.

Savary, A. and Piskorski, J. (2010) ‘Lexicons and grammars for named entity annotation in the
National Corpus of Polish’, in Proceeding of IIS’10, Siedlce, Poland.

Savary, A., Waszczuk, J. and Przepiórkowski, A. (2010) ‘Towards the annotation of named entities
in the Polish National Corpus’, in Proceedings of LREC 2010, Valletta, Malta.

Świdziński, M. and Woliński, M. (2010) ‘Towards a bank of constituent parse trees for Polish’,
in Text, Speech and Dialogue: 13th International Conference, TSD 2010, Brno, Czech Republic,
Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin.

Wilcock, G. (2009) Introduction to Linguistic Annotation and Text Analytics, Morgan & Claypool,
San Rafael, USA.

