

The research presented in this dissertation was supported by grant no POIG.01.01.02-14-013/09
from Innovative Economy Operational Programme co-financed by the European Union (Euro-
pean Regional Development Fund).

Cover design by Joanna Tokarczyk

Contents

Streszczenie (Abstract in Polish) vii

Acknowledgements xi

1 Introduction 1
1.1 Contributions . 2
1.2 Organisation of the Dissertation . 3

2 Preliminaries 5
2.1 Pillars of the Dependency Theory . 5
2.2 Dependency in Poland . 7
2.3 Dependency Structure . 9
2.4 Data-driven Dependency Parsing . 12

2.4.1 Transition-based Dependency Parsing 15
2.4.2 Graph-based Dependency Parsing 16

3 Polish Dependency Annotation Schema 23
3.1 Foundations . 23
3.2 Polish Dependency Relation Types . 25

3.2.1 Arguments (comp, comp ag , comp fin, comp inf , obj , obj th, pd ,
subj) . 26

3.2.2 Syntactically Motivated Non-arguments (abbrev punct , adjunct ,
adjunct qt , app, complm, imp, item, pred , punct , refl) 34

3.2.3 Morphologically Motivated Non-arguments (aglt , aux , cond , neg) . 39
3.2.4 Semantically Motivated Non-arguments (mwe, ne) 42
3.2.5 Functions Used in Coordination Structure (conjunct , coord ,

coord punct , pre coord) . 43
3.3 Syntactic Annotation Schemata: Related Work 47

4 Conversion-based Dependency Bank 53
4.1 Sk≥adnica – Polish Constituency Treebank 53
4.2 Conversion Procedure . 55

4.2.1 Lexical Nodes . 55
4.2.2 Unlabelled Dependency Relations 56
4.2.3 Labelling Dependency Relations 57

4.2.3.1 Verb-Dependent Relations 57
4.2.3.2 Other Relations . 59

4.3 Head Selection . 60

iii

iv Contents

4.4 Rearrangement of Dependency Structures 64
4.4.1 Discontinuous Constituents . 64
4.4.2 Passive Construction . 65
4.4.3 Subordinate Clauses . 66
4.4.4 Incorporated Conjunction . 67
4.4.5 Clauses with Correlative Pronouns 67

4.5 Experimental Setup . 68
4.5.1 Data . 69
4.5.2 Dependency Parsing Systems . 70
4.5.3 Evaluation Methodology . 72

4.6 Experiments and Results . 73
4.6.1 Experiment 1 – MaltParser . 73
4.6.2 Experiment 2 – Mate Parser . 75
4.6.3 Evaluation against Automatic and Additional Test Sets 76
4.6.4 Experiment 3 – Automatic Malt and Mate Models 77
4.6.5 Evaluation of Individual Relation Labels 78

4.7 Constituency-to-Dependency Conversion: Related Work 82
4.8 Partial Conclusions . 84

5 Projection-based Dependency Bank 87
5.1 Weighted Projection . 88

5.1.1 Bipartite Alignment Graph . 89
5.1.2 Projection of Dependency Relations 94
5.1.3 Intuitive Weighting Method . 99

5.2 Weighted Induction . 100
5.2.1 Maximum Spanning Dependency Trees 102
5.2.2 Feature Representations of Arcs 105
5.2.3 Recalculation of Arc Weights in Projected Multi-Digraphs 108

5.3 Rule-based Adaptation of Polish Dependency Structures 111
5.3.1 Labelling Rules . 111
5.3.2 Correction Rules . 119

5.4 Experimental Setup . 121
5.4.1 Data . 121
5.4.2 Experiments on Word Alignment 123
5.4.3 Conversion of English Dependency Structures 125

5.5 Experiments and Results . 131
5.5.1 Preliminary Experiment . 133
5.5.2 Experiments on the Entire Set of Induced Trees 138
5.5.3 Evaluation of Individual Relation Labels 142

5.6 Annotation Projection: Related Work . 145
5.7 Partial Conclusions . 150

6 Conclusion 153
6.1 Summary . 153
6.2 Comparison of Conversion-based and Projection-based Approaches 156
6.3 Final Remark . 159

Contents v

Appendices 161

A Labelling Rules Based on Morphosyntactic Properties 161

B Labelling Rules Based on English Grammatical Functions 167

C Correction Rules 173

D K -best MST Algorithm 183
D.1 Pseudocode . 183
D.2 Explanation . 185

List of Abbreviations 189

Bibliography 193

Streszczenie

W ostatnich latach coraz wiÍkszπ wagÍ przywiπzuje siÍ do parsowania zaleønoúciowego,
czyli do automatycznej analizy sk≥adniowo-semantycznej zdaÒ. Dzieje siÍ tak dlatego,
øe parsowanie wydobywa strukturÍ predykatywno-argumentowπ zdania, której moøna
uøyÊ do udoskonalenia systemów dialogowych, t≥umaczenia maszynowego, czy ekstrakcji
informacji. WiÍkszoúÊ wspó≥czesnych systemów parsowania zaleønoúciowego opiera siÍ
na metodach statystycznych. Na podstawie danych treningowych parsery uczπ siÍ, jak
naleøy analizowaÊ zdania w jÍzyku naturalnym i generowaÊ odpowiednie struktury za-
leønoúciowe dla tych zdaÒ. Jak dotychczas najlepsze wyniki osiπgajπ parsery trenowane
za pomocπ metod z nadzorem. Parsery zaleønoúciowe trenowane na poprawnie zaano-
towanych danych sπ bardzo skuteczne, nawet w odniesieniu do jÍzyków ze swobodnym
szykiem zdania, takich jak czeski czy bu≥garski.

Niemniej jednak metody z nadzorem wymagajπ duøej liczby poprawnie zaanotowanych
struktur zaleønoúciowych, które powstajπ w wyniku bardzo czasoch≥onnego i kosztow-
nego procesu anotacji rÍcznej. Dla wielu jÍzyków nadal nie istniejπ øadne banki struktur
zaleønoúciowych, dlatego poszukuje siÍ alternatywnych metod trenowania parserów albo
pozyskiwania danych treningowych. Poniewaø uczenie bez nadzoru czÍsto nie jest najlep-
szym rozwiπzaniem g≥ównie za sprawπ ma≥ej efektywnoúci oraz bardzo duøej z≥oøonoúci
obliczeniowej, w niniejszej rozprawie doktorskiej rozpatrujemy alternatywne metody
pozyskiwania wysokiej jakoúci struktur zaleønoúciowych oraz szukamy odpowiedzi na
nastÍpujπce pytania badawcze:

1. Czy jest moøliwe automatyczne (lub pó≥automatyczne) pozyskiwanie drzew zaleø-
noúciowych?

2. Czy moøna przy pomocy metod z nadzorem wytrenowaÊ parser zaleønoúciowy na
automatycznie lub pó≥automatycznie pozyskanych danych?

vii

viii Streszczenie

Dysertacja rozpoczyna siÍ teoretycznym opisem g≥ównych za≥oøeÒ gramatyki zaleønoú-
ciowej oraz parsowania zaleønoúciowego (rozdzia≥ drugi). W rozdziale trzecim zosta≥
przedstawiony schemat anotacji zaleønoúciowej zdaÒ w jÍzyku polskim. Schemat ten
definiuje zbiór regu≥, przy pomocy których moøna wyznaczyÊ relacje dominacji (albo
zaleønoúci) pomiÍdzy tokenami w zdaniu. Schemat jest dostosowany do specyfiki jÍzyka
polskiego i bierze pod uwagÍ g≥ówne zjawiska lingwistyczne opisane w literaturze i wys-
tÍpujπce w losowo wybranych zdaniach. Schemat wyróønia 28 typów relacji zaleønoú-
ciowych podzielonych na trzy grupy: relacje zawierajπce podrzÍdniki pe≥niπce funkcje ar-
gumentów, relacje zawierajπce podrzÍdniki niepe≥niπce funkcji argumentów oraz relacje
przeznaczone do anotowania konstrukcji z koordynacjπ. Zgodnie z tym schematem an-
otujemy automatycznie wygenerowane struktury zaleønoúciowe zdaÒ w jÍzyku polskim.

W dysertacji zosta≥y zaprezentowane dwie metody automatycznego pozyskiwania struk-
tur zaleønoúciowych. Pierwsza metoda wykorzystuje ideÍ konwersji drzew sk≥adniko-
wych do postaci drzew zaleønoúciowych (rozdzia≥ czwarty). Wykorzystanie metody
konwersji jest moøliwe, poniewaø dla jÍzyka polskiego istnieje bank struktur sk≥ad-
nikowych. W zwiπzku z tym, øe relacje zaleønoúciowe moøna stosunkowo ≥atwo wywieúÊ
ze struktur sk≥adnikowych z wyróønionymi elementami g≥ównymi, nacisk jest po≥oøony
przede wszystkim na dostosowanie przekonwertowanych struktur do schematu ano-
tacji drzew zaleønoúciowych oraz na przypisanie etykiet do krawÍdzi w przekonwer-
towanych drzewach. W celu dostosowania struktur do schematu anotacji opracowano
zbiór regu≥ modyfikujπcych relacje pomiÍdzy tokenami w konstrukcjach strony biernej
oraz w konstrukcjach zawierajπcych frazy nieciπg≥e, zdania podrzÍdne, frazy z korelatem,
czy spójniki inkorporacyjne. Poniewaø wspó≥czesne systemy parsowania zaleønoúciowego
sπ dostosowane do uczenia modeli na drzewach, których krawÍdzie majπ przypisane
etykiety, istotne znaczenie mia≥o opracowanie zbioru regu≥ etykietujπcych krawÍdzie w
przekonwertowanych drzewach funkcjami gramatycznymi podrzÍdników danych relacji.
Ostatecznym wynikiem procesu konwersji jest bank 8227 drzew zaleønoúciowych z
etykietami przypisanymi do krawÍdzi. W celu oceny jakoúci pozyskanych drzew za-
leønoúciowych wykorzystano zewnÍtrznπ metodÍ ewaluacji (ang. ‘extrinsic evaluation’).
Metoda ta polega na wytrenowaniu parsera zaleønoúciowego na przekonwertowanych
drzewach, a nastÍpnie na ocenie wp≥ywu danych treningowych na jakoúÊ parsowania.
Zgodnie z wynikami, w stosunkowo prostych polskich zdaniach nawet 92,7% tokenów
moøe mieÊ przypisany poprawny nadrzÍdnik, a 87,2% tokenów moøe mieÊ przypisany
poprawny nadrzÍdnik oraz poprawnπ funkcjÍ gramatycznπ etykietujπcπ relacjÍ. W przy-
padku bardziej skomplikowanych i rozbudowanych zdaÒ wyniki te sπ zdecydowanie niøsze
– 76,6% tokenów ma przypisany poprawny nadrzÍdnik, a 70,1% tokenów ma przypisany
poprawny nadrzÍdnik oraz etykietÍ relacji.

Drugi sposób automatycznego pozyskiwania drzew zaleønoúciowych jest oparty na no-
watorskiej metodzie rzutowania waøonego (rozdzia≥ piπty). G≥ówna idea metody rzu-
towania informacji lingwistycznych polega na odwzorowaniu anotacji lingwistycznych w

Streszczenie ix

zdaniach z czÍúci korpusu równoleg≥ego w jednym jÍzyku na odpowiednie zdania z czÍúci
korpusu w drugim jÍzyku. Informacje lingwistyczne sπ rzutowane z wykorzystaniem
automatycznie wygenerowanych przyporzπdkowaÒ s≥ownych (ang. ‘word alignment’).
W przedstawionej w rozprawie i opartej na idei rzutowania procedurze pozyskiwania
struktur zaleønoúciowych dla zdaÒ w jÍzyku polskim moøna wyróøniÊ dwa g≥ówne kroki:
rzutowanie waøone angielskich relacji zaleønoúciowych na zdanie polskie oraz indukcjÍ
waøonπ drzew zaleønoúciowych na podstawie zbioru rzutowanych krawÍdzi. Angielskie
relacje zaleønoúciowe sπ rzutowane na odpowiednie zdania polskie poprzez rozbudowany
zbiór przyporzπdkowaÒ s≥ownych z przypisanymi wagami. W wyniku tego zdaniom pol-
skim zostajπ przypisane grafy skierowane z wagami na krawÍdziach. Wagi krawÍdzi sπ
szacowane na podstawie wag przyporzπdkowaÒ s≥ownych wykorzystanych w rzutowaniu.
Indukcja waøona polega na szukaniu – w grafach skierowanych zawierajπcych rzutowane
krawÍdzie ze zoptymalizowanymi wagami – maksymalnych drzew rozpinajπcych, które
spe≥niajπ kryteria poprawnego drzewa zaleønoúciowego. Do optymalizacji wag wykorzys-
tano rozk≥ad prawdopodobieÒstwa krawÍdzi w k najlepszych drzewach rozpinajπcych
znalezionych w rzutowanym grafie skierowanym. Rozk≥ad prawdopodobieÒstwa krawÍdzi
moøna obliczyÊ za pomocπ zmodyfikowanej wersji algorytmu EM. Nowatorstwo przed-
stawionej metody polega na w≥πczeniu czynnika waøenia do procesów rzutowania relacji
oraz indukcji struktur zaleønoúciowych. W rzutowanych grafach skierowanych ze zopty-
malizowanymi wagami na krawÍdziach znaleziono prawie 4 miliony maksymalnych drzew
rozpinajπcych spe≥niajπcych kryteria poprawnego drzewa zaleønoúciowego. NastÍpnie
krawÍdziom w drzewach pozyskanych z wykorzystaniem metody rzutowania waøonego
zostajπ przypisane etykiety. Parser wytrenowany na takich drzewach znajduje poprawne
nadrzÍdniki dla 74,6% tokenów, a poprawne nadrzÍdniki wraz z poprawnπ etykietπ
relacji dla 69,4% tokenów. W nastÍpstwie zastosowania dodatkowych regu≥ korygujπcych
oraz filtrujπcych w odniesieniu do wyindukowanych drzew, parser wytrenowany na ulep-
szonym zbiorze drzew przypisuje poprawne nadrzÍdniki do 86,0% tokenów, a poprawne
nadrzÍdniki i poprawne etykiety relacji do 80,5% tokenów. Mimo øe te wyniki sπ istotnie
niøsze niø wyniki osiπgniÍte przez parser trenowany na przekonwertowanych drzewach,
ewaluacja w oparciu o d≥uøsze i bardziej skomplikowane struktury pokazuje, øe parser
trenowany na drzewach pozyskanych metodπ waøonej indukcji dzia≥a nieznacznie lepiej
niø parser trenowany na przekonwertowanych drzewach.

Na podstawie wyników przeprowadzonych eksperymentów moøemy udzieliÊ pozytyw-
nych odpowiedzi na zadane pytania badawcze, poniewaø uda≥o nam siÍ pozyskaÊ struk-
tury zaleønoúciowe w sposób automatyczny, wykorzystujπc metody oparte na konwersji
i indukcji, a takøe wytrenowaÊ parser na automatycznie wygenerowanych strukturach
zaleønoúciowych.

Acknowledgements

First and foremost, I would like to thank my scientific adviser, Adam Przepiórkowski,
for his support, ideas that greatly contributed to this dissertation, time and words of
encouragement towards my work.

The value of working within the Linguistic Engineering Group at the Institute of Com-
puter Science of the Polish Academy of Sciences cannot be underestimated. I would
like to thank all my colleagues from the NLP team, especially Marcin WoliÒski, Micha≥
Lenart, Kasia Krasnowska and £ukasz DÍbowski.

My first steps towards academia were taken under the guidance of Anette Frank who
supervised my Master’s thesis at the Heidelberg University. She sparked my interest in
natural language processing and without her this dissertation would likely never have
been written.

As funding is necessary when one wants to do research, I am grateful for the opportunity
of conducting my research within the Innovative Economy Operational Programme co-
financed by the European Union.

Above all I want to thank my family, my parents and sisters who always show unfailing
belief in me, my husband Radek for staying by my side all the time and our daughter
Waleria for her patience with me and my long working hours. It would not have been
possible to face and complete such a challenge without them.

xi

Chapter 1

Introduction

Dependency parsing has become important for various language processing tasks in
recent years. The predicate-argument structure transparently encoded in dependency-
based syntactic representations may support machine translation, question answering,
information extraction, etc. Many contemporary dependency parsing systems are based
on statistical methods. Using training data, parsers learn how to analyse sentences and
predict dependency structures that are appropriate for these sentences.

DiÄerent statistical methods have been applied to data-driven dependency parsing. How-
ever, the best results so far are given by supervised methods. Supervised dependency
parsers trained on correctly annotated data may have high parsing performance even
for languages with relatively free word order, such as Czech or Bulgarian.

Nevertheless, supervised methods require manually annotated training data. The cre-
ation of such data is a very time-consuming and expensive process. Therefore, there is
still a lot of languages without any manually annotated data and alternative methods
of parser training or data gathering are needed. Since unsupervised training – with its
low performance and high complexity – is often an infeasible solution, we study alter-
native methods of gathering training data. In this dissertation we address two research
questions:

1. Is it possible to gather dependency trees automatically (or with a minimal human
involvement)?

2. Is it possible to train a good quality supervised dependency parser on automatically
or semi-automatically induced training data?

Due to the increasing interest in data-driven parsing, several shared tasks on multilingual
dependency parsing were organised at the Conference on Computational Natural Lan-
guage Learning (Buchholz and Marsi, 2006; Nivre et al., 2007). DiÄerent languages were

1

2 Chapter 1. Introduction

represented in these tasks, including some Slavic languages such as Slovene, Bulgarian
and Czech. Polish was not represented in any of these tasks, probably due to the lack of
dependency-annotated training data for this language. Furthermore, dependency parsing
is hardly represented in the Polish NLP community. We are aware of neither experiments
with data-driven Polish dependency parsing nor existence of any publicly available Pol-
ish dependency parser. The only Polish dependency parser was developed by Tomasz
ObrÍbski within his doctoral research (ObrÍbski, 2002, 2003). However, this rule-based
parser founded on the syntactic description of Polish by Saloni and åwidziÒski (1989)
was only tested against a small artificial test set and no wide-coverage grammar seems to
accompany the work. Among many aspects of ObrÍbski’s work, a particularly interesting
element is a definition of Polish relation types.

The shared tasks mentioned above prompted the creation of many high quality depen-
dency parsing systems. Even if there are some sophisticated systems that could be used
to train dependency parsers for Polish, the lack of high quality training data is a major
bottleneck in the development of such parsers. To overcome this problem we address
various methods of data gathering in this dissertation.

Two ways of inducing dependency structures automatically are investigated here:
constituency-to-dependency conversion and cross-lingual projection of dependency in-
formation. The conversion method has been successfully applied for languages such as
English, German or Bulgarian. This method presupposes that a constituency treebank
for a particular language is available. Since there is a publicly available Polish con-
stituency treebank, the conversion technique may be adapted to Polish.

The second method builds on the assumption that a linguistic analysis of a sentence
largely carries over to its translation in an aligned parallel corpus. Projected annotations
can then be used to train natural language processing tools for the target language.
The cross-lingual projection method has been successfully applied to various levels of
linguistic analysis and corresponding natural language processing tasks, such as part-of-
speech tagging or semantic role labelling, as well as dependency annotation and parser
induction.

1.1 Contributions

The doctoral research outlined in this dissertation contributes to the development of
various aspects related to dependency parsing. First, a dependency annotation schema
is designed to cover primary syntactic phenomena in Polish. Second, adaptation of
a constituency-to-dependency conversion method contributes to the construction of
a Polish dependency treebank annotated in accordance with the dependency annotation
schema. Third, we propose a weighted induction method designed to acquire dependency

1.2. Organisation of the Dissertation 3

structures for Polish and possibly for other resource-poor languages. The weighted in-
duction method is the principle scientific result of our doctoral research. Fourth, we
conduct some experiments that consist in training and evaluation of dependency parsers
on induced treebanks. In these experiments, we use publicly available dependency par-
sing systems. Fifth, we make results of our research, i.e., induced dependency treebanks
and trained parsing models, publicly available in order to contribute to the further de-
velopment of Polish dependency parsing and to serve as the basis for other NLP tasks.

1.2 Organisation of the Dissertation

This dissertation is organised into six chapters. Chapter 2 gives some basic ideas of de-
pendency theory in general (Section 2.1 Pillars of the Dependency Theory) and in Poland
(Section 2.2 Dependency in Poland). Furthermore, it introduces some basic notions re-
lated to dependency parsing. Since the concept of a dependency structure originating
from dependency frameworks plays a key part in this thesis, it is described in detail in
Section 2.3 Dependency Structure. Section 2.4 Data-driven Dependency Parsing outlines
supervised statistical machine learning methods for prediction of dependency structures.

Chapter 3 proposes a dependency annotation schema designed for the purpose of anno-
tation of Polish sentences. Section 3.1 Foundations describes basic principles and proper-
ties of the annotation schema. Individual dependency relation types are presented in Sec-
tion 3.2 Polish Dependency Relation Types. Section 3.3 Syntactic Annotation Schemata:
Related Work provides an overview of the existing syntactic annotation schemata for
various languages.

Chapter 4 describes adaptation of the constituency-to-dependency conversion method
for acquiring a treebank of valid Polish dependency structures. Section 4.1 Sk≥adnica
– Polish Constituency Treebank introduces the Polish constituency treebank Sk≥adnica,
which is the source of constituency-to-dependency converted trees. The procedure of
converting constituent trees into labelled dependency structures is described in the fol-
lowing sections. Section 4.2 Conversion Procedure describes main aspects of the con-
version procedure and the technique of annotating relations with grammatical func-
tions. Section 4.3 Head Selection provides an overview of some head selection heuristics.
Section 4.4 Rearrangement of Dependency Structures presents some reorganisations of
converted dependency structures. Empirical experiments that consist in training Polish
dependency parsers on converted dependency structures and a detailed evaluation of
the trained parsers are reviewed in Sections 4.5 Experimental Setup and 4.6 Experiments
and Results. This chapter ends with an overview of related constituency-to-dependency
approaches (Section 4.7 Constituency-to-Dependency Conversion: Related Work) and
some conclusions (Section 4.8 Partial Conclusions).

4 Chapter 1. Introduction

Chapter 5 proposes a diÄerent way of obtaining dependency structures based on a novel
weighted induction method. The procedure of inducing dependency structures consists of
two successive steps which are described in the following sections. Section 5.1 Weighted
Projection presents the procedure of projecting English dependency relations to corre-
sponding Polish sentences via an extended set of weighted alignment links. Section 5.2
Weighted Induction, in turn, describes the method of extracting unlabelled dependency
structures from projected directed graphs. Section 5.3 Rule-based Adaptation of Pol-
ish Dependency Structures gives an overview of rule-based heuristics designed to label
and correct induced dependency structures. The empirical part of this chapter (Sections
5.4 Experimental Setup and 5.5 Experiments and Results) outlines some experiments
conducted to train dependency parsers on induced dependency structures. Since our
method is set within the mainstream of the cross-lingual information projection study,
Section 5.6 Annotation Projection: Related Work provides an overview of the related
annotation projection approaches. The chapter ends with some conclusions (Section 5.7
Partial Conclusions).

Chapter 6 concludes the dissertation. It summarises (Section 6.1 Summary) and
compares two ways of acquiring dependency structures (Section 6.2 Comparison of
Conversion-based and Projection-based Approaches).

Chapter 2

Preliminaries

2.1 Pillars of the Dependency Theory

The tradition of the modern dependency grammar theory1 derives from the pioneering
work Éléments de syntaxe structurale by Lucien Tesnière (1959), which is the first com-
prehensive work on the dependency formalism. The central notions of Tesnière’s theory
of structural syntax are connexion and valency (cf. Ágel and Fischer, 2010). Connexions,
which are nowadays called dependencies or dependency relations, are, next to jonctions
and translations, basic relations of the structural syntax. They connect two word forms
co-occurring in a sentence and represent government (or dependency) relations in a de-
pendency tree (Tesnière’s stemma) of this sentence. One of the two connected word
forms is called regent (also governor, Tesniére’s terme supérieur) and the other one is
called dependent (Tesniére’s terme inférieur). All regents and dependents are attributed
grammatical functions.

The valency theory as defined by Tesnière assumes that the centre of a sentence is
constituted by a verb (principle of verb centrality).2 The verb requires some complements
(Tesnière’s actants) and may admit some adjuncts (Tesnière’s circumstantials). However,
a central verb (or a verbal nucleus) and its circumstantial may only build a dependency
relation. A verbal nucleus and its actant, in turn, build both a dependency relation
and a valency relation since the actant is anchored in the verb’s meaning. Actants are
distinguished on the basis of their semantic relations with the verbal nucleus.
1The dependency grammar has a very long tradition which may even go back to Pānini, an Indian

grammarian living in the 4th or 5th century BC, who defined a formal grammar of Sanskrit. A theory
of grammar was first formalised for the Arabic language by Kitāb al-Us.ūl of Ibn al-Sarrāğ. This theory
builds on dependency-based notions of a syntactic head and its dependent which are similar to the main
concepts of the modern dependency grammar. The first European medieval grammarians who used
the notion of dependency were Martin of Dacia living in 13th century and Thomas von Erfurt living in
14th century (cf. KruijÄ, 2002).
2The principle of verb centrality assumes that the structure of a sentence unfolds from the verb and

grammatical functions of the verb dependents are imposed by the verb.

5

6 Chapter 2. Preliminaries

The notions of connexion and valency have been adapted by theoreticians of the de-
pendency grammar. Tesnière’s successors developed his concept into diÄerent theoreti-
cal frameworks, e.g., Meaning-Text Theory by Igor Mel’čuk (Mel’čuk, 1988), Functional
Generative Description defined by Prague School theoreticians (Sgall et al., 1986),Word
Grammar by Richard Hudson (Hudson, 1990) or Dependency Unification Grammar
(Hellwig, 1986, 2003). All of these frameworks are based on the common idea that
the description of structures commences from individual word forms which have the po-
tential for connecting and valency. A definition of a syntactic structure (after Polguére
and Mel’čuk, 2009, p. xv) is formulated as follows:

Definition 2.1. The syntactic structure of a sentence is a set of lexical units of this
sentence linked together by syntactic relations.

This definition indicates that a dependency structure of a sentence is understood as
a set of lexical items making up the sentence. These lexical items are related among
themselves by syntactic dependencies. While the dependency structure represents
a syntactic description of a sentence, it is also semantically motivated. Since depen-
dency relations may be justified by valency relations (similarly as in Tesnière, 1959),
the dependency structure also encodes the semantic predicate-argument structure.
Hence, the dependency grammar is a general syntactic theory with an integrated
valency component that determines both the number and the kind of complement slots
of a verb, a noun or an adjective (cf. Ágel and Fischer, 2010).

Semantic representation (SemR), or the meaning �
m semantics

Deep-syntactic representation (DSyntR) �
m deep syntax

Surface-syntactic representation (SSyntR) �
m surface syntax

Deep-morphological representation (DMorphR) �
m deep morphology

Surface-morphological representation (SMorphR) �
m surface morphology

Deep-phonological representation (DPhonR) �
m phonology

Surface-phonological representation (SPhonR), or the text

Figure 2.1: Levels of the utterance representation and modules of Meaning-Text
Theory (taken from Kahane, 2003).

Moreover, some dependency frameworks (e.g., Meaning-Text Theory and Functional
Generative Description3) argue that the true dependency analysis consists of multiple
3In terms of Functional Generative Description, there are five levels of the utterance representation:

phonetic, morphonological, morphological, surface-syntactic and tectogrammatic.

2.2. Dependency in Poland 7

dependency representations such as morphological, syntactic, or semantic. For example,
Meaning-Text Theory assumes that syntactic and morphological representations are in-
termediate levels between the semantic level (corresponding to Meaning, i.e., semantic
representation) and the phonetic level (corresponding to Text, i.e., phonetic represen-
tation). In terms of Meaning-Text Theory, a natural language may be understood as
many-to-many correspondence between a set of possible meanings and a set of possi-
ble texts. The meaning-text correspondence, in turn, is defined with the Meaning-Text
Model which consists of a finite set of rules. The Meaning-Text Model is divided into
six modules ensuring correspondence between adjacent representation levels as depicted
in Figure 2.1 taken from Kahane (2003). Hence, the morphological representation and
the syntactic representation are intermediate levels between the semantic representation
and the phonetic representation of an utterance.

In addition to ‘pure’ dependency formalisms, most of post-generative formalisms such as
Lexical Functional Grammar (LFG, Bresnan, 2001; Dalrymple, 2001; Falk, 2001), Head-
driven Phrase Structure Grammar (HPSG, Pollard and Sag, 1994) or Tree-Adjoining
Grammar (TAG, Joshi and Schabes, 1997; Abeillé and Rambow, 2000) also emphasise
dependency relations in their syntactic representations. However, these representations
are substantially diÄerent from conventional dependency structures.

2.2 Dependency in Poland

Dependency theories which were developed after Tesnière gained recognition and follow-
ers primarily in Central and Eastern Europe, also in Poland. One of the first dependency
descriptions of Polish was presented by Zenon Klemensiewicz (1968). Klemensiewicz dis-
tinguished between the main relation (Pol. ‘zwiπzek g≥ówny’) and the secondary relation
(Pol. ‘zwiπzek poboczny’). The main relation consists of the syntactically independent
subject governing the sentence predicate.4 All other relations of a sentence are secondary
(cf. Klemensiewicz, 1968, p. 30). A secondary relation directly or indirectly depends on
the governor (subject) or the dependent (predicate) of the main relation. The governor
of the secondary relation is called a basis (Pol. ‘podstawa’), while the dependent is called
an attribute (Pol. ‘okreúlnik’). Klemensiewicz’s grammar does not assume that a depen-
dency analysis consists of multiple levels of linguistic description, but it merges various
levels of language description.

A general overview of dependency types possible in Polish is given in an article by
Marek åwidziÒski (1989). For word forms representing particular part of speech classes
(e.g., verb, quasi-verb or noun), åwidziÒski defines parts of speech of their possible
dependents and grammatical functions of these dependents (e.g., SUBJ, OBJ, PREC
4It is worth noting that Tesniére was exactly against such binary division of a sentence structure into

a subject and a predicate. As an alternative, he introduced an approach based on the principle of verb
centrality described in the previous section.

8 Chapter 2. Preliminaries

or PRED). He distinguishes 11 complement types and 8 adjunct types. Each possible
Polish dependency type is illustrated by an exemplary sentence.

A dependency analysis of Polish numeral constructions is presented by Magdalena Der-
wojedowa (2011). The dependency description of numeral constructions is based on
theoretical works by Igor Mel’čuk (e.g., Mel’čuk, 1988; Mel’čuk and Pertsov, 1987) and
on the dissertation by Tomasz ObrÍbski (2002). Apart from an extensive description of
dependency relations in numeral constructions, a general overview of Polish dependency
types is also presented (Derwojedowa, 2011, Appendix A, pp. 175Ä.).

Even if there are some theoretical works on the dependency description of Polish, there
are hardly any approaches dealing with the issue of Polish dependency parsing. Never-
theless, the Polish NLP community is aware of the usefulness of syntactic parsing, as
evidenced by numerous studies. The first formal description of Polish – Metamorphosis
Grammar – was conceptualised and implemented by Stanis≥aw Szpakowicz (1978, 1986).
This formalism was further developed by Szpakowicz and åwidziÒski (1990, also åwidz-
iÒski 1992) in the 1980s. This formal definition of Polish was used as a basis for imple-
menting parsers described in BieÒ (1997), BieÒ et al. (2001) and BieÒ (2007), the åwigra
parser (WoliÒski, 2004, 2005a,b) and a parser incorporated in the system POLINT (Ve-
tulani, 2004). Apart from parsers employing åwidziÒski’s formal description, there is also
a wide-coverage constituent-based parser by Filip GraliÒski (2002, 2007) which is inte-
grated with the machine translation system POLENG (Jassem, 2006). Deep syntactic
parsers of Polish also employ other grammar formalisms, e.g., Head-driven Phrase Struc-
ture Grammar (Przepiórkowski et al., 2002) or Lexical Functional Grammar (Patejuk
and Przepiórkowski, 2012). Apart from the above approaches involving deep syntactic
parsing, there is also another trend in grammar-based Polish parsing – surface parsing.
A surface parser identifies chunks in a sentence without setting relations between them,
e.g., the Spejd parser (Przepiórkowski, 2008) or the Puddle parser (GraliÒski et al.,
2012).

The only example of research on Polish dependency parsing is the pioneering PhD dis-
sertation by Tomasz ObrÍbski (2002). In his work, ObrÍbski presents a grammar-based
method of dependency parsing largely inspired by Meaning-Text Theory. The method
is computationally eÖcient, but it is intended to analyse only a set of selected Pol-
ish sentences.5 Based on the description of Polish morphosyntactic phenomena given
by Saloni and åwidziÒski (1989), ObrÍbski proposes a dependency grammar formalism
which is adjusted to the specificity of Polish. The formalism combines a language of
the syntactic description with a mathematical model. The language of the syntactic
description consists of elements describing word forms (e.g., part of speech tags, mor-
phological features), agreement types, dependency types, dependency rules, separators,
etc. The mathematical model, in turn, defines three representations of an utterance
(a morphological structure, a punctuation structure, and a syntactic structure) and
5The parser is tested against 170 sentences from the test corpus described in Marciniak et al. (2000).

2.3. Dependency Structure 9

some axioms of the dependency syntax. The syntactic structure is represented as a de-
pendency tree with vertices corresponding to tokens (vertices may be assigned flags
encoding their syntactic attributes) and arcs which are equivalent to dependency rela-
tions with assigned dependency labels. The proposed grammar formalism defines a set
of dependency relation types and a set of syntactic rules that determine possible or obli-
gatory dependency relations between pairs of words. The parser based on this grammar
takes possibly ambiguous morphological analyses of a sentence as input and outputs
a dependency graph including alternative dependency analyses of this sentence.

2.3 Dependency Structure

Generally, a dependency structure consists of lexical items that occur in a sentence and
are linked by relations called dependencies (see Figure 2.2).6 A dependency relation
is a special kind of a binary unilateral relation which is antisymmetric, antireflexive,
antitransitive and labelled (cf. Mel’čuk, 1988, pp. 21Ä.). One of the related lexical units
is regarded as a governor (head, regent), while the other one is its dependent.

root

StrukturÍ zaleønoúciowπ tworzπ tokeny po≥πczone relacjami.
structure

acc

dependency
acc

form
fin.pl.ter

tokens
nom

connected
ppas.pl.nom

relations
inst

pred

adjunct subj

obj

adjunct
obj th

Figure 2.2: A dependency structure of the sentence StrukturÍ zaleønoúciowπ tworzπ
tokeny po≥πczone relacjami. (Eng. ‘Tokens connected with relations build a dependency

structure.’).

The term governor traditionally refers to a word that selects grammatical features of
another word (governee), e.g., a preposition determines the grammatical case of a com-
plement noun phrase, or a noun determines the case and the gender of a modifying
adjective. Since the description of syntactic relations established between pairs of words
in a sentence is in the scope of the dependency grammar, the dependency theory adopts
the term governor, but treats it broader than in other traditional syntactic theories.
In the dependency grammar, the term governor is related to all dominant words that
open slots for other words (dependents) with complementing or modifying meaning.
However, the surface word form of a dependent does not have to be determined by
the dominant word. For example, in the case of a relative clause modifying a noun
phrase, the grammatical form of a relative pronoun introducing the relative clause is
6All tokens of a sentence, including punctuation marks, correspond to nodes of a dependency tree.

However, punctuation marks, especially full stops and commas, are not displayed in most of graphic
representations of dependency trees in this dissertation in order to preserve as much transparency as
possible.

10 Chapter 2. Preliminaries

determined by the modified noun phrase (see kobieta, która úpiewa vs. kobieta, *który
úpiewa, Eng., ‘a woman who

sg.nom.f

sings’ vs. ‘a woman *who
sg.nom.m

sings’). Despite
this, the relative pronoun depends on the predicate of the relative clause in the depen-
dency representation and not on the modified noun phrase (see Figure 2.3).

root kobieta , która úpiewa
woman

sg.nom

who
sg.nom.f

sing
fin.sg

pred

adjunct

subj

punct

Figure 2.3: A dependency structure of the noun phrase kobieta, która úpiewa
(Eng. ‘a woman who sings’).

The term governor may be used synonymously with the term head in dependency
approaches. However, the term head may additionally refer to the element of a phrase
determining morphosyntactic properties of the entire phrase in phrase structure
approaches. From this perspective, the phrase structure head directly governs the entire
phrase. In order to avoid misunderstandings in the current dissertation, we do not use
these two terms interchangeably. Instead, the term head is used with regard to the cen-
tral element of a phrase structure. The term governor, in turn, refers to the element
dominating a dependency relation.

In a dependency structure, each lexical item depends on exactly one governing item, ex-
cept for the top element of the dependency structure which is independent. A depending
item may be characterised by some properties, e.g., its morphological form either agrees
with the form of the governor (agreement) or is specified by the governor (government),
its linear position is specified in relation to the governor position. A governor not only
selects its dependents but also determines their obligatory or optional status, and their
grammatical functions. A dependent, in turn, may semantically specify the governor.

The concept of a dependency structure has been adapted for the purpose of dependency
parsing. The dependency structure may be defined as a labelled directed tree – the so-
called dependency tree. Based on Kübler et al. (2009), Polguére and Mel’čuk (2009)
and graph theory (e.g., Diestel, 2000; Newman, 2010), we define the dependency tree as
follows:

Definition 2.2. A well-formed dependency tree T = (V,A) of a sentence S consists of
a set of vertices V = {v0, v1, ..., vn}, where v0 is the root of T and for i 2 {1, ..., n},
the vertex v

i

corresponds to the ith token in the sentence S = t1, ..., tn, and a set of
directed edges (arcs) A ✓ {(v

i

, v
j

, l)|v
i

, v
j

2 V , l 2 L}, for L = {l1, ..., lm} being a finite
set of possible grammatical functions with which arcs are labelled. The dependency tree
T has the following properties:

2.3. Dependency Structure 11

• if (v
i

, v
j

, l) 2 A then (v
i

, v
j

, l 0) /2 A, for v
i

, v
j

2 V , l , l 0 2 L and l 0 6= l ,

• if (v
i

, v
j

, l) 2 A then (v
k

, v
j

, l 0) /2 A, for v
i

, v
j

, v
k

2 V , v
i

6= v
k

and l , l 0 2 L,

• (v
i

, v0, l) /2 A, for any v
i

2 V and l 2 L,

• if (v0, vi, l) 2 A then (v0, vj , l0) /2 A, for v
i

, v
j

2 V , v
i

6= v
j

and l , l 0 2 L,

• T contains a path from v0 to vi, for any vi 2 V .

The following terms and notions used in the above definition need to be clarified. The set
V corresponds to lexical items (tokens) of the sentence S = t1, ..., tn (i.e., the depen-
dency tree spans over all tokens of the sentence S) which are extended with an additional
artificial root node not corresponding to any token of this sentence. All nodes in the de-
pendency tree are assigned a unique index. The artificial root node is always assigned
the index 0 (i.e., v0). All other nodes are assigned an index corresponding to the posi-
tion of the token in the sentence. Nodes in the set V are annotated with word forms
and possibly with morphosyntactic information (e.g., lemmata, part of speech tags or
morphological features).

Arcs in the set A represent binary relations between governors and their dependents.
The dependency tree contains only directed edges (arcs) representing asymmetric depen-
dency relations between two tokens, one of which dominates the other one and allows for
the appearance of the dependent token in the sentence. In order to reflect the hierarchy
in the sentence, any arc (v

i

, v
j

, l), for v
i

, v
j

2 V and l 2 L, is directed from the go-
vernor v

i

to the dependent node v
j

. Arcs are explicitly labelled with dependency types
from the set L (e.g., subj, obj) which are equivalent to grammatical functions borne
by dependents and determined by governors. Therefore, we use the term dependency
label interchangeably with the terms grammatical function, syntactic function, depen-
dency type and dependency relation type in this dissertation. We are aware of the slight
diÄerences between these terms, but they seem to refer to the same entity, namely to
the label of a dependency relation.

Multiple arcs between two lexical nodes are not possible in the dependency tree. If
there is an arc (v

i

, v
j

, l) 2 A then no other arc that connects the same lexical nodes
and is labelled with another grammatical function is part of the dependency tree, i.e.,
(v

i

, v
j

, l 0) /2 A, for v
i

, v
j

2 V , l , l 0 2 l and l 6= l

0. Furthermore, as each token may be
governed by only one other token, any lexical node has at most one incoming arc, i.e.,
if (v

i

, v
j

, l) 2 A then (v
k

, v
j

, l 0) /2 A, for v
i

, v
j

, v
k

2 V , v
i

6= v
k

and l , l 0 2 L.

The dependency tree originates from the root node v0, which simplifies both the com-
putational implementation and the formal definition of the dependency structure.
The root node does not have any predecessor, i.e., (v

i

, v0, l) /2 A, for v
i

2 V and l 2 L,
and it has only one successor, i.e., if (v0, vi, l) 2 A then (v0, vj , l0) /2 A, for v

i

, v
j

2 V ,
v
i

6= v
j

and l , l 0 2 L. The root node directly or indirectly dominates all other nodes in

12 Chapter 2. Preliminaries

this tree following the direction of arcs, i.e., all nodes are directed away from the root
node. Since T contains a path from v0 to v

i

, for any v
i

2 V , each v
i

, for i 6= 0, has
exactly one governor.

The dependency tree is therefore a directed graph (or digraph), as defined by Diestel
(2000, p. 25),7 which is connected, single-headed, rooted and acyclic, and spans over
all lexical items of a sentence. Dependency parsing may be understood as a process of
automatic allocation of a dependency tree to an input sentence.

2.4 Data-driven Dependency Parsing

The main idea of dependency parsing is to annotate an input sentence with an output
dependency tree. Dependency parsing has recently become increasingly popular. There
are various reasons for the increase in popularity of dependency parsing, especially data-
driven dependency parsing. First, several shared tasks on multilingual dependency par-
sing have been organised in recent years. For example, such shared tasks were hosted at
the Conference on Computational Natural Language Learning (CoNLL) in 2006 (Buch-
holz and Marsi, 2006), in 2007 (Nivre et al., 2007) and in 2009 (Hajič et al., 2009). These
shared tasks resulted in the development of multiple dependency parsing systems that
achieve the state-of-the-art parsing performance. An important advantage of parsing sys-
tems participating in these shared tasks is their multilingual dimension, i.e., they may
be employed for training dependency parsing models for every language with an existing
dependency treebank. These shared tasks also oÄered access to training data in a wide
variety of languages. Second, eÖcient dependency-based parsing algorithms have been
designed such that they can annotate sentences even in linear time (Eisner, 1996; Ya-
mada and Matsumoto, 2003; Nivre, 2008). Third, dependency structures transparently
encoding predicate-argument structures are probably better suited for further seman-
tic processing than constituent trees. Consequently, dependency parsing may support
diÄerent sophisticated language processing tasks such as machine translation, question
answering or information extraction.

There are two main dependency parsing approaches: grammar-based and data-driven.
Grammar-based dependency parsing relies on a formal grammar. A distinction is made
between dependency parsing based on context-free dependency grammars (e.g., Link
Grammar, cf. Sleator and Temperley 1993, Bilexical Grammar, cf. Eisner 1996, 2000) and
7Diestel (2000, p. 25) gives the following definition of a directed graph:

A directed graph (or digraph) is a pair (V,E) of disjoint sets (of vertices and edges) together with two
maps init: E ! V and ter: E ! V assigning to every edge e an initial vertex init(e) and a terminal
vertex ter(e). The edge e is said to be directed from init(e) to ter(e).

2.4. Data-driven Dependency Parsing 13

constraint-based dependency grammars (e.g., Weighted Constraint Dependency Gram-
mar, cf. Harper and Helzerman 1995 and Menzel and Schröder 1998, Probabilistic Con-
straint Dependency Grammar, cf. Wang and Harper 2004, Functional Dependency Gram-
mar, cf. Tapanainen and Järvinen 1997, Järvinen and Tapanainen 1998 and ObrÍbski
2002, Topological Dependency Grammar, cf. Duchier and Debusmann 2001, or Extensible
Dependency Grammar, cf. Debusmann et al. 2004). Since the discussion of grammar-
based dependency parsing is beyond the scope of this thesis, interested readers are
referred to the referenced works or Kübler et al. (2009) for further information.

Data-driven dependency parsing relies on a parsing model trained on data using machine
learning techniques. There are two problems to solve in the data-driven dependency
parsing. The first one is a learning problem that aims to induce a parsing model given
a training set of sentences (possibly annotated with dependency trees). The second one is
a parsing problem that aims to predict an optimal dependency tree for an input sentence
given the learnt parsing model.

We begin with the learning problem. A dependency parsing model is defined by Kübler
et al. (2009, p. 18) as follows:

Definition 2.3. A dependency parsing model consists of a set of constraints � that
define the space of permissible dependency structures for a given sentence, a set of
parameters � (possibly null), and a fixed parsing algorithm h. A model is denoted by
M = (�,�, h).

Constraints � defining the space of permissible structures for a given sentence are spe-
cified by an underlying formalism used by the parsing system. They limit the space
of dependency graphs by forcing the dependency model to produce dependency graphs
which are well-formed in terms of these constraints (e.g., well-formed dependency trees).
� may be represented as a set of simple constraints that restrict the space of dependency
graphs to dependency trees, or as a set of more complex constraints, e.g., grammars that
further limit the space of dependency graphs to particular dependency trees. Values of
parameters in the set � are learnt from training data. The parsing algorithm h, in turn,
is a fixed function that searches over well-formed dependency graphs and returns a single
tree for an input sentence.

The idea of data-driven dependency parsing is to train a parsing model that will predict
a correct dependency tree for an input sentence. Parameters of dependency parsing mo-
dels may be learnt either from annotated data (a training set of dependency structures)
using supervised machine learning techniques or from large unannotated text corpora
using unsupervised learning techniques.

Since the manual annotation of training data is a very time-consuming and expensive
process, unsupervised techniques of training dependency models on unannotated textual
data have been proposed. Some unsupervised dependency parsing approaches (e.g., Klein

14 Chapter 2. Preliminaries

and Manning, 2004; Spitkovsky et al., 2010) are based on diÄerent versions of the EM
algorithm (Dempster et al., 1977). There are also approaches applying the Bayesian
framework (e.g., Finkel et al., 2007), linear-interpolation smoothing (e.g., Headden et al.,
2009), posterior regularisation (e.g., Gillenwater et al., 2010), unambiguity regularisation
(e.g., Tu and Honavar, 2012), etc. Despite all eÄorts devoted to research on unsuper-
vised dependency parsing, its performance is far behind the performance of supervised
dependency parsers. Moreover, almost all unsupervised dependency parsing approaches
currently focus on unlabelled dependency structures which may be insuÖcient for many
sophisticated language processing applications. According to Tu (2012), unsupervised
dependency parsing is restricted to unlabelled dependency structures because of very
high complexity of training and parsing procedures if labels are added. Addition of de-
pendency labels may enormously increase the number of parameters and the number of
possible parses of a sentence.

Supervised methods are very well-established in data-driven dependency parsing and
they give the best results so far. Supervised dependency parsers trained on cor-
rectly annotated data can achieve high parsing performance, even for relatively non-
configurational Slavic languages which are characterised by multiple discontinuous con-
structions and a relatively free word order. For example, MaltParser trained on Prague
Dependency Treebank8 (Nivre et al., 2007) achieved 78.4% LAS9 and 84.8% UAS10 in
the shared task at CoNLL 2006 and 77.2% LAS and 82.3% UAS in the shared task
at CoNLL 2007. Further experiments show that the Czech MaltParser is outperformed
by other dependency parsers, e.g., the Czech MST parser with 80.2% LAS (Buchholz
and Marsi, 2006) and the Mate dependency parser with 80.96% LAS (Bohnet, 2010).
The Russian MaltParser (Nivre et al., 2008), in turn, trained on the large dependency
treebank SynTagRus11 (Boguslavsky et al., 2002) achieved 82.2% LAS and 89.1% UAS.

The dependency parsing systems mentioned above, i.e.,MaltParser (Nivre et al., 2006a),
the MST parser (McDonald et al., 2005a) and the Mate parser (Bohnet, 2010), are
among the best state-of-the-art dependency parsers. They are widely used for various
languages and diÄerent language processing tasks. They represent two main data-driven
dependency parsing approaches: transition-based (MaltParser) and graph-based (MST
and Mate).
8The parser was trained on 72,700 sentences (1,249,000 tokens in total and 17.2 tokens per sentence

on average) in CoNLL 2006 and on 25,400 sentences (450,000 tokens, 17 tokens per sentence on average)
in CoNLL 2007.
9Labelled attachment score (LAS) – the percentage of tokens that are assigned the correct head and

the correct dependency type.
10Unlabelled attachment score (UAS) – the percentage of tokens that are assigned the correct head.
11
SynTagRus dependency treebank (Boguslavsky et al., 2002) contains over 32,000 sentences (460,000

tokens) taken from various genres.

2.4. Data-driven Dependency Parsing 15

2.4.1 Transition-based Dependency Parsing

A transition-based dependency parser is a state machine for mapping a sentence to its
dependency tree. It finds a sequence of valid transitions between complex configurations
in a way resembling a shift-reduce procedure of context-free grammars. The transition
system consists of a set of configurations (states) and transitions (actions) between
configurations.

Configurations may be understood as partial analyses of an input sentence. Following
Kübler et al. (2009), a configuration for a sequence of tokens plus a root node S =

v0, v1, ..., vn may be defined as a triple c = (�,�, A), where � is a stack of partially
processed words, � is a buÄer of remaining input words, and A is a set of dependency arcs
of the form (v

i

, v
j

, l). The set A constitutes a partially built dependency tree. Parsing
starts with an initial configuration in which the first token (conventionally the root
node v0) is on the stack �, all other tokens are in the buÄer � and there are no arcs
in the set A, i.e., ([v0]�, [v1, ..., vn]

�

,?). The parsing of an input sentence terminates in
a configuration in which the buÄer � is empty, i.e., (�, []

�

, A). The terminal configuration
defines the valid dependency tree for an input sentence.

Transitions correspond to the steps in the process of deriving a dependency tree. They
are equivalent to parsing actions that add an arc to the dependency tree, or modify
the stack or the buÄer. The basic transitions in the shift-reduced parsing are Left-Arc

l

(�|v
i

, v
j

|�, A)) (�, v
j

|�, A[{v
j

, v
i

, l})12 and Right-Arc
l

(�|v
i

, v
j

|�, A)) (�, v
i

|�, A[
{v

i

, v
j

, l})13 that add arcs to the setA, and Shift (�, v
i

|�, A)) (�|v
i

,�, A) which pushes
the first token in the buÄer on the top of the stack.

In the learning phase, the parsing system induces a model for predicting next transitions
given an input and previously constructed arcs (the transition history). For the purpose
of transition-based training, training data which is usually arranged in pairs of sentences
and their dependency trees has to be transformed into sequences of parser configurations
and transitions used to derive the training trees. The model is parametrised over these
training transitions.

Parsing of an input sentence consists in the construction of an optimal transition se-
quence given the induced parsing model. Since more than one transition may be valid
for a non-terminal configuration, the transition system is non-deterministic. In order to
parse sentences deterministically, the transition system requires an oracle. The oracle is
a function that determines an optimal transition from the current non-terminal configu-
ration to the next configuration. The oracle is approximated by a classifier trained on
12The Left-Arc

l

transition adds an arc between a token v
j

, which is the first token in the buÄer,
and its dependent v

i

, which is on the top of the stack, to the set A. Meanwhile, v
i

pops the stack.
13The Right-Arc

l

transition adds an arc between a token v
i

, which is on the top of the stack, and
its dependent v

j

, which is the first token in the buÄer, to the set A. Furthermore, v
i

pops the stack and
replaces v

j

at the head position in the buÄer.

16 Chapter 2. Preliminaries

treebank data using various learning methods (e.g., support vector machines, memory-
based learning or maximum entropy modelling).

The classifier predicts an oracle transition for any configuration represented as a feature
vector. Typical features of the feature representation are defined in terms of lexical items
(e.g., lexical item of the current node, lexical item of its governing node, lexical items of
neighbouring, child or siblings nodes) and attributes of lexical items (lemmata, parts of
speech, morphosyntactic features, dependency types or distance between target tokens).

A remarkable feature of transition-based dependency parsers is their relatively low com-
plexity. Transition-based dependency parsers have a linear or quadratic parsing time
complexity. One of the first transition-based parsers (Yamada and Matsumoto, 2003),
which uses support vector machines to predict transitions, outputs unlabelled depen-
dency trees for input sentences. Other data-driven transition-based parsers, which have
been developed later, output labelled dependency structures, e.g., MaltParser (Nivre
and Nilsson, 2005; Nivre et al., 2006a), and systems by Attardi (2006), Attardi and
Ciaramita (2007), Duan et al. (2007), Johansson and Nugues (2007), and Titov and
Henderson (2007).

2.4.2 Graph-based Dependency Parsing

A graph-based dependency parser predicts a dependency tree as a correct analysis of
an input sentence. The parsing procedure starts with defining a space of well-formed
candidate dependency trees for an input sentence and scoring them given an induced
parsing model. Then, the highest scoring dependency tree is selected as a correct analysis
of the input sentence.

A score of a dependency tree is obtained as a function of scores of its dependency sub-
graphs.14 The majority of graph-based dependency parsing models assume that a tree
score is the sum of subgraph scores (factor parameters). However, models may also define
a tree score as the product of subgraph parameters. Scores of dependency subgraphs,
in turn, are estimated based on a pretrained parsing model. In arc-factored models,
the score of an arc �(v

i

,v

j

,l) is estimated as the dot product of a high dimensional feature
representation f of the arc and a learnt weight vector w, i.e., �(v

i

,v

j

,l) = w · f(v
i

, v
j

, l).
The tree score, in turn, is estimated as the sum of individual arc scores (see Equa-
tion (2.1)).

score(T = (V,A)) =
X

(v
i

,v

j

,l)2A

�(v
i

,v

j

,l) =
X

(v
i

,v

j

,l)2A

w · f(v
i

, v
j

, l) (2.1)

14Dependency subgraphs are also called factors. In the first-order factorisation, a dependency subgraph
(factor) is associated with a single arc (i.e., arc-factored models).

2.4. Data-driven Dependency Parsing 17

The idea behind graph-based dependency parsing is to define an algorithm that finds
a tree for which factor parameters sum to a maximum value. In arc-factored models,
the problem of selecting the highest scoring tree is defined with the function h (see
Equation (2.2) after Kübler et al., 2009, p. 43). In Equation (2.2) S is a sentence, � is
a set of constraints that define the space of permissible dependency trees for the sentence
S, � is a set of possible parameters �(v

i

,v

j

,l), T = (V,A) is a dependency tree from the set
of all well-formed (compliant to �) candidate trees G�,S of S, and �(v

i

,v

j

,l) 2 � is a real
numbered parameter of the arc (v

i

, v
j

, l) 2 A.

h(S,�,�) = argmax
T=(V,A)2G�,S

X

(v
i

,v

j

,l)2A

�(v
i

,v

j

,l) = argmax
T=(V,A)2G�,S

X

(v
i

,v

j

,l)2A

w · f(v
i

, v
j

, l) (2.2)

Graph-based dependency parsing approaches are based on the idea that a spanning
tree of a digraph corresponds to a dependency tree. Hence, solving the arc-factored
dependency parsing problem corresponds to finding the maximum spanning tree in a set
of well-formed spanning trees of S. Standard algorithms aim to find maximum spanning
trees in digraphs, e.g., the MST algorithm by McDonald et al. (2005a) built on the Mi-
nimum Spanning Tree Algorithm provided independently by Chu and Liu (1965) and
Edmonds (1967).

Algorithm 2.1 (based on Kübler et al., 2009, p. 47)15 lists the pseudocode for the MST al-
gorithm that finds possibly non-projective16 maximum spanning trees in directed graphs.
The MST algorithm iteratively searches for a spanning tree T = (V,A) which maximises
the value

P
(v

i

,v

j

)2A �(v
i

,v

j

), i.e., the sum of arc parameters �(v
i

,v

j

). The algorithm starts
with selecting an incoming edge with the highest score from the digraph G for each
15The MST algorithm is adapted to labelled dependency parsing. Hence, each arc has the form of
a triple (v

i

, v
j

, l), where v
i

, v
j

2 V and l 2 L. However, Kübler et al. (2009) present the version of
the algorithm with the reduced representation of arcs without the relation label, i.e., (v

i

, v
j

). We keep
this convention in our presentation too.
16
Projectivity may be defined as follows (based on Kübler et al., 2009):

1. An arc (v
i

, v
j

, l) 2 A in a dependency tree T = (V,A) is projective iÄ there exists the transitive
closure of a relation v

i

! v
k

(i.e., v
i

⇤�! v
k

) for all words v
k

intervening between v
i

and v
j

(i.e.,
for all i < k < j when i < j or j < k < i when j < i).

2. A dependency tree T = (V,A) is projective iÄ all arcs in A are projective.

This definition implies that the projective dependency structure is a directed tree of a sentence con-
strained on the linear word order, i.e., dependency arcs in this tree do not cross with respect to the word
order of the sentence, e.g.:

v1 v2 v3 v4

A non-projective dependency tree, in turn, models syntactic constructions such as topicalisation, wh-
movement, discontinuous noun phrases, or other constructions resulting in crossing arcs, e.g.:

v1 v2 v3 v4

18 Chapter 2. Preliminaries

Algorithm 2.1 MST algorithm (based on Kübler et al., 2009, p. 47)

h(S,�,�) # non-projective parsing
Sentence S = v1, ..., vn
Set of constraints �
Arc parameters �(v

i

,v

j

) 2 �

G
S

:= (V
S

, A
S

), where V
S

= {v0, v1, ..., vn} with v0 being the root node and
A

S

= {(v
i

, v
j

)| for all v
i

, v
j

2 V
S

}
Return Chu-Liu-Edmonds(G

S

,�)

Chu-Liu-Edmonds(G,�)
Graph G = (V,A)
Arc parameters �(v

i

,v

j

) 2 �

A0 := {(v
i

, v
j

)|v
j

2 V, v
i

= argmax
v

i

�(v
i

,v

j

)}
T := (V,A0)
If T has no cycles, then it is the MST
Return T

Otherwise, find any subgraph C := (V
C

, A
C

) corresponding to a cycle in T
< G

C

, v
c

, ep > := contract(G,C,�)
T := (V,A) = Chu-Liu-Edmonds(G

C

,�)
For the arc (v

i

, v
c

) 2 A, where ep(v
i

, v
c

) = v
j

,
identify an arc (v

k

, v
j

) 2 A
C

for some v
k

Find all arcs (v
c

, v
l

) 2 A
A := A [{(ep(v

c

, v
l

), v
l

)| for all (v
c

, v
l

) 2 A} [A
C

[{(v
i

, v
j

)}� {(v
k

, v
j

)}
Return T

contract(G,C,�)
Graph G = (V,A)
Subgraph C = (V

C

, A
C

) of T forming a cycle
Arc parameters �(v

i

,v

j

) 2 �

Let G
C

be the subgraph of G excluding nodes in C
Add a node v

c

representing the cycle to G
C

For v
j

2 V \ V
C

: 9
v

i

2V
C

(v
i

, v
j

) 2 A
Add arc (v

c

, v
j

) to G
C

with ep(v
c

, v
j

) := argmax
v

i

2V
C

�(v
i

,v

j

), for the function ep
keeping track of arcs coming in and out of v

c

v
i

:= ep(v
c

, v
j

)
�(v

c

,v

j

) := �(v
i

,v

j

)

For v
i

2 V \ V
C

: 9
v

j

2V
C

(v
i

, v
j

) 2 A

Add arc (v
i

, v
c

) to G
C

with ep(v
i

, v
c

) := argmax
v

j

2V
C

h
�(v

i

,v

j

) � �(a(v
j

),v
j

)

i

v
j

:= ep(v
i

, v
c

)

�(v
i

,v

c

) :=
h
�(v

i

,v

j

) � �(a(v
j

),v
j

) + score(C)
i
, where a(v) is the predecessor of v

in C and score(C) =
P

v2V
C

�(a(v),v)

Return < G
C

, v
c

, ep >

2.4. Data-driven Dependency Parsing 19

node except the root node. The selected directed edges build a candidate graph T

with the highest total score of arc weights. Then, the candidate graph T is searched
for cycles. If there is no cycle in T , it is regarded as the maximum spanning tree and
is returned. If there is a cycle in the candidate graph T , this cycle is contracted into
a new node and arc parameters are recalculated as presented in the contract function
in Algorithm 2.1. The cycle nodes are contracted into a new node v

c

, i.e., a new node
representing the contraction of nodes in the cycle. Original input arcs (except for arcs
building the cycle) are split into three groups: arcs coming out of the cycle, arcs coming
into the cycle and arcs without the cycle nodes. Arcs without the cycle nodes are directly
added to the contracted graph G

C

. Scores of the arcs going into and out of the cycle are
recalculated and the best scored arcs are added to the contracted graph. The parameter
�(v

c

,v

j

) for an arc coming out of the contracted node vc is equal to the score of the arc.
The parameter �(v

i

,v

c

) for an arc going into the contracted node vc is equal to the highest
score of an arc coming into the cycle and breaking it. The Chu-Liu-Edmonds algorithm
is then recursively called until a tree is found in the contracted graph. Finally, arcs of
the spanning tree selected from the contracted graph are merged with cycle arcs reco-
vered using the function ep. This function keeps track of the arcs coming in and out of v

c

,
and is used for the graph reconstruction. The cycle arc (v

k

, v
j

) is not part of the output
tree, since this arc has to be removed in order to break the cycle. The highest scoring
tree output by the Chu-Liu-Edmonds algorithm is considered a valid dependency tree.

The above paragraphs indicate that factors in arc-factored models correspond to single
dependency arcs of a given dependency tree. Hence, arc-factored models represent first-
order graph-based parsing models. In the dth-order factorisation, the score of a tree
is factored over d arcs, i.e., the current arc and d � 1 arcs from the neighbourhood of
the current arc. First-order parsing algorithms have a quadratic complexity. In second-
order parsing algorithms (e.g., McDonald and Pereira, 2006), factors may be represented
as pairs of arcs sharing the same parent node. Dependents of these arcs should be located
on the same side of the governor.17 This algorithm, designed for projective trees, has
the parsing time complexity of O(n3),18 whereas a non-projective version of this parsing
algorithm is intractable. The higher-order algorithm by Carreras (2007) further expands
the scope of arcs within subgraphs by arcs between a dependent and its child which is
17In the bottom tree (taken from McDonald and Pereira, 2006), the second-order scoring function
considers two arcs hit!with and hit!ball instead of the main arc hit!with only. These two arcs share
the same governor and their dependents are located on the same side of the governor hit.

root0 John1 hit2 the3 ball4 with5 the6 bat7
18This projective parsing algorithm can be extended to dth-order model with a complexity of O(nd+1),
for d > 1.

20 Chapter 2. Preliminaries

located between the dependent and its governor,19 or arcs pointing to grandchildren-
nodes. This parsing algorithm has the time complexity of O(n4).

As we have already stated, the dependency parsing problem consists in finding a parse
tree for an input sentence that maximises the scoring function. The learning problem,
in turn, consists in determining the scoring function so that the accuracy of a parse tree
predicted by the parser is as high as possible. In the learning phase, parsing models are
trained using algorithms that optimise model parameters in order to maximise the dif-
ference in score between the correct dependency tree and all other dependency trees
built for the training sentence.

Graph-based dependency parsing models are parametrised over dependency subgraphs
(factors). In the simplest but commonly used version of graph-based models – an arc-
factored model – arc parameters are estimated based on a vector of predefined features
over the arc and a corresponding feature weight vector. The following features may be
considered by a feature representation: lexical items (dependent, governor), attributes
of related items (e.g., part of speech tags, lemmata, morphological features, distance be-
tween related tokens, arc direction or morphosyntactic attributes of surrounding lexical
items) and grammatical functions which arcs are labelled with. These categorical fea-
tures are converted into binary features. For a categorical feature with k possible values,
the arc feature function includes k diÄerent features with values of 0 or 1 indicating
the absence or the presence of the feature-value pair.

In order to learn parameters from training data (sentences with corresponding depen-
dency trees), various learning algorithms may be employed, e.g., inference-based learn-
ing algorithms, probabilistic log-linear models, large-margin models or generative bi-
gram models. Assuming that arc parameters are linear classifiers in arc-factored models,
the inference problem may be defined as the function h in Equation (2.2).

The most common inference-based learning algorithm is the perceptron algorithm (see
Algorithm 2.2, after Kübler et al., 2009, p. 57) which induces model parameters � from
training data D (� contains the predefined feature vector f and the learnt weight vector
w). The general procedure of training dependency parsing models is as follows. For
each training sentence, the algorithm predicts the highest scored dependency tree T . If
there are no errors in the parser output T relative to the training tree T

d

, the parser
moves on to the next sentence. If there are some discrepancies, the parser compares
19In the bottom tree diagram (taken from Carreras, 2007), h ! m is the main dependency labelled
with l and h ! c

h

is the second-order arc. The higher-order factorisation would additionally consider
c
mi

 m, since c
mi

is a child of m located between h and m.

• • • • •
h c

h

c
mi

m c
mo

l

2.4. Data-driven Dependency Parsing 21

the predicted tree with the gold standard tree and updates the weight vector w taking
the diÄerence between trees. Feature weights increase or decrease depending on their
correctness status, i.e., their presence in the correct solution or in the possibly incorrect
solution. In the training procedure, data are iteratively reparsed in order to adjust
the feature model so that it produces trees that match the gold standard trees (training
data). The model parametrised over dependency subgraphs should score correct trees
higher than incorrect ones.

Algorithm 2.2 Perceptron learning algorithm used in graph-based dependency parsing
(after Kübler et al., 2009, p. 57).

Perceptron(D)
Training data D = {(S

d

, T
d

)}|D|
d=1, where Td

= (V
d

, A
d

)
w := 0

For n : 1..N , where N is a number of training iterations
For d : 1..|D|

T := h(S
d

,�,�) = argmax
T=(V 0

,A

0)2G
S

d

P
(v

i

,v

j

,l)2A0 w · f(v
i

, v
j

, l)
If T 6= T

d

w := w +
P

(v
i

,v

j

,l)2A
d

f(v
i

, v
j

, l)�
P

(v
i

,v

j

,l)2A0 f(v
i

, v
j

, l)
Return w

Arc parameters can then be calculated: �(v
i

, v
j

, l) := w · f(v
i

, v
j

, l)

One of the first graph-based models was defined by Eisner (1996). The work on graph-
based models was continued by McDonald et al. (2006), Carreras (2007), Koo et al.
(2007), Nakagawa (2007), Smith and Smith (2007), etc. There are also some widely used
graph-based dependency parsing systems, e.g., theMST parser (McDonald et al., 2005a,
2006; McDonald and Pereira, 2006) and the Mate parser (Bohnet, 2010).

Chapter 3

Polish Dependency Annotation
Schema

In this chapter we define a dependency annotation schema adjusted to the linguistic
characteristics of Polish. The schema is not equivalent to any comprehensive Polish
dependency grammar description and it is not defined with the aim of underlying any
grammar-based Polish dependency parser. It is rather a set of annotation constraints
imposed on domination (or dependency) relations in Polish sentences.1 However, as one
solution that could meet all problematic cases could not always be found, the schema
constitutes a kind of compromise and it will be improved and expanded if it is necessary.

The chapter starts with some background information underlying the design of the Pol-
ish dependency annotation schema (see Section 3.1 Foundations). In the main part of
the chapter, we characterise dependency relation types which are used to annotate Polish
sentences (see Section 3.2 Polish Dependency Relation Types). Finally, an overview of
existing annotation schemata which influenced the definition of the Polish dependency
annotation schema is given in Section 3.3 Syntactic Annotation Schemata: Related Work.

3.1 Foundations

The annotation schema is designed to cover primary linguistic phenomena existing in
common Polish sentences and described in the linguistic literature. The proposed schema
is primarily based on theoretical works by Mel’čuk (Mel’čuk, 1988; Polguére and Mel’čuk,
2009) and åwidziÒski (1989). It also applies the annotation proposals by ObrÍbski (2002)
and by the authors of the Prague Dependency Treebank (PDT, Hajič, 1998; Böhmová
1Note that coreference relations are not treated as dependencies in the following description.

23

24 Chapter 3. Polish Dependency Annotation Schema

et al., 2003).2 The Polish dependency annotation schema bears a debt to Lexical Func-
tional Grammar (Bresnan, 2001; Dalrymple, 2001; Falk, 2001), especially to the set of
grammatical functions defined in this formalism. For a theoretical explanation of some
Polish phenomena, we refer to Saloni and åwidziÒski (2011) and Saloni (2010).

The Polish dependency annotation schema aims to annotate Polish sentences with accu-
rate and high-coverage labelled dependency trees that provide a transparent and artic-
ulated account of the predicate-argument structure. The schema primarily covers syn-
tactic phenomena, but also phenomena which have a morphological background (e.g.,
a relation between two tokens zrobili- and -úmy which constitute the word zrobiliúmy,
Eng. ‘do’

praet.pl.pri

), or a semantic or idiomatic background (e.g., relations between ele-
ments of multiword expressions). Even if dependency trees represent syntactic-like ana-
lyses of sentences, they may contain semantically oriented relations in which a content
word dominates a function word (e.g., a main verb dominates an auxiliary verb or
the sentence predicate of a subordinate clause dominates a complementiser). The se-
mantically oriented schema enables annotation of dependencies that may be useful in
the future semantic processing.

The schema is designed for annotating naturally occurring sentences with dependency
structures. Acquired dependency structures may then be employed to train dependency
parsers using publicly available dependency parsing systems. Hence, the schema con-
straints should comply with the formal constraints imposed by these parsing systems,
e.g., in terms of data encoding. Constraints of the parsing systems imply that depen-
dency relations represented as directed edges in a tree connect lexical nodes which are
equivalent to tokens in a sentence. Additional nodes corresponding to empty tokens (e.g.,
in ellipsis or for pro-drop pronouns) are not possible.

Dependency trees are encoded in the column-based CoNLL format (Buchholz and Marsi,
2006) which allows to include only a limited amount of information. We use eight out
of ten columns of the CoNLL format to encode dependency trees:3 ID (an integer token
identifier), FORM (a token – a word form or a punctuation symbol), LEMMA (the lemma
of the token), CPOSTAG (the coarse-grained part of speech tag of the token), POSTAG
2An informative overview of Polish dependency types is presented in Derwojedowa (2011, Appendix A,

pp. 175Ä.). Many of these dependency types correspond to dependency relations distinguished in our an-
notation schema. However, we do not adapt Derwojedowa’s convention of labelling dependency relations,
because it is not suÖciently homogeneous for our purposes. For example, the dependency relation be-
tween a preposition and its nominal dependent is labelled with prep (prepositional dependency, Pol. za-
leønoúÊ przyimkowa) derived from the governing preposition, while the dependency relation between
a noun functioning as the subject and its governing verb is labelled with subj (subjective dependency,
Pol. zaleønoúÊ podmiotowa) derived from the function of the dependent. Labels of dependency relations
distinguished in our annotation schema are uniformly derived from grammatical functions fulfilled by
dependents.
3The last two columns of the CoNLL format contain information about projective versions of encoded

trees: an ID of the projective head of the token (PHEAD) and a label of the dependency relation governed
by the PHEAD (PDEPREL). A dependency structure resulting from the PHEAD column is guaranteed to be
projective. However, as Polish allows non-projective dependency structures that do not have any correct
projective alternatives, these two columns are not filled with data.

3.2. Polish Dependency Relation Types 25

(the fine-grained part of speech tag of the token), FEATS (the set of morphosyntac-
tic features of the token separated by vertical bars), HEAD (the ID of the governor of
the token) and DEPREL (the label of the dependency relation governed by the HEAD). If
a value is not available (e.g., noninflected words do not have morphological features),
an underscore is used as a default value.

The dependency schema assumes that sentences (also clauses or phrases) are annotated
with well-formed dependency trees as described in Section 2.3 Dependency Structure and
labelled with grammatical functions presented in the following section 3.2.

3.2 Polish Dependency Relation Types

In order to cover various language-specific syntactic phenomena and to annotate sen-
tences with the correct dependency structures, precise definitions of dependency relation
types are crucial. A list of valid Polish dependency relations is established based on lin-
guistic literature, syntactic descriptions of Polish and annotation solutions proposed
for other languages. The distinguished dependency relations are assigned grammatical
functions fulfilled by dependents of these relations. In this dissertation, we identify de-
pendency relations with grammatical functions assigned to them. Dependency relations
are distinguishable by the features of related tokens. While defining individual depen-
dency relation types, we take into account morphosyntactic, topological, thematic, and
alternation criteria.

In highly inflected languages, morphological marking has an impact on the identifi-
cation of grammatical functions. Morphological features of a depending lexical item
usually either agree with features of the governor or are required by the governor. How-
ever, dependency relations may not be solely identified by means of morphology. For
example, grammatical functions of accusative nouns tydzieÒ (Eng. ‘a week’) functioning
as the adjunct of duration in the sentence Pi≥ tydzieÒ. (Eng. ‘He drank for a week.’)
and wodÍ (Eng. ‘water’) functioning as the object in Pi≥ wodÍ. (Eng. ‘He drank wa-
ter.’) may not be distinguished at the morphological level. Topological clues may also
be useful to identify grammatical functions. The linear position of a dependent may
result from the governor position, e.g., the complement of a preposition usually follows
this preposition. Thematic and argument-structure alternation criteria, which support
morphological and topological criteria, contribute to the definition of some grammatical
functions, especially those with the argument status. A thematic role (e.g., Agent, Pa-
tient, Theme, Beneficiary, Recipient or Instrument) constitutes a semantically oriented
indication for defining a grammatical function, assuming that syntactic and semantic
levels of the relation correspond with each other. Thematic roles are particularly useful
for distinguishing between direct objects and thematically restricted objects.

26 Chapter 3. Polish Dependency Annotation Schema

As mentioned above, dependency relations are identified with their labels equivalent
to grammatical functions borne by dependents. Some grammatical functions (e.g., sub-
ject, object, adjunct) are commonly shared by various languages and various annotation
schemata. However, even if a lot of dependency theories rely on the notion of a syntac-
tic function, they avoid defining precisely individual grammatical properties of common
grammatical functions. This is due to the fact that bearing grammatical functions by
diÄerent lexical items (or phrases) is a language-specific property. Hence, an inventory of
distinct grammatical functions associated with dependency relations should be defined
individually for each language or at least group of languages.

In the further course of this chapter we present a repertoire of dependency relations
identified by their labels. Our review of dependency relation types starts with the pre-
sentation of relations between governors and their arguments. It is followed by the de-
scription of non-argument relations. This overview closes with the treatment of relations
in coordinating constructions. Dependency relation types are listed alphabetically within
the distinguished subgroups.

3.2.1 Arguments

The group of arguments consists of subjects subcategorised by predicates and diÄerent
complements required by predicates, prepositions, adjectives, numerals, etc. Convention-
ally, each argument type can occur only once as a dependent of a governor. However, it
is possible that a predicate subcategorises more then one thematically restricted object.
In this case, all objects must be associated with diÄerent semantic roles.

comp (complement)
The syntactically obligatory comp argument may be required by diÄerently realised
governors and may have diverse surface realisations – adjectival, adverbial, nominal or
prepositional phrases.

• An adjectival complement may be governed by a verb (see Figure 3.1) or
a preposition (see Figure 3.2).

root Eliksir uczyni≥ go silnym.
Potion

sg.nom

make
praet.sg.m

he
sg.acc

strong
adj.sg.inst.m

pred
subj obj

comp

Figure 3.1: A dependency structure of the sentence Eliksir uczyni≥ go silnym.
(Eng. ‘The potion made him strong.’).

3.2. Polish Dependency Relation Types 27

root Piotr wyglπda na mi≥ego.
Piotr

sg.nom

seem
praet.sg.m on nice

sg.acc

pred
subj comp

comp

Figure 3.2: A dependency structure of the sentence Piotr wyglπda na mi≥ego.
(Eng. ‘Piotr seems to be nice.’).

• An adverbial complement may be governed by a verb (see Figure 3.3) or
a preposition (see Figure 3.4).

root

Zeskoczy≥ skπdú i z≥ama≥ nogÍ.
jump down

sg.m from somewhere and break
sg.m

leg
sg.acc

comp

conjunct obj

pred
conjunct

Figure 3.3: A dependency structure of the sentence Zeskoczy≥ skπdú i z≥ama≥ nogÍ.
(Eng. ‘He jumped down from somewhere and broke his leg.’).

root

Rozpoczπ≥ øycie na nowo.
begin

praet.sg.m

life
sg.acc on anew

adv

pred obj
comp

comp

Figure 3.4: A dependency structure of the sentence Rozpoczπ≥ øycie na nowo. (Eng. ‘He
began a new life.’).

• A nominal complement, in turn, may be governed by an adjective (see przeciwny
globalizacji in Figure 3.5), a preposition (see Od lat in Figure 3.5) or a numeral.
Numerals are annotated as governors of depending noun phrases, even if this re-
sults in a non-projective dependency tree (see Figure 3.6). Saloni and åwidziÒski
(2011) argue for treating numerals as heads in Polish numeral phrases since it is
the numeral that is governed by the verb form and not the noun. The case of
the depending noun phrase, in turn, either agrees with the case of the governing
numeral (dative, instrumental or locative) or is determined as genitive if the nu-
meral is marked for nominative, accusative, vocative or genitive. On the other
hand, the depending noun phrase imposes the gender on the governing numeral.
Due to this fact, the morphological dependency relation between the two elements

28 Chapter 3. Polish Dependency Annotation Schema

of a numeral phrase (numeral and noun phrase) is bilateral (Mel’čuk, 1988, p. 109).
Nevertheless, we carry on the Polish tradition of analysing numeral expressions and
annotate numerals as governors of depending noun phrases.

root Od lat jest przeciwny globalizacji.
for year

pl.gen

be
fin.sg.ter

against
adj.nom

globalisation
sg.dat

adjunct

comp

comp comp

pred

Figure 3.5: A dependency structure of the sentence Od lat jest przeciwny globalizacji.
(Eng. ‘He has been against the globalisation for years.’).

root Wniosków jest raptem kilka.
Applications

pl.gen

be
fin.sg.ter

barely a few
pl.nom

pred
adjunct

subj

comp

Figure 3.6: A non-projective dependency structure of the sentence Wniosków jest
raptem kilka. (Eng. ‘There are barely a few applications.’).

• An obligatory prepositional complement may be governed by a verb form
(see Czekajπc na in Figure 3.7) or an adjective (see zdolny do in Figure 3.7).
Similarly as in many other languages, semantically and idiosyncratically marked
prepositional complements may be distinguished in Polish. In the case of seman-
tically marked prepositional complements, the preposition expresses its thematic
role, e.g., mieszkaÊ w Paryøu/na statku/pod mostem (Eng. ‘to live in Paris/on
a ship/under a bridge’). In the case of idiosyncratically marked prepositional com-
plements, the form of a preposition is lexically specified by the governing predicate.
The prepositional complement is required to bear a particular form unrelated to
the semantic role of the argument, e.g., czekaÊ na pociπg/na odpowiedü (Eng. ‘to
wait for a train/an answer’). The current annotation schema does not distinguish
between these two types of prepositional complements since it is not essential for
annotating dependency structures.

3.2. Polish Dependency Relation Types 29

root

Czekajπc na úmierÊ by≥ zdolny do wszystkiego.
waiting

pcon for deathsg.acc be
praet.sg.m

capable
sg.nom.m of anything

adjunct

comp comp pd comp

comp

pred

Figure 3.7: A dependency structure of the sentence Czekajπc na úmierÊ by≥ zdolny do
wszystkiego. (Eng. ‘Waiting for death, he was capable of anything.’).

comp ag (agentive complement in passive)
The comp ag complement is a demoted subject which is realised as a przez -prepositional
phrase in passive sentences. The comp ag argument is governed by a passive adjective
participle (see Figure 3.8).

root Zamek nawiedzony przez duchy
castle

sg.nom

haunted
ppas.sg.nom

by ghosts
pl.acc

pred
subj comp ag

comp

Figure 3.8: A dependency structure of the noun phrase Zamek nawiedzony przez duchy
(Eng. ‘A haunted castle’).

comp fin (clausal complement)
The comp fin function is borne by a closed complement clause4 (declarative, interrog-
ative, or exclamatory) with an internal subject that may be realised as a pro-drop
pronoun. The comp fin argument may be governed by a predicate of a superordinate
clause (see Figure 3.9), a subordinating conjunction (see Figure 3.10) or a noun (see Fig-
ure 3.11). A possible interrogative word (pronoun, conjunction, particle) at the beginning
of an interrogative clause bears a grammatical function determined by the predicate of
this clause (e.g., the interrogative particle co in Figure 3.11 is the subject of the predicate
dzia≥o).

root

PamiÍtasz, øe to ja stawiam ?
remember

fin.sg.sec

that it I
sg.nom

pay for
fin.sg.pri

pred punctadjunct
complm

subj

comp fin

Figure 3.9: A dependency structure of the sentence PamiÍtasz, øe to ja stawiam?
(Eng. ‘Do you remember that this is on me?’).

4A closed complement clause is a subordinate clause with an internal subject.

30 Chapter 3. Polish Dependency Annotation Schema

root

Zaúpiewa≥, poniewaø go poproszono.
sing

praet.sg.m because he
sg.acc.m

ask for
imps.perf

comp fin

obj
pred adjunct

Figure 3.10: A dependency structure of the sentence Zaúpiewa≥, poniewaø go
poproszono. (Eng. ‘He sang because he was asked to.’).

root

Pytanie, co siÍ z niπ dzia≥o.
question

sg.nom what refl to her
sg.inst

happen
praet.sg

pred

comp fin

comp
comp

refl
subj

Figure 3.11: A dependency structure of the noun phrase Pytanie, co siÍ z niπ dzia≥o.
(Eng. ‘The question what happened to her.’).

comp inf (infinitival clausal complement)
The comp inf function fulfilled by an infinitival clausal complement (non-finite subordi-
nate clause) may be governed by an adjective (see Figure 3.12), a noun (see Figure 3.13)
or a verb. Some control verbs, e.g., kazaÊ (Eng. ‘to order, to tell’), chcieÊ (Eng. ‘to
want’) (see Figure 3.14) or some quasi-verbs (see Figure 3.15) may require the comp inf
complement. Polish distinguishes between proper and quasi-verbs, e.g., brak (Eng. ‘to
miss, to fail, to lose’), grzmi (Eng. ‘it’s thundering’), moøna (Eng. ‘it’s allowed’), naleøy
(Eng. ‘it’s necessary, should’), szkoda (Eng. ‘it’s pointless’), trzeba (Eng. ‘it’s necessary,
should’), warto (Eng. ‘it’s worth’), wiadomo (Eng. ‘it’s known’), wolno (Eng. ‘might,
must’). Quasi-verbs do not inflect by number, person or gender, but they are marked for
mood and tense, e.g., bÍdzie trzeba (Eng. ‘it will be necessary), by≥oby warto (Eng. ‘it
would be worth’).

root Jestem gotowy (øeby) wystartowaÊ w wyborach.
be

fin.sg.pri

ready
sg.nom

(that) to run in election
pl.loc

pred pd comp compcomplm
comp inf

Figure 3.12: A dependency structure of the sentence Jestem gotowy wystartowaÊ w
wyborach. (Eng. ‘I’m ready to run in the election.’).

3.2. Polish Dependency Relation Types 31

root Mam prawo øyÊ.
have

fin.sg.pri

right
sg.acc

to live
inf

pred
obj th

comp inf

Figure 3.13: A dependency structure of the sentence Mam prawo øyÊ. (Eng. ‘I have
a right to live.’).

root Chcia≥ wygraÊ.
want

praet.sg.m

to win
pref

obj th
comp inf

Figure 3.14: A dependency structure of the sentence Chcia≥ wygraÊ. (Eng. ‘He wanted
to win.’).

root

Naleøy odpowiadaÊ za swoje czyny.
it’s necessary to take responsibility for own

pl.acc

actions
acc

pred
comp inf

adjunct
comp comp

Figure 3.15: A dependency structure of the sentence Naleøy odpowiadaÊ za swoje
czyny. (Eng. ‘One should take responsibility for one’s actions.’).

obj (direct object)
The obj argument subcategorised by a sentence predicate may be realised as a noun/nu-
meral phrase marked for accusative, genitive, instrumental or even dative (see Fig-
ure 3.16), or as a finite clause. The principal property of the obj argument is its ability
to transform into the subject in passive constructions (see Figure 3.17). This feature
distinguishes the obj argument from other arguments of a verb realised as nouns with
the obj th function or as closed complement clauses with the comp fin function.

root

Hipoglikemia zagrozi≥a pracy mózgu.
hypoglycemia

sg.nom

threaten
praet.sg.f

work
sg.dat

brain
sg.gen

adjunctobj

subj
pred

Figure 3.16: A dependency structure of the sentence Hipoglikemia zagrozi≥a pracy
mózgu. (Eng. ‘Hypoglycemia threatened the brain function.’).

32 Chapter 3. Polish Dependency Annotation Schema

root Praca mózgu zosta≥a zagroøona przez hipoglikemiÍ.
work

nom

brain
nom

be
praet.f

threaten
ppas.nom.f

by hypoglycemia
acc

adjunct aux
comp ag

comp

pred
subj

Figure 3.17: A dependency structure of the sentence Praca mózgu zosta≥a zagroøona
przez hipoglikemiÍ. (Eng. ‘The brain was threatened by hypoglycemia’).

obj th (thematically restricted object)
A nominal obj th argument is subcategorised by a sentence predicate. The obj th argu-
ment may be marked for diÄerent cases, e.g., dative and instrumental in Figure 3.18,
except for locative which is reserved for nominal complements of prepositions. The obj th
function is thematically restricted, i.e., it is restricted to a particular thematic or se-
mantic role, as indicated by the th symbol. Thematically restricted objects bear various
semantic roles in Polish, e.g., Location, Instrument, Goal, Recipient or Experiencer. For
example, the token Ani in the sentence Da≥ Ani kwiaty. (Eng. ‘He gave Ania some flow-
ers.’) fulfils the obj Recipient function, which is a member of the group of thematically
restricted obj th functions with the semantic role Recipient.

Some verbs subcategorise multiple thematically restricted objects which diÄer in their
semantic roles. Hence, a particular thematically restricted object (e.g., obj Recipient)
can occur only once as an argument of a predicate. In Figure 3.18, there are two nouns
fulfilling the obj th function. The first one rodzicom bears the semantic role of Recipi-
ent/Experiencer, and the second one piπtkπ bears the Theme role. However, it should
be noted that thematically restricted objects are distinguished by their thematic roles
only theoretically. In practice, all relations in which dependents function as thematically
restricted objects are labelled with the obj th function. Therefore, two obj th arguments
of the predicate pochwali≥ are displayed in Figure 3.18.

root Pochwali≥ siÍ rodzicom piπtkπ.
boast

praet.sg.ter refl

parents
pl.dat

five
sg.inst

pred refl
obj th

obj th

Figure 3.18: A dependency structure of the sentence Pochwali≥ siÍ rodzicom piπtkπ.
(Eng. ‘He boasted about the grade 5 to his parents.’).

Morphological criteria are insuÖcient to distinguish thematically restricted objects obj th
from direct objects obj. Instead, an alternation criterion is applied – a thematically
restricted object cannot be promoted to the subject during passivisation. Furthermore,

3.2. Polish Dependency Relation Types 33

obj th may be realised optionally in some cases, even if it is not required by the sentence
predicate, e.g., opowiadaÊ (dzieciom) bajkÍ (Eng. ‘to tell (the children) a story’).

pd (predicative complement)
Any element (verbal or small clause, adjective phrase, noun phrase, etc.) in the pred-
icative position in a sentence is annotated with the predicative complement function pd.
The pd argument may be governed by a form of the copula verb byÊ (Eng. ‘to be’) (see
Figure 3.19) or copula-like verbs, e.g., staÊ siÍ (Eng. ‘to become’).

root

Bycie nauczycielem nie jest proste.
being

ger.sg.nom

teacher
sg.inst not be

fin.sg.ter

easy
sg.nom

pred
subj

pd

pdneg

Figure 3.19: A dependency structure of the sentence Bycie nauczycielem nie jest
proste. (Eng. ‘It is not easy to be a teacher.’).

subj (subject)
The subj argument is subcategorised by the sentence predicate. If subj takes the form of
a nominative phrase, it must morphologically agree with the predicate in person, number
and gender. If it takes the form of a phrase marked for case other than nominative,
the predicate is represented as a 3rd person singular verb form marked for the neuter
gender. The subj function may also be fulfilled by a sentential clause or an infinitival
phrase. Furthermore, the Polish subject can take the form of an elliptic pro-drop pronoun
pro. The pronoun pro is not encoded in a dependency structure since the dependency
structure consists of nodes that correspond to tokens of a sentence and additional nodes
except for the root node are not allowed. In contrast to other complements governed by
a predicate, subj is responsible for binding anaphoric expressions (reflexive and reciprocal
pronouns) and controls adverbial participles in Polish.

root Ja nic nie widzÍ.
I
sg.nom

nothing
sg.acc not see

fin.sg.pri

pred

obj
subj

neg

Figure 3.20: A dependency structure of the sentence Ja nic nie widzÍ. (Eng. ‘I do not
see anything.’)

34 Chapter 3. Polish Dependency Annotation Schema

3.2.2 Syntactically Motivated Non-arguments

abbrev punct (abbreviation marker)
A full stop with the abbrev punct function depends on the immediately preceding ab-
breviation (see Figure 3.21). However, if a sentence ends with an abbreviation marker,
this marker is annotated with the punct function.

root Zabra≥ ponad 30 tys . z≥ .
take

sg.ter over 30
acc

thousand
gen . PLN

gen .

pred mweadjunct
obj

abbrev punct

comp

punct

Figure 3.21: A dependency structure of the sentence Zabra≥ ponad 30 tys. z≥. (Eng. ‘He
took more than PLN 30,000.’)

adjunct

An adjunct is a non-subcategorised dependent with a modifying function. Multiple ad-
juncts may depend on the same governor. Adjuncts have various surface realisations:

• an adjective depending on a numeral or a noun (e.g., Radosne przedszkolaki in
Figure 3.22),

• an adverb depending on an adjective, another adverb, a preposition or a verb form
(e.g., g≥oúno úpiewajπc in Figure 3.22),

• a past or present adverbial participle depending on a verb form (e.g., sz≥y úpiewa-
jπc in Figure 3.22),

root Radosne przedszkolaki sz≥y g≥oúno úpiewajπc.
joyful

pl.nom

preschooler
pl.nom

go
praet.pl

loudly singing
pcon

subjadjunct

adjunct

adjunct

pred

Figure 3.22: A dependency structure of the sentence Radosne przedszkolaki sz≥y g≥oúno
úpiewajπc. (Eng. ‘Some joyful preschoolers went singing loudly.’).

• an attributive noun which is marked for genitive and depends on a noun (e.g.,
dziele sztuki in Figure 3.23),

3.2. Polish Dependency Relation Types 35

• a noun with a temporal, locative, etc., meaning that depends on a verb (e.g.,
Myúla≥ godzinami in Figure 3.23),

• an active or passive adjectival participle depending on a noun (e.g.,
znienawidzonym dziele sztuki in Figure 3.23),

root

Myúla≥ godzinami o znienawidzonym dziele sztuki.
think

praet.sg.m

for hours
inst

about hated
ppas.sg.loc

work
loc

art
gen

pred
adjunct

adjunct

comp

adjunct

comp

Figure 3.23: A dependency structure of the sentence Myúla≥ godzinami o znienawid-
zonym dziele sztuki. (Eng. ‘He thought about the hated artwork for hours.’).

• a symbol (e.g., number, letter) depending on a noun (e.g., punkt 5 in Figure 3.24),

• a prepositional phrase depending on a noun, a verb, an adverb or a participle
(e.g., punkt o zabytkach in Figure 3.24),

• the question particle (czy) depending on a verb (e.g., Czy znasz in Figure 3.24),

root

Czy znasz punkt 5 o zabytkach?.
do know

fin.sec

section
sg.acc 5 about monuments

loc

adjunct

adjunct

pred obj
adjunct

comp

Figure 3.24: A dependency structure of the sentence Czy znasz punkt 5 o zabytkach?
(Eng. ‘Do you know the section 5 about monuments?’).

• a conditional subordinate clause that depends on the sentence predicate of a su-
perordinate clause (see Figure 3.25),

root

Polecisz, jeúli kupisz bilet.
fly

fin.sg.sec

if buy
fin.sg.sec

ticket
sg.acc

adjunctpred comp fin
obj

Figure 3.25: A dependency structure of the sentence Polecisz, jeúli kupisz bilet.
(Eng. ‘You will fly if you buy a ticket.’).

36 Chapter 3. Polish Dependency Annotation Schema

• a subordinate clause with a governor represented by a verb form (see Figure 3.26),
a numeral or a noun (see Figure 3.27),5 etc.

root Poniewaø podejrzany siÍ nie zatrzyma≥, policjant strzeli≥.
because suspect

nom

refl not stoppraet.sg policeman
nom

shoot
praet.sg

subj

comp fin

refl
subj

adjunct

neg

pred

Figure 3.26: A dependency structure of the sentence Poniewaø podejrzany siÍ nie
zatrzyna≥, policjant strzeli≥. (Eng. ‘Since the suspect didn’t stop, the policeman shot.’).

root

Pomaga ludziom, którzy sπ w potrzebie.
help

fin.sg.ter

people
pl.dat

who
pl.nom

be
fin.pl.ter

in need
sg.loc

pred
obj th

adjunct

subj comp comp

Figure 3.27: A dependency structure of the sentence Pomaga ludziom, którzy sπ w
potrzebie. (Eng. ‘He helps people who are in need.’).

adjunct qt (quotation adjunct)
Direct speech sentences are annotated as quotation adjuncts adjunct qt (see Figure 3.28).

root Powiedzia≥ : “ Pomóø mi ! ” .
say

praet.sg.ter : “ help
impt.sg.sec

me
sg.dat

! ” .

pred punct punct
punctobj th

punct
adjunct qt

punct

punct

Figure 3.28: A dependency structure of the sentence Powiedzia≥: “Pomóø mi!”
(Eng. ‘He said: “Help me!”’).

5Relative clauses modifying noun phrases are analysed similarly in ObrÍbski (2002).

3.2. Polish Dependency Relation Types 37

app (apposition)
An apposition must refer to the same entity as its governor. In Polish, the app function
is most commonly fulfilled by a noun phrase depending on the immediately preceding
noun (see Figure 3.29) or as the second noun of a noun-noun compound that depends
on the first one (e.g., straøak-ratownik, Eng. ‘fireman-rescuer’).

root

ProszÍ o zabranie g≥osu pos≥a Nowaka.
ask

fin.sg.pri

for taking
ger.sg.acc

voice
gen

representative
acc

Nowak
acc

pred comp comp
obj app

obj

Figure 3.29: A dependency structure of the sentence ProszÍ o zabranie g≥osu pos≥a
Nowaka. (Eng. ‘May I ask the representative Nowak for taking the floor.’).

complm (complementiser)
A complementiser, e.g., øe, iø (Eng. ‘that’), øeby, aby, by (Eng. ‘so as to’) fulfils the com-
plm function. A complementiser introducing a complement clause depends on the predi-
cate of this clause (see Figure 3.30). In some contexts, a complementiser may be realised
optionally (see Figure 3.12 on p. 30).

root

Wiem, øe Monice pomoøe brat.
know

fin.sg.pri

that Monika
sg.dat

help
fin.sg.ter

brother
sg.nom

pred subjobj th
complm

comp fin

Figure 3.30: A dependency structure of the sentence Wiem, øe Monice pomoøe brat.
(Eng. ‘I know that the brother will help Monika.’).

imp (imperative marker)
The particles niech, niechaj, niechøe or niechajøe (Eng. ‘let, may’) fulfil the imp function.
They depend either on a future verb form in the case of perfective verbs (e.g., niech
zaúpiewa, Eng. ‘let him sing

perf

’) and the verb byÊ (Eng. ‘to be’), or on a present verb
form in the case of imperfective verbs (e.g., niech úpiewa, Eng. ‘let him sing

imperf

’).
An example of the analytical imperative construction is given in Figure 3.31.

root Niech Moc bÍdzie z tobπ!
may force

sg.nom

be
bedzie.sg.ter

with you
sg.inst

comp

pred

compsubj
imp

Figure 3.31: A dependency structure of the sentence Niech Moc bÍdzie z tobπ!
(Eng. ‘May the force be with you!’).

38 Chapter 3. Polish Dependency Annotation Schema

item (enumeration marker)
Symbols (e.g., numbers, letters, shapes or bars), which appear at the beginning of a sen-
tence or a phrase, mark individual items on a list. Various enumeration markers depend
on the predicate and are labelled with the item function (see Figure 3.32).

root 1 WstÍp
1 Introduction

sg.nom

pred
item

Figure 3.32: A dependency structure of the item of a content list 1 WstÍp
(Eng. ‘1 Introduction’).

pred (sentence predicate or nominal predicate)
The pred function is usually fulfilled by a sentence predicate realised as a finite verb,
a -no/-to-impersonal, a quasi-verb, an infinitive, a passive adjective participle or an im-
perative. In the case of non-sentential segments, the pred function may be borne by
the head noun of a noun phrase or almost every constituent in other phrase types.
A token with the pred function always depends on the root node (see Figure 3.33).
A sentence predicate governs a restricted number of arguments and a theoretically un-
limited number of adjuncts. If a nominal dependent of a sentence predicate is marked for
nominative and fulfils the subj function, it agrees with the sentence predicate in person,
number and gender.

root Da≥ jej kwiaty.
give

praet.sg.ter

she
sg.dat

flowers
pl.acc

pred

obj th
obj

Figure 3.33: A dependency structure of the sentence Da≥ jej kwiaty. (Eng. ‘He gave
her some flowers.’).

punct (punctuation mark)
The punct type represented by a punctuation mark (e.g., .,:;?!()”-) depends on the ele-
ment which is delimited by this punctuation mark (see Figures 3.21 on p. 34, 3.28 on
p. 36, and 3.34).

root Chcesz kawÍ ?
want

fin.sg.sec

coÄee
sg.acc ?

pred obj
punct

Figure 3.34: A dependency structure of the sentence Chcesz kawÍ? (Eng. ‘Do you
want a cup of coÄee?’).

3.2. Polish Dependency Relation Types 39

refl (reflexive marker)
The particle siÍ fulfils the refl function in Polish. The reflexive marker depends on
a verb with the reflexive meaning (see Figure 3.35) or with the reciprocal meaning (see
Figure 3.36), on a verb in impersonal constructions (see Figure 3.37), etc.

root Janek kπpie siÍ w lodowatej wodzie.
Janek

nom

wash
fin.sg

himself in icy
sg.loc

water
loc

pred
subj refl adjunct

adjunct comp

Figure 3.35: A dependency structure of the sentence Janek kπpie siÍ w lodowatej
wodzie. (Eng. ‘Janek washes himself in the icy water.’).

root Ania i Tomek ca≥ujπ siÍ w samochodzie.
Ania

nom

and Tomek
nom

kiss
fin.pl

each other in car
loc

conjunct conjunct

subj

refl

adjunct

comp

pred

Figure 3.36: A dependency structure of the sentence Ania i Tomek ca≥ujπ siÍ w samo-
chodzie. (Eng. ‘Ania and Tomek are kissing in a car.’).

root

SkórkÍ zostawia siÍ na talerzu.
peel

sg.acc

leave
fin.sg

refl on plate
sg.loc

pred
obj

refl

comp
comp

Figure 3.37: A dependency structure of the sentence SkórkÍ zostawia siÍ na talerzu.
(Eng. ‘Peel should be left on the plate.’)

3.2.3 Morphologically Motivated Non-arguments

aglt (mobile inflection)
A mobile aÖx, the so-called mobile inflection, fulfils the aglt function. The mobile inflec-
tion is an agglutinate/clitic form marked for number and person. It is a characteristic
feature of the mobile inflection that it may appear in diÄerent positions within a clause.
The mobile inflection is predominantly appended to a verb (e.g.,Wygraliúmy., Eng. ‘We
won.’). It may also be appended to an adverb (e.g., D≥ugoúmy czekali., Eng. ‘We have
been waiting for a long time.’), a complementiser (e.g., ChcÍ, øebyúmy wygrali., Eng. ‘I
want us to win.’), a pronoun (e.g., Myúmy to s≥yszeli., Eng. ‘We heard it.’), etc., which

40 Chapter 3. Polish Dependency Annotation Schema

precede the verb that is grammatically complemented by the mobile inflection. The mo-
bile inflection syntactically depends on a finite verb (see Figure 3.51 on p. 46) or a con-
ditional clitic by appended to a verb (see Figure 3.38).

root

Walnπ≥- -by- -ú go rÍkπ?
hit

praet.sg. would be
aglt.sg.sec

him
sg.acc

hand
sg.inst

pred
aglt

cond
obj
adjunct

Figure 3.38: A dependency structure of the sentenceWalnπ≥byú go rÍkπ? (Eng. ‘Would
you hit him with your hand?’).

aux (auxiliary verb)
The aux function is realised as a conjugated form of the auxiliary verbs byÊ or zostaÊ
(Eng. ‘to be’, ‘to become’) which bear morphosyntactic features. As the annotation
schema is semantically oriented, an auxiliary verb depends on the main verb form (par-
ticiple, infinitive) in analytical future tense6 constructions (see Figure 3.39), analytical
past conditional7 constructions (see Figure 3.40), analytical quasi-verb constructions
(see Figure 3.41) or passive constructions (see Figure 3.42).

root

PrzestÍpca bÍdzie odpowiadaÊ za swoje czyny.
criminal

sg.nom

be
sg.ter

to face charges for his
pl.acc

actions
acc

comp adj
compsubj

pred

aux

Figure 3.39: A dependency structure of the sentence PrzestÍpca bÍdzie odpowiadaÊ za
swoje czyny. (Eng. ‘The criminal will face charges for his actions.’).

root

By≥- -by upad≥.
be

praet.sg.ter would fall
praet.sg.ter

pred

cond
aux

Figure 3.40: A dependency structure of the sentence By≥by upad≥. (Eng. ‘He would
have fallen.’).

6The future tense form of an imperfect verb is built of the conjugated future form of the auxiliary
verb byÊ (Eng. ‘to be’) combined either with a past participle (e.g., BÍdzie úpiewa≥., Eng. ‘He will sing.’)
or with an infinitive (e.g., BÍdzie úpiewaÊ., Eng. ‘He will sing.’) of the main verb.
7The past conditional verb form is built of the conditional form of the auxiliary verb byÊ combined

with the past participle of the main verb (e.g., By≥abym upad≥a., Eng. ‘I would have collapsed.’).

3.2. Polish Dependency Relation Types 41

root

BÍdzie trzeba wzmocniÊ pozycjÍ ekonomicznπ.
it will be necessary to strengthen position

acc

economic
acc

pred
aux

comp inf obj adjunct

Figure 3.41: A dependency structure of the sentence Trzeba bÍdzie wzmocniÊ pozycjÍ
ekonomicznπ. (Eng. ‘It is necessary to strengthen the economic position.’).

root åledztwo zosta≥o umorzone.
investigation

nom

be3.sg.past discontinued
ppas

pred
subj

aux

Figure 3.42: A dependency structure of the sentence åledztwo zosta≥o umorzone.
(Eng. ‘The investigation was discontinued.’).

cond (conditional clitic)
The particle by bearing the cond function underlines the conditional modality of a sen-
tence. The conditional particle may depend on a verb form in the past tense and third
person singular or plural (e.g., úpiewa≥by, Eng. ‘he would sing’, zaúpiewaliby, Eng. ‘they
would sing’, by≥by úpiewa≥, Eng. ‘he would have sung’), on an impersonal verb form (e.g.,
úpiewano by, Eng. ‘it would be sung’) or on a quasi-verb (e.g., moøna by úpiewaÊ, Eng. ‘it
could be sung’). The conditional particle may be appended to its governing verb form as
an enclitic or may appear anywhere in a sentence, subject to various island constraints
(see Figure 3.43). Regardless of its location, the conditional particle depends on a verb
form.

root To by siÍ nie uda≥o.
it
nom

would refl not succeed
praet.sg.n

pred

cond

subj

refl
neg

Figure 3.43: A dependency structure of the sentence To by siÍ nie uda≥o (Eng. ‘It
would not have succeeded.’).

42 Chapter 3. Polish Dependency Annotation Schema

neg (negation marker)
The negation marker nie (Eng. ‘not’) always fulfils the neg function. It is predominantly
governed by a subsequent verb, but it may also be governed by other constituents (see
nie Ola in Figure 3.44).

root Nie wiem, ale to nie Ola wygra≥a.
not know

fin.sg.pri

but it not Ola
nom

win
praet.sg.f

neg

conjunct
neg

subj

coord conjunct
adjunct

Figure 3.44: A dependency structure of the sentence Nie wiem, ale to nie Ola wygra≥a.
(Eng. ‘I don’t know, but it is not Ola who won.’).

3.2.4 Semantically Motivated Non-arguments

mwe (multiword expression)
Relations between successive tokens of a multiword expression are annotated with
the mwe function. The first token of a multiword expression governs the second token
which is, in turn, the governor of the next token, etc. The following token combinations
are annotated as multiword expressions:

• some prepositional-adjectival phrases, e.g., po prostu (Eng. ‘simply’), co gorsza
(Eng. ‘what is worse’),

• some prepositional-adverbial phrases, e.g., na zewnπtrz (Eng. ‘outside’), co naj-
mniej (Eng. ‘at least’),

• some adverbial-prepositional phrases,8 e.g., wraz z (Eng. ‘along with’), zgodnie z
(Eng. ‘in accordance with’) (see Figure 3.45),

• complex conjunctions, e.g., jak i (Eng. ‘and’), ale takøe (Eng. ‘but also’), mimo øe
(Eng. ‘although’), podczas gdy (Eng. ‘whereas’),

• adjective compounds, e.g., bia≥o-czerwona (Eng. ‘white-red’),

• compound numerals, e.g., tysiπc dwieúcie trzydzieúci cztery (Eng. ‘one thousand
two hundred thirty-four’), etc.

8Several combinations of adverbs and prepositions are regarded by Milewska (2003) as complex
prepositions (Pol. ‘przyimki wtórne’).

3.2. Polish Dependency Relation Types 43

root G≥osowaÊ bÍdziemy zgodnie z zasadami.
to vote be

bedzie.pl.pri

in accordance with rules
pl.inst

pred aux compmwe

adjunct

Figure 3.45: A dependency structure of the sentence G≥osowaÊ bÍdziemy zgodnie z
zasadami. (Eng. ‘We will vote in accordance with the rules.’).

ne (named entity)
Named entities are phrases that indicate expressions of time and names of persons, lo-
cations, and organisations. The limitation of named entities to these types is motivated
by the hierarchy of named entity types defined for Polish (Savary et al., 2012). Since
named entities may contain more than one token, i.e., they form a special kind of multi-
word expressions, relations between singular tokens of named entities are annotated with
the ne function. The successive tokens of a named entity are typically annotated accord-
ing to their linear order, e.g., the surname Nowaka depends on the forename Piotra in
Figure 3.46.

root

ProszÍ o zabranie g≥osu Piotra Nowaka.
ask

fin.sg.pri

for taking
sg.acc

voice
sg.gen

Piotr
sg.acc

Nowak
sg.acc

pred comp comp obj ne

obj

Figure 3.46: A dependency structure of the sentence ProszÍ o zabranie g≥osu Piotra
Nowaka. (Eng. ‘May I ask Piotr Nowak to take the floor.’).

3.2.5 Functions Used in Coordination Structure

There are various ways of representing coordination in dependency structures. Popel
et al. (2013) outline three main styles of annotating coordination structures in depen-
dency trees – Stanford style, Mel’čuk style and Prague style (see Figure 3.47). All de-
pendency treebanks adapt one of these styles or mix them to annotate coordinating
constructions.

Mel’čuk style Stanford style Prague style

X Conj Y X Conj Y X Conj Y

Figure 3.47: Annotation of coordinating constructions in various dependency anno-
tation schemata (taken from Täckström, 2013, p. 122).

44 Chapter 3. Polish Dependency Annotation Schema

In the Stanford style (de MarneÄe and Manning, 2008b,a), the leftmost conjunct is
treated as the head of coordinating conjunctions and other conjuncts, i.e., the first con-
junct governs remaining conjuncts and conjunctions. This annotation solution seems
to facilitate the parsing procedure, but it is inappropriate for representing some Polish
phenomena, e.g., argument sharing9 or grammatical agreement.10 In the Mel’čuk style
(Mel’čuk, 1988), elements of coordinating constructions (conjuncts and conjunctions)
are annotated linearly, i.e., the first coordinated conjunct is the governor of the entire
coordinating construction. Even if this annotation proposal seems to be applicable for
Polish, we apply the style of annotating coordinating constructions proposed by the de-
signers of the Prague Dependency Treebank (Böhmová et al., 2003). In the Prague style,
all conjuncts are annotated as dependents of the coordinating conjunction. Popel et al.
(2013) provide a number of good arguments for using the Prague style to annotate co-
ordinating constructions, e.g., a relatively simple annotation of modifiers or arguments
shared by all coordinated conjuncts.

The current schema determines the rightmost conjunction (or a punctuation mark that
substitutes a coordinating conjunction if the conjunction is absent) as the governor
of coordinated conjuncts. Possible arguments or adjuncts shared by all conjuncts are
annotated as dependents of the coordinating conjunction.

conjunct (coordinated conjunct)
Conjuncts of the same syntactic category or various categories depend on a coordinating
conjunction (see Figures 3.48 and 3.49) or a conjunction-like punctuation mark (see
Figure 3.51) in dependency structures.

root

Moøemy go obejrzeÊ, ale nie wolno fotografowaÊ.
can

fin.pl.pri

he
sg.acc to see but not it is allowed

pred

to take pictures

coord
conjunct

conjunctobj
comp inf

neg
comp inf

Figure 3.48: A dependency structure of the sentence Moøemy go obejrzeÊ, ale nie
wolno fotografowaÊ. (Eng. ‘We can see it, but it is not allowed to take pictures.’).

9In argument sharing, two or more coordinated verbs share the same argument. In the exam-
ple tree in Figure 3.49, the coordinated sentence predicates z≥apa≥ (Eng. ‘grab’

praet.sg.m

) and úcisnπ≥
(Eng. ‘press’

praet.sg.m

) require a subject argument and an object argument. In this sentence, only one
token Ch≥opak (Eng. ‘a boy’) is the subject (Agens) that initiates the two actions – grabbing and press-
ing. Furthermore, one token posπøek (Eng. ‘a statuette’) is the object (Patient) that is grabbed and
pressed. Hence, both arguments should be shared by the coordinated sentence predicate.
10In an example of grammatical agreement, the attributive adjective piÍkni in the coordinating con-
struction piÍkni kobiety i mÍøczyüni (Eng. ‘beautiful

pl.m

women
pl.f

and men
pl.m

’) modifies the entire
phrase kobiety i mÍøczyüni. It may not depend on the noun kobiety because of divergent grammatical
gender features. Polish nouns typically agree with their adjectival modifiers in case, number and gen-
der. In coordinating constructions, the masculine human gender (Pol. ‘rodzaj mÍski osobowy’) always
overrides gender features of other conjuncts.

3.2. Polish Dependency Relation Types 45

coord (coordinating conjunction)
A conjunction coordinating two sentences (see Figure 3.48) depends on the root node
and the relation is labelled with the coord function. Relations between the conjunction
and the predicates of coordinated sentences are labelled with the conjunct function.
However, if two or more predicates sharing the same subject are coordinated on the sen-
tential level, the relation between the root node and the coordinating conjunction is
labelled with the pred function. Furthermore, coordinated predicates are annotated as
dependents of the conjunction labelled with the conjunct function and the shared subject
(and possibly other shared arguments) is also annotated as the dependent of the coordi-
nating conjunction (see Figure 3.49). The conjunction coordinating elements other than
sentences/clauses, e.g., nouns or adjectives, is labelled with an appropriate syntactic
function (see comp in Figure 3.52).

root

Ch≥opak z≥apa≥ posπøek i úcisnπ≥ mocno.
boy

sg.nom

grab
sg.ter

statuette
sg.acc and press

sg.ter

tightly

pred

obj conjunct adjunct

conjunct
subj

Figure 3.49: A dependency structure of the sentence Ch≥opak z≥apa≥ posπøek i úcisnπ≥
mocno. (Eng. ‘The boy grabbed a statuette and pressed it tightly.’).

root

Po≥oøy≥ siÍ na ≥awce , podnieúli- -úmy go.
lay down

sg.ter himself on bench
loc

, picked up
pl

be
pl.pri

him
acc

aglt
obj

conjunctrefl
comp

comp

conjunct
coord punct

Figure 3.50: A dependency structure of the sentence Po≥oøy≥ siÍ na ≥awce, pod-
nieúliúmy go. (Eng. ‘He lay down on the bench, we picked him up.’)

coord punct (punctuation conjunction)
If no coordinating conjunction is used to coordinate two sentences, the punctuation
mark (e.g., comma, colon or hyphen) is used as a coordinating element (see Figure 3.50).
The punctuation mark with the coordinating status depends on the root node. Such re-
lation is labelled with the coord punct function. However, if there are two coordinated
predicates sharing the same subject (possibly a pro-drop pronoun), the relation between

46 Chapter 3. Polish Dependency Annotation Schema

the root node and the coordinating punctuation mark is labelled with the pred function
(see Figure 3.51).11

root Podnieúli- -úmy go , po≥oøyli na ≥awce.
pick up

praet.pl

be
pl.pri

him
acc

, put
praet.pl

on bench
loc

obj conjunct comp comp

conjunct
pred

aglt

Figure 3.51: A dependency structure of the sentence Podnieúliúmy go, po≥oøyli na
≥awce. (Eng. ‘We picked him up, we put him on the bench.’)

pre coord (pre-conjunction)
Some two-part correlative conjunctions are possible in Polish, e.g., albo... albo... (Eng. ‘ei-
ther... or...’), ani... ani... (Eng. ‘neither... nor...’). The first part of the correlative con-
junction depends on the second one. If the correlative conjunction contains more than
two parts, e.g., albo... albo... albo, all preceding conjunction parts depend on the last
one. The function pre coord is used to label this relation (see Figure 3.52).

Chory czÍsto czuje siÍ albo zagubiony albo samotny.
patient

nom

often feel
sg.ter refl either lost

nom

or lonely
nom

adjunct refl conjunct conjunct
pre coord

comp

subj

Figure 3.52: A dependency structure of the sentence Pacjent czuje siÍ albo zagubiony
albo samotny. (Eng. ‘The patient often feels either lost or lonely.’).

11An alternative dependency tree for the example sentence Podnieúliúmy go, po≥oøyli na ≥awce. may
look like the tree below:

root Podnieúli-

-úmy go , po≥oøyli

na ≥awce.
pick up

praet.pl

be
pl.pri

him
acc

, put
praet.pl on bench

loc

conjunct

comp

comp

aglt

conjunct

obj

coord punct

This analysis indicates that there is a coordination of two independent sentences. However, from the se-
mantic point of view, there is only one Agent represented by the group of people who pick somebody
up and put him on a bench. Hence, there is only one subject which is represented by a pro-drop pro-
noun ‘we’ and this subject is shared by both coordinated predicates. Furthermore, the mobile inflection
-úmy should also be syntactically shared by both coordinated sentence predicates and thus governed by
the coordinating punctuation mark, so that the forms of the predicates agree. Similarly, Patient of these
two actions (picking up and putting down), which is represented by the direct object go, should also be
shared by both predicates.

3.3. Syntactic Annotation Schemata: Related Work 47

3.3 Syntactic Annotation Schemata: Related Work

The number of syntactically annotated corpora (treebanks) which are available for var-
ious languages is growing constantly. This process is accompanied by designing and de-
veloping diÄerent constituency- or dependency-based annotation schemata. The growing
significance of dependency approaches has aÄected constituency treebanks developed in
recent years, e.g., phrase structure trees in some treebanks have been extended with
grammatical functions (e.g., the English Penn Treebank II, Marcus et al., 1994; Bies
et al., 1995). Another idea consists in integration of constituent and dependency infor-
mation in a graph whose nodes and edges represent phrasal categories and grammat-
ical functions respectively (e.g., the German TIGER Treebank, Brants et al., 2002) or
whose nodes incorporate phrasal and dependency information (e.g., the Polish treebank
– Sk≥adnica, åwidziÒski and WoliÒski, 2010; WoliÒski et al., 2011).

Figure 3.53: PDT annotation of the Czech sentence Byl by šel dolesa. (Eng. ‘He would
go into the forest.’) found in the PDF presentation by Eva Hajičová publicly available

on http://www.lumii.lv/ngslt/hajicova/Riga-1-definitivni.pdf.

Apart from constituency treebanks extended with dependency information, there are
also some treebanks containing ‘pure’ dependency structures. The leading example of
a dependency annotated corpus is the Prague Dependency Treebank (PDT, Hajič, 1998;

http://www.lumii.lv/ngslt/hajicova/Riga-1-definitivni.pdf

48 Chapter 3. Polish Dependency Annotation Schema

Böhmová et al., 2003) based on Functional Generative Description (Sgall et al., 1986).
Treebank sentences are randomly selected from the Czech National Corpus.12 In the PDT
schema, there are three annotation levels superstructured on each other: morphological
layer (m-layer), analytical layer (a-layer) and tectogrammatical layer (t-layer) (see Fig-
ure 3.53). The morphological layer of an annotated sentence consists of lemmata and
morphosyntactic tags with which the subsequent tokens are supplemented. The ana-
lytical layer corresponds to a labelled dependency structure which is represented as
a connected acyclic directed graph. The analytical layer encodes 24 grammatical func-
tions (e.g., Sb – subject, Obj – object, Atr – attribute in noun phrases, AtvV – verbal
attribute/complement). In comparison to nodes of the a-layer which correspond to all
morphosyntactically annotated segments (tokens) of the m-layer, nodes of the tectogram-
matical layer represent only semantically essential/full (lexical) items including those
which are elided in the surface representation (w-layer). The core of the tectogram-
matical representation is a dependency tree rooted at the predicate governing some
arguments (e.g., Actor, Objective, Addressee, Origin or EÄect) or adjuncts (e.g., of lo-
cation, direction, time, cause or manner). Apart from the predicate-argument structure,
the tectogrammatical layer encodes semantic roles (functors), topic-focus information,
named entities, coreference relations, etc.

While designing the Polish dependency annotation schema, we took into consideration
annotation solutions proposed in the PDT schema. Polish and Czech belong to the group
of West Slavic languages and similar syntactic constructions can be found in both lan-
guages. Therefore, the annotation of many Polish relations (e.g., subject, object) and syn-
tactic constructions (e.g., coordination, complex verb forms) is consistent with the PDT
annotation proposals, even if our labelling nomenclature diÄers from the PDT labels.

The definition of the Polish schema has also been influenced by the PARC 700 De-
pendency Bank (depbank, King et al., 2003). The English depbank consists of 700
dependency structures automatically converted from LFG-parsed sentences13 and man-
ually corrected and extended by human validators. Fully connected dependency struc-
tures are annotated as sets of relation triples of the form hrelation typei(hindexed
governori, hgovernor’s value or indexed governor’s dependenti). Each token of
a sentence has an assigned index. The top-level predicate is assigned the index 0. There
are two kinds of relation triples. First, predicate-argument/adjunct relations are estab-
lished between lemma forms of a governor and its dependent and are labelled with
grammatical functions. For example, the subject relation connects ‘replace’ with ‘de-
vice’ (subj(replace⇠0, device⇠1)) as shown in Figure 3.54. Second, grammatical
features (e.g., number, case, passive) of individual tokens are also encoded as relation
triples. In the depbank example in Figure 3.54, triples tense(replace⇠0, past) and
12The Czech National Corpus is published on http://www.korpus.cz.
13Sentences were parsed with a broad-coverage English LFG using the XLE system (Maxwell III and
Kaplan, 1993).

http://www.korpus.cz

3.3. Syntactic Annotation Schemata: Related Work 49

passive(replace⇠0, +) indicate a past-tensed and passive-voiced surface realisation
of ‘replace’.

sentence(
id(wsj 2356.19, parc 23.34)
date(2002.6.12)
validators(T.H. King, J.-P. Marcotte)

sentence form(The device was replaced.)
structure(
mood(replace⇠0, indicative)
tense(replace⇠0, past)
passive(replace⇠0, +)
stmt type(replace⇠0, declarative)
subj(replace⇠0, device⇠1)
vtype(replace⇠0, main)
det form(device⇠1, the)
det type(device⇠1, def)
num(device⇠1, sg)
pers(device⇠1, 3)))

Figure 3.54: depbank annotation of the sentence The device was replaced. found on
http://www2.parc.com/isl/groups/nltt/fsbank/triplesdoc.html.

The Polish dependency annotation schema adapts many grammatical functions em-
ployed to label dependency relations in the depbank structures. Some of the labels are
directly taken over (e.g., subj, obj, obj th or adjunct) and other are derived from dep-
bank dependency relation types (e.g., coord from coord-form, pre coord from precoord-
form, comp fin from comp, comp inf from xcomp, comp ag from obl-ag and complm from
comp-form).

The Stanford dependency schema (de MarneÄe and Manning, 2008b,a) represents de-
pendency relations as triples of the form hrelation typei(hindexed governor-wordi,
hindexed dependent-wordi), similarly as in the depbank format. The Stanford schema
assumes that dependencies are established between content words in a sentence. It
defines 53 various dependency relations types. Some Stanford dependencies involving
certain part of speech tags may be collapsed. In collapsed relations, parts of speech
and surface realisations of tokens are propagated to dependency labels. Collapsing
and propagation are typically employed for prepositions and coordinating conjunc-
tions in English (see collapsed and propagated dependencies prep in(based-7, LA-9)
and conj and(makes-11, distributes-13) in Figure 3.55), but not for other function
words (e.g., auxiliary verbs, determiners). An example of a Stanford dependency struc-
ture annotation is given in Figure 3.55. The Stanford schema does not aÄect the designing
of the Polish annotation schema. Nevertheless, we mention it to maintain a comprehen-
sive overview of all dominating and widely adapted annotation schemata.

A common feature of the presented dependency annotation schemata is that they tend
to be semantically oriented, i.e., they presuppose that content words (e.g., main verbs,
nouns) dominate function words (e.g., auxiliary verbs, determiners). This view may be
motivated by the intended use of dependency annotated treebanks to support semantic

http://www2.parc.com/isl/groups/nltt/fsbank/triplesdoc.html

50 Chapter 3. Polish Dependency Annotation Schema

nsubj(makes-11, Bell-1)
det(company-4, a-3)
appos(Bell-1, company-4)
nsubjpass(based-7, which-5)
auxpass(based-7, is-6)
rcmod(company-4, based-7)
prep in(based-7, LA-9)
root(root-0, makes-11)
conj and(makes-11, distributes-13)
nn(products-15, computer-14)
dobj(makes-11, products-15)

Figure 3.55: Stanford dependency annotation of the sentence Bell, a company which
is based in LA, makes and distributes computer products. found in de MarneÄe and

Manning (2008a).

parsing. The Polish dependency schema continues this annotation trend and defines
dependency relations so that they are semantically oriented to some extent.

There are also syntactically oriented annotation schemata in which function words tend
to dominate content words. These schemata are less relevant for defining the Polish de-
pendency annotation schema, but we refer to them to keep the overview of schemata as
complete as possible. One of the syntactically oriented schemata is the schema designed
for the Danish Dependency Treebank (DDT, Kromann, 2003) and based on the Dis-
continuous Grammar (Buch-Kromann, 2006). The DDT annotation schema assumes
that there are two types of dependency relations between tokens: primary complement
and adjunct relations building a fully connected dependency tree (arcs above tokens in
Figure 3.56), and secondary relations (arcs below tokens in Figure 3.56). A secondary
relation can be established between a non-finite verb form and its subject. A token may
have multiple incoming arcs representing secondary relations.

subj vobj vobj dobj

Han vil have set det
PP VA VA VA PD
He will have seen it
[subj]

Figure 3.56: DDT annotation of a sentence Han vil have set det (Eng. ‘He will have
seen it’) found in Kromann (2003).

3.3. Syntactic Annotation Schemata: Related Work 51

Recently, interoperable syntactic annotation schemata are created or existing annotation
schemata are adapted to annotate corpora in other languages. The Penn Treebank an-
notation schema has been adapted for Arabic14 (Maamouri et al., 2011) and Chinese15

(Xue et al., 2005). The PDT annotation schema has been used to annotate corpora
in Arabic16 (Hajič et al., 2004), Croatian17 (Berovic et al., 2012), Slovene18 (Džeroski
et al., 2006), Tamil19 (Ramasamy and Žabokrtský, 2011), and a Czech-English parallel
corpus20 (Hajič et al., 2012). A German dependency bank21 (Forst et al., 2004) has
adapted the depbank triple annotation schema. The Stanford dependency schema has
been adapted for Finish22 (Haverinen et al., 2010). The DDT schema is used in the cur-
rently developed Copenhagen Dependency Treebanks23 (CDT, Buch-Kromann and Ko-
rzen, 2010; Buch-Kromann et al., 2010) which consists of parallel corpora in Danish,
English, German, Italian, and Spanish.

The question arises whether an annotation schema may be really universal and applica-
ble to other languages. Some studies have compared various annotation schemata and
measuring their impact on NLP applications (e.g., parsing performance). According to
Kübler et al. (2008), whose comparative study concerns annotation schemata originally
designed for German, the design of a syntactic annotation schema significantly influences
performance of a parser trained on sentences annotated in accordance with this schema.
This may suggest that the application of a schema to a new language without any adapta-
tions motivated by the language specificity may decrease parsing performance. However,
we are not familiar with studies measuring an impact of an annotation schema applied
to a new language on performance of a parser trained on trees annotated in accordance
with this schema. Hence, we may not be positive about performance of a parser trained
on Polish data annotated according to a schema which is not attuned to the specificity
of Polish. Since an annotation schema is typically designed for a particular language,
it does not have to take into account all linguistic phenomena occurring in other lan-
guages. An annotation schema may thus be insuÖcient to annotate some Polish-specific
linguistic facts, e.g., mobile inflection, and it need to be at least adjusted for Polish.
Finally, there is a long tradition of the grammatical description of Polish which moti-
vates some of our annotation solutions making them inconsistent with other annotation
schemata. Since we have not found any annotation schema that would perfectly cover
all Polish phenomena, this chapter described the new dependency annotation schema
conceptualised for Polish.

14Penn Arabic Treebank http://www.ircs.upenn.edu/arabic.
15Penn Chinese Treebank http://www.cis.upenn.edu/~chinese/ctb.html.
16Prague Arabic Dependency Treebank ufal.mff.cuni.cz/padt/PADT_1.0/docs/index.html.
17Croatian Dependency Treebank http://hobs.ffzg.hr/default_en.html.
18Slovene Dependency Treebank http://nl.ijs.si/sdt/.
19Tamil Dependency Treebank http://ufal.mff.cuni.cz/~ramasamy/tamiltb/0.1/.
20Prague Czech-English Dependency Treebank http://ufal.mff.cuni.cz/pcedt/.
21TiGer Dependency Bank http://www.ims.uni-stuttgart.de/projekte/TIGER/.
22Turku Dependency Treebank http://bionlp.utu.fi/fintreebank.html.
23Copenhagen Dependency Treebank code.google.com/p/copenhagen-dependency-treebank.

http://www.ircs.upenn.edu/arabic
http://www.cis.upenn.edu/~chinese/ctb.html
ufal.mff.cuni.cz/padt/PADT_1.0/docs/index.html
http://hobs.ffzg.hr/default_en.html
http://nl.ijs.si/sdt/
http://ufal.mff.cuni.cz/~ramasamy/tamiltb/0.1/
http://ufal.mff.cuni.cz/pcedt/
http://www.ims.uni-stuttgart.de/projekte/TIGER/
http://bionlp.utu.fi/fintreebank.html
code.google.com/p/copenhagen-dependency-treebank

Chapter 4

Conversion-based Dependency
Bank

This chapter outlines the creation of the Polish dependency bank that contains 8227 de-
pendency structures. The treebank structures are converted from constituent trees and
annotated in accordance with the schema described in Chapter 3 Polish Dependency An-
notation Schema. The conversion is an entirely automatic process. The converter takes
manually disambiguated constituent trees encoded in the XML format as input (see Sec-
tion 4.1 Sk≥adnica – Polish Constituency Treebank) and outputs dependency structures
encoded in the column-based CoNLL format (Buchholz and Marsi, 2006). The conver-
sion process is relatively straightforward since constituents have their syntactic centres
marked in most cases (see Section 4.2 Conversion Procedure). To convert phrase struc-
tures without identified heads, we define some head selection heuristics (see Section 4.3
Head Selection). Moreover, some dependency trees directly converted from constituent
trees require reorganisation of their arcs in order to make them meet annotation prin-
ciples (see Section 4.4 Rearrangement of Dependency Structures). In the experimental
part, the conversion-based dependency treebank is used for training and evaluation of
the Polish dependency parser (see Sections 4.5 Experimental Setup and 4.6 Experiments
and Results). An overview of existing constituency-to-dependency conversion approaches
(see Section 4.7 Constituency-to-Dependency Conversion: Related Work) and a summary
of results (see Section 4.8 Partial Conclusions) close this chapter.

4.1 Sk≥adnica – Polish Constituency Treebank

Dependency structures are derived from the Polish constituency treebank Sk≥adnica
(WoliÒski et al., 2011). Sentences in Sk≥adnica are selected from the hand-annotated
balanced subcorpus of the National Corpus of Polish (NKJP, Przepiórkowski et al.,
2012). The selected sentences are semi-automatically annotated with constituent trees.

53

54 Chapter 4. Conversion-based Dependency Bank

First, the åwigra parser (WoliÒski, 2004) automatically generates candidate trees for
each sentence. Then, the generated parse trees are validated by human annotators, who
either select a tree which best conforms to the linguistic constraints of Polish or reject
the sentence if no correct tree is generated for it.

wypowiedzenie

zdanie

Ä

fwe

formaczas

Zdecydowa≥

fw

siÍ

fl

fps

formaprzys

wreszcie

fw

fwe

fw

fno

zaimrzecz

coú

fwe

formaczas

powiedzieÊ

znakkonca

.

Figure 4.1: A phrase structure representation of the sentence Zdecydowa≥ siÍ wreszcie
coú powiedzieÊ. (Eng. ‘He finally decided to say something.’).

The syntactic structure of a sentence is represented as a constituent tree which is built
in accordance with the Polish constituent grammar (åwidziÒski, 1992). Leaf and internal
nodes of constituent trees are associated with terminals and non-terminals of the gram-
mar respectively. Terminals correspond to vocabulary items (tokens). Apart from tokens,
leaves encode information about lemmata, part of speech tags and morphological features
of tokens. Non-terminals, in turn, represent the following syntactic categories:

• pre-terminals (or syntactic words), e.g., noun form (Pol. ‘forma rzeczownikowa’,
formarzecz), verb form (Pol. ‘forma czasownikowa’, formaczas in Figure 4.1), ad-
verbial form (Pol. ‘forma przys≥ówkowa’, formaprzys in Figure 4.1), or personal
pronoun (Pol. ‘zaimek rzeczowny’, zaimrzecz in Figure 4.1). Strings of multiple
tokens (e.g., analytical verb forms, complex prepositions) can also be regarded as
pre-terminals in Sk≥adnica trees,

• constituent types, e.g., verbal phrase (Pol. ‘fraza werbalna’, fwe in Figure 4.1),
nominal phrase (Pol. ‘fraza nominalna’, fno in Figure 4.1), adverbial phrase
(Pol. ‘fraza przys≥ówkowa’, fps in Figure 4.1), adjectival phrase (Pol. ‘fraza

4.2. Conversion Procedure 55

przymiotnikowa’, fpt), prepositional phrase (Pol. ‘fraza przyimkowa’, fpm), or
clausal phrase (Pol. ‘fraza zdaniowa’, fzd),

• subcategorisation types determining whether a phrase is an argument, i.e., required
phrase (Pol. ‘fraza wymagana’, fw in Figure 4.1) subcategorised by a sentence pred-
icate or an optional adjunct, i.e., free phrase (Pol. ‘fraza luüna’, fl in Figure 4.1).

Internal nodes encode some grammatical features (e.g., case, number, gender, person,
tense, aspect, mood, or government), possibly the subject function, and the information
about heads of constituents. An example of a Polish constituent tree is given in Fig-
ure 4.1. In this example tree any constituent head-child is connected to its parent with
a thick grey edge, e.g., zdanie is immediately headed by Ä.

4.2 Conversion Procedure

In order to induce a bank of labelled dependency structures, we apply the constituent-to-
dependency conversion procedure that makes use of information encoded in the Polish
constituency treebank Sk≥adnica. The main idea behind the conversion is to cover all
language-specific syntactic phenomena encoded in the Polish constituent trees and to
annotate these phenomena with appropriate dependencies. Explicitly marked heads of
constituents make it relatively straightforward to convert the phrase structure trees into
unlabelled dependency structures, without the general requirement for head selection
rules.

4.2.1 Lexical Nodes

Lexical nodes of a dependency tree built for a sentence correspond to tokens of this
sentence. The spanning property implies that a dependency structure spans over all
tokens of an underlying sentence. Since terminal nodes of a source constituent tree encode
tokens, these tokens can be directly transferred to nodes of a converted dependency tree.

The column-based CoNLL format (Buchholz and Marsi, 2006) employed to encode con-
verted dependency structures makes it possible to attach some additional morphosyn-
tactic features of individual tokens. Morphosyntactic features are utilised in training
a dependency parser and in parsing new sentences. Since the annotation schema of
phrase structure trees requires encoding morphosyntactic features (i.e., lemmata, part
of speech tags and morphological features) in each terminal node, these features can be
directly transferred to lexical nodes of corresponding dependency trees without the need
for additional language processing tools. Additional grammatical information enclosed
in lexical nodes may have a positive impact on the quality of parsing fusional languages
with multiple inflected surface word forms such as Polish.

56 Chapter 4. Conversion-based Dependency Bank

4.2.2 Unlabelled Dependency Relations

Phrase structures in Sk≥adnica trees have their syntactic heads marked in most cases.
The information about syntactic heads present in the constituent trees is employed to
convert these trees into dependency structures.

Dependency relations are established between two tokens. Principles of well-formed de-
pendency trees determine that each token may only have one governor. In order to
identify related tokens in a constituent tree, it is essential to find the head of each token
encoded in terminal nodes. The head of the current token corresponds to another token
or the root node. A head token may be extracted with the following procedure:

1. starting from a terminal node encoding the current token, edges are followed in
the bottom-up direction until the first non-head constituent node is reached,

2. then, starting from the parent of the identified non-head constituent node and
following edges between parents and their head-children in the top-down direction
the head token is found. If the parent node of a constituent node zdanie is labelled
with wypowiedzenie, i.e., the root of the entire constituent tree, the additional
root node is determined as the head of the underlying token.

Extracted relations between tokens corresponding to dependents and their head tokens
corresponding to dependency governors are transferred to dependency structures.

root

Zdecydowa≥ siÍ wreszcie coú powiedzieÊ .
decided

sg.m refl

finally something
sg.acc

to say .

Figure 4.2: A dependency tree converted from the constituent tree in Figure 4.1.

For example, the non-head node fl is reached as a consequence of following constituent
edges in the bottom-up direction starting from the token wreszcie (Eng. ‘finally’) in
the tree in Figure 4.1. Then, starting from the parent of fl which is labelled with zdanie,
edges between parents and head-children (i.e., Ä, fwe and formaczas) are followed until
the terminal node Zdecydowa≥ is reached. The relation Zdecydowa≥�!wreszcie is trans-
ferred as an arc to the converted dependency tree. Single arcs coming into all tokens of
the sentence constitute the unlabelled dependency tree (see Figure 4.2).

4.2. Conversion Procedure 57

4.2.3 Labelling Dependency Relations

The process of labelling dependency relations is conducted simultaneously with extract-
ing relations from the constituent trees. Hence, an extracted relation transferred to
a dependency structure is already labelled with a grammatical function. However, in or-
der to preserve the clarity of the description, the two processes (extracting and labelling
dependency relations) are discussed separately. The process of extracting dependency
relations has already been presented. Now, we focus on the rule-based procedure of
labelling dependency relations.

There are two ways of inferring grammatical functions. First, grammatical functions
explicitly encoded in the constituent trees directly label appropriate relations in con-
verted dependency structures. However, there is only one grammatical function encoded
in the constituent trees – subject. The subject function is encoded in the highest phrase
structure which is headed by the current token and labelled with the subcategorisa-
tion type fw (fraza wymagana, Eng. ‘required phrase’). If the current token constitutes
the head of a phrase, this phrase is required by the sentence predicate and is annotated
with the subject function, the dependency relation between the token and the sentence
predicate is labelled with subj. The relation predicate subj��!token may thus be directly
transferred to a converted dependency tree.

Second, other grammatical functions are inferred based on information encoded in
the phrase structure trees: subcategorisation information, phrase structure types, mor-
phosyntactic features (e.g., part of speech, case, number, gender or person), and types
of construction rules used to build the constituent trees. In the course of identifying
the head of a token, several non-terminal nodes are visited. Information encoded in
these non-terminals is considered to derive labels of induced dependency relations.

4.2.3.1 Verb-Dependent Relations

Labelling rules take into account subcategorisation information encoded in non-terminal
nodes. The constituency annotation schema distinguishes two subcategorisation types
with which dependents of a sentence predicate are annotated: free phrases fl (Pol. ‘fraza
luüna’) which are equivalent to adjuncts and required phrases fw (Pol. ‘fraza wymagana’)
corresponding predominantly to arguments. If the highest constituent headed by a token
is labelled with the category fw or fl, its parent should be labelled either with the phrase
structure category zdanie (Eng. ‘sentence’) or with the category fwe (fraza werbalna,
Eng. ‘verb phrase’).

Dependency relations between predicates and head tokens of free phrases are always
labelled with the adjunct function. In the constituent tree in Figure 4.1, there is one
terminal wreszcie whose highest constituent node is labelled with the category fl. We

58 Chapter 4. Conversion-based Dependency Bank

presented the process of extracting the relation between wreszcie and its governor Zde-
cydowa≥ in the previous section. Based on the subcategorisation type fl, this relation
is labelled with the adjunct function (Zdecydowa≥ adjunct����!wreszcie) and transferred to
the final dependency tree (see Figure 4.3).

root

Zdecydowa≥ siÍ wreszcie coú powiedzieÊ .
decided

sg.m refl

finally something
sg.acc

to say .

pred refl
adjunct obj

comp inf

punct

Figure 4.3: A labelled dependency tree converted from the constituent tree in Fig-
ure 4.1.

The procedure of labelling relations between head tokens of required phrases (except
for the subject arguments discussed above) and sentence predicates is rather complex.
It consists in inferring appropriate grammatical functions of verb arguments based on
phrase structure types and morphosyntactic features encoded in terminal nodes of re-
lated tokens.

The constituent type of the current token is a valuable source of knowledge in the pro-
cedure of labelling verb-argument relations. If the phrase structure headed by a token
is labelled with the category fno (fraza nominalna, Eng. ‘noun phrase’), the relation
between the token and the predicate can be labelled with obj, obj th or pd. The obj
function labels the relation between a transitive verb and the head noun of a noun
phrase. This head noun can alternate to the subject during the passivisation and is
marked for accusative, genitive of negation, dative or instrumental. Since information
about the transitivity of a verb is not encoded in the constituent trees, we use external
lists of transitive verbs that require objects marked for particular cases.1 In the example
tree in Figure 4.1, there is a noun phrase coú that is required by the transitive verb
powiedzieÊ. Hence, the relation coú obj ��powiedzieÊ is transferred to the final dependency
tree (see Figure 4.3). The obj th function is assigned to relations established between
non-predicative verbs form and heads of noun phrases. The head noun cannot be marked
for nominative or locative and may not alternate to the subject during the passivisa-
tion. The pd function labels relations in which a predicative verb governs the head of
a nominal phrase which is marked for instrumental.
1In order to separate objects from other nominal complements, the best solution would be to use

the valency dictionary by Przepiórkowski et al. (2013). However, at the time of conducting our experi-
ments with the treebank conversion, this dictionary did not exist. Hence, we compiled lists of the most
common transitive verbs available in Sk≥adnica trees based on the linguistic literature and dictionaries
of Polish.

4.2. Conversion Procedure 59

If the current token is an infinitive that heads a phrase structure labelled with the cat-
egory fzd (fraza zdaniowa, Eng. ‘clause’) or fwe (fraza werbalna, Eng. ‘verb phrase’),
the relation between the infinitive and its governing sentence predicate is labelled with
the comp inf function. In the example tree in Figure 4.1, there is the head infinitive
powiedzieÊ of a verb phrase which is required by the sentence predicate Zdecydowa≥.
Hence, the relation Zdecydowa≥ comp inf�����!powiedzieÊ is transferred to the final dependency
tree (see Figure 4.3).

The relation between a sentence predicate and a finite verb whose highest constituent
node is assigned the type fzd is labelled with the comp fin function. The relation be-
tween a predicate and a preposition (prepositional phrase category fpm) is labelled with
the comp ag function if it is a demoted subject realised as the przez -prepositional phrase
and if the predicate is realised as a passive adjectival participle. Otherwise, the relation
is labelled with the comp function. The relation between a predicate and an adjective
(adjective phrase category fpm) is labelled either with the pd function if the predicate
has the form of a predicative verb or with the comp function. The relation between
a predicate and an adverb (adverbial phrase category fpt) is labelled with the comp
function.

There are also some non-arguments that may depend on a sentence predicate, e.g.,
an auxiliary verb, a complementiser, a conditional clitic, an imperative marker, a mobile
inflection, a negation marker, a punctuation marker or a reflexive marker. Relations
between tokens, which are identified by their morphosyntactic properties as members
of the specified part of speech groups, and their governing verbs are labelled according
to the dependency annotation schema (see Chapter 3 Polish Dependency Annotation
Schema). In the example tree in Figure 4.1, there is a reflexive marker siÍ that is required
by the predicate Zdecydowa≥. Hence, the relation Zdecydowa≥ refl��!siÍ is transferred to
the final dependency tree (see Figure 4.3). Furthermore, in this example tree (Figure 4.1),
there is also a punctuation marker realised as the full stop which depends on the sentence
predicate Zdecydowa≥. The relation Zdecydowa≥ punct���!. is thus transferred to the final
dependency tree (see Figure 4.3).

4.2.3.2 Other Relations

The first case concerns sentence predicates realised as verb forms marked with the cate-
gory Ä (fraza finitywna, Eng. ‘finite phrase’). A constituent tree is rooted at the highest
non-terminal node of the sentence predicate which is labelled with the phrase structure
category wypowiedzenie (Eng. ‘utterance’). The predicate is thus transferred as the top
lexical node of a dependency tree governed by an artificial root node. The dependency
relation between the predicate and the root node is labelled with the pred function.
In the example tree in Figure 4.1, the highest constituent node headed by the sentence
predicate Zdecydow≥ is labelled with the constituent category wypowiedzenie. Hence,

60 Chapter 4. Conversion-based Dependency Bank

the relation root
pred��!Zdecydowa≥ is transferred to the final dependency tree (see Fig-

ure 4.3). Since the constituent treebank contains only proper sentences with finite verb
forms or coordinated verb forms functioning as sentence predicates, the root node may
also govern a coordinating conjunction or a coordinating punctuation mark. In such
cases, the relation is labelled with coord or coord punct if it is a coordination of two
sentences, or with the pred function if it is a coordination of sentence predicates with
a shared subject and possibly other shared arguments.

Labelling rules also cover dependency relations between a preposition and its dependents
within the scope of a prepositional phrase (fpm) or a prepositional-adjective phrase
(fpmpt). Dependents mostly bear the function of the prepositional complement (comp).
However, if dependents of prepositions are realised as modifying particles (e.g., juø,
Eng. ‘already’, nawet, Eng. ‘even’, zw≥aszcza, Eng. ‘especially’) or adverbs (e.g., w≥πcznie,
Eng. ‘inclusive’), relations between prepositions and their dependents are labelled with
the adjunct function.

Within the scope of a noun phrase fno, dependents of the head noun bear either the ad-
junct function or the app function if the type of a construction rule is specified as noap.
However, if a head noun is realised as a gerund, its dependents may bear both argument
and adjunct functions.

Relations between an adverb or an adjective and their dependents in an adverbial phrase
(fps) or an adjectival phrase (fpt) are mostly labelled with the adjunct function. The ad-
junct function is also treated as the default label of relations that cannot be covered
with labelling rules.

4.3 Head Selection

In accordance with what has been said above, constituents have their syntactic heads
marked in Sk≥adnica trees and head selection rules seem to be redundant. However, there
are some phrase structures (predominantly syntactic words) in which not only one but
several elements are marked as syntactic heads. In the case of constituents with multiple
head-children, it is necessary to decide which child node should be selected as the proper
head in order to find an unequivocal head of each token. The current section presents
multi-headed scenarios and head-selection heuristics designed to handle such scenarios.

The first case refers to conditional verb forms which consist of a verbal stem and the con-
ditional particle by. These two tokens are annotated as head-children of a conditional
verbal phrase in the constituent trees. The dependency annotation schema, in turn,
implies that the conditional particle should depend on the verbal stem (see cond in Sec-
tion 3.2.3, p. 41). Hence, the verbal stem is selected as the head of the conditional verb
phrase during constituency-to-dependency conversion. The relation between the verbal

4.3. Head Selection 61

stem chcia≥ (governor) and the conditional particle by (dependent) labelled with the cond
function is transferred to the dependency tree in Figure 4.4.2

zdanie

fw

fno

Co

Ä

fwe

chcia≥ by

fw

fwe

wiedzieÊ

root Co chcia≥- -by wiedzieÊ?
what wantedsg.ter would to know

subj
pred

cond

comp inf

Figure 4.4: Conversion of the constituent tree (left tree) of the sentence Co chcia≥by
wiedzieÊ? (Eng. ‘What would he want to know?’) into a dependency structure (right
tree). Heads are marked with shaded lines. The transfer of the dependency relation
between two parts of the conditional verb form chcia≥by is pointed out with dotted

arrows.

zdanie

Ä

fwe

Walnπ≥ condaglt

by ú

fw

fno

go

root

Walnπ≥- -by- -ú go?
hit

praet.sg.ter would be
aglt.sg.sec

him

pred
aglt

cond

obj

Figure 4.5: Conversion of the constituent tree (left tree) of the sentenceWalnπ≥byú go?
(Eng. ‘Would you hit him?’) into the dependency structure (right tree). The transfer
of dependency relations between three parts of the conditional verb form walnπ≥byú is

pointed out with dotted arrows.

Similarly, a verb form and a mobile inflection, which is regarded as an independent
syntactic element in Polish, are annotated as head-children of a verb phrase. How-
ever, the dependency annotation schema assumes that the mobile inflection depends on
the verbal stem (see aglt in Section 3.2.3, p. 39). Therefore, the relation between the ver-
bal stem (governor) and the mobile inflection (dependent) is transferred to the converted
dependency tree and labelled with the aglt function. The mobile inflection may also be
part of a conditional verb form. All three head-marked children (a verb stem, the condi-
tional particle by and a mobile inflection) build one phrase structure in the constituent
2For clarity’s sake, some constituent levels are not displayed in the diagrams of constituent trees.

For the presentation of entire constituent trees refer to the search engine of Sk≥adnica trees at http:
//nlp.ipipan.waw.pl:8000/ui.xhtml.

http://nlp.ipipan.waw.pl:8000/ui.xhtml
http://nlp.ipipan.waw.pl:8000/ui.xhtml

62 Chapter 4. Conversion-based Dependency Bank

trees. In converted dependency structures, the mobile inflection depends on the condi-
tional particle and the particle, in turn, depends on the verbal stem (see Figure 4.5).

The second case of multi-headed constituents refers to analytical verb and quasi-verb
forms. An analytical verb form consists of an auxiliary verb and a main verb form
(e.g., infinitive, participle or quasi-verb). There are two auxiliary verbs in Polish: zostaÊ
(Eng. ‘to be’) used in passive constructions and byÊ (Eng. ‘to be’) used to build the im-
perfect future tense, the analytical past conditional, analytical forms of quasi-verbs,
analytical forms of the predicative to3 and passive constructions. All parts of analytical
verb and quasi-verb forms4 are head-marked in the phrase structure trees. The semanti-
cally oriented dependency annotation schema assumes that the main verb form governs
the auxiliary verb (see aux in Section 3.2.3, p. 40). Hence, the main verb form is selected
as the head child during constituency-to-dependency conversion. The relation between
the governing main verb and the auxiliary verb is labelled with the aux function and is
transferred to the resulting dependency tree (see Figure 4.6).

zdanie

Ä

fwe

Trzeba by≥o

fw

fwe

spaÊ

root Trzeba by≥o spaÊ.
it’s necessary be

praet.sg.ter.n

to sleep

pred aux

comp inf

Figure 4.6: Conversion of the constituent tree (left tree) of the sentence Trzeba by≥o
spaÊ. (Eng. ‘We had to sleep.’) into the dependency structure (right tree). The transfer
of the dependency relation between the quasi-verb trzeba and the auxiliary verb by≥o

is pointed out with dotted arrows.

Since Polish distinguishes between simple and complex conjunctions, the third case con-
cerns complex coordinating or subordinating conjunctions whose parts are annotated as
constituents’ heads in the phrase structure trees. In two-part coordinating conjunctions,
e.g., albo... albo... (Eng. ‘either... or...’), ani... ani... (Eng. ‘neither... nor...’), nie tylko...
ale takøe (Eng. ‘not only... but also’), the first element (or multiword element) is con-
verted as the dependent of the second one and the relation is labelled with the pre coord
3The predicative to (Eng. ‘it, it’s’) fulfils the role of a sentence predicate in Polish. Similarly to other

quasi-verb forms, to may be combined with an auxiliary verb to express future tense (e.g., To bÍdzie
dobry moment., Eng. ‘It will be a good time.’), present tense (e.g., To jest z≥e myúlenie., Eng. ‘It is
a wrong way of thinking.’) or past tense (e.g., To by≥o przypadkowe uderzenie. Eng. ‘It was a random
attack.’). Sometimes, it is diÖcult to distinguish between the predicative to and to treated as the subject
(e.g., To by≥oby úmieszne, groteskowe., Eng. ‘It would be ridiculous, grotesque.’). The subject function
is explicitly encoded in the manually checked constituent trees. Therefore, to is converted as the subject
only if it is annotated as the subject in a constituent tree.
4Passive constructions are considered in Section 4.4.2 Passive Construction since their phrase struc-

ture annotations are diÄerent from annotations of analytical verb forms.

4.3. Head Selection 63

function. In two-part subordinating conjunctions, e.g., mimo øe (Eng. ‘although’), pod-
czas gdy (Eng. ‘whereas, while’), the first token is selected as the governor of the second
one and the relation is labelled with the mwe function (see Figure 4.7).

zdanie

fl

fzd

spójnik

Mimo øe

zdanie

walczy≥

Ä

fwe

przegra≥
root Mimo øe walczy≥, przegra≥.

despite that foughtsg.ter lostsg.ter

pred

mwe

comp fin
adjunct

Figure 4.7: Conversion of the constituent tree (left tree) of the sentence Mimo øe
walczy≥, przegra≥. (Eng. ‘Although he fought, he lost.’) into the dependency structure
(right tree). The transfer of the dependency relation between two parts of the complex

subordinating conjunction mimo øe is pointed out with dotted arrows.

In the case of other multi-headed phrase structures (e.g., abbreviations, multiword ex-
pressions, series of punctuation marks), they are converted in accordance with their
linear word order. The first element is selected as the governor of the second element,
which is, in turn, the governor of the next one, and so on. Relations are labelled with
appropriate grammatical functions. An example of converting a constituent tree with
a series of punctuation marks annotated as heads into a dependency structure is given
in Figure 4.8.

wypowiedzenie

zdanie

Ä

fwe

P≥ynÍ

znakkonca

. . .
root

P≥ynÍ . . .
sail

sg.pri

pred punct
punct punct

Figure 4.8: Conversion of the constituent tree (left tree) of the sentence P≥ynÍ...
(Eng. ‘I am sailing...’) into the dependency structure (right tree). The transfer of de-
pendency relation between individual punctuation marks is pointed out with dotted

arrows.

64 Chapter 4. Conversion-based Dependency Bank

4.4 Rearrangement of Dependency Structures

As discussed above, the conversion is a relatively straightforward process. However, re-
arrangement of particular arcs in converted dependency trees is essential to meet the an-
notation principles. The current section describes some linguistic constructions whose
phrase structure annotations are transferred to dependency structures with modifica-
tions. Besides reordering described below we do not interfere in the internal structure of
the constituent trees, but we take syntactic facts encoded in these trees as they are.

4.4.1 Discontinuous Constituents

The constituent annotation schema does not cover discontinuous constituents. There-
fore, unconnected constituent parts are encoded as quasi-independent constituents (see
annotation of kilka wniosków, Eng. ‘a few applications’ in the constituent tree in Fig-
ure 4.9). The direct conversion of discontinuous constituents would result in dependency
structures which are incompatible with the annotation principles. Converted depen-
dency structures are thus reordered and discontinuous dependencies are annotated in
accordance with the dependency annotation schema even if it results in non-projective
trees. Currently, only discontinuous dependencies within the scope of numeral phrases
are identified in Sk≥adnica trees. However, we cannot rule out that other discontinuous
constituents are encoded in these trees.

Rules of annotating Polish numeral phrases require that numerals are treated as syntactic
governors of depending noun phrases. Case of the depending noun phrase either agrees
with case of the governing numeral marked for dative, instrumental or locative, or is
determined as genitive if the governing numeral is marked for nominative, accusative,
vocative or genitive. On the other hand, the depending noun phrase imposes the gender
feature on the governing numeral. Hence, morphological clues can be employed to identify
a nominal dependent of a numeral even if the noun phrase is annotated as an independent
constituent in a constituent tree.

In the example tree in Figure 4.9, the genitive noun phrase Wniosków (Eng. ‘Applica-
tions’) initiating the sentence is annotated as an independent constituent required by
the sentence predicate. Based on the morphological evidence and the fact that a numeral
typically requires a complement, the noun Wniosków is identified as the complement of
the numeral kilka (Eng. ‘a few’) marked for nominative.5 The converted dependency
structure is appropriately reorganised and the resulting dependency tree is shown in
Figure 4.9 (the dependency relation marked with the dotted line on the schema is not
present in the final dependency structure).
5In this example, the numeral kilka (Eng. ‘a few’) may also be analysed as an accusative.

4.4. Rearrangement of Dependency Structures 65

zdanie

fw

fno

Wniosków

Ä

fwe

jest

fl

fps

raptem

fw

fno

flicz

kilka

root Wniosków jest raptem kilka.
Applications

gen

be
sg.ter

barely a few
nom

adjunct

pred
subj

comp

comp

Figure 4.9: Conversion of the constituent tree (left tree) of the sentenceWniosków jest
raptem kilka. (Eng. ‘There is barely a few applications.’) into the dependency structure

(right tree). The dotted line indicates the relation before reorganising.

4.4.2 Passive Construction

The passive voice is indicated in Polish by a conjugated auxiliary verb combined with
a passive adjectival participle. In the constituent trees, auxiliary verbs constitute heads
of passive constructions and participles are annotated as adjectival phrases required
by auxiliaries. Nevertheless, we annotate passive constructions by analogy to analytical
future or past conditional constructions. The participle is annotated as the head of
a passive sentence. If it is governed by the root node, the relation between root
and the participle is labelled with the pred function. The auxiliary verb depends on
the participle and the relation is labelled with the aux function. Required arguments
and non-subcategorised adjuncts depend on the sentence predicate.

A passive adjectival participle may also occur without an auxiliary verb as the dependent
of a nominal phrase, e.g., Parlament rozwiπzany 30 sierpnia 1930 r. (Eng. ‘Parliament
dissolved on August 30, 1930.’) as shown in Figure 4.10. Such constructions can be
treated as ‘reduced’ relative clauses in contrast to relative clauses like the one shown in
Figure 4.11. Since both constructions have the same meaning, the decision of annotating
them with similar dependency structures seems to be well-founded.

root

Sejm rozwiπzany 30 sierpnia 1930 r.
Parliament

nom

dissolve
ppas.sg.nom

on August 30, 1930

pred
adjunct adjunct

Figure 4.10: A dependency structure of the noun phrase Sejm rozwiπzany 30 sierpnia
1930 r. (Eng. ‘Parliament dissolved on August 30, 1930’).

66 Chapter 4. Conversion-based Dependency Bank

fno

fno

Sejm

fzd

, zdanie

fw

fno

który

Ä

fwe

zosta≥

fw

fpt

rozwiπzany

fl

30 sierpnia 1930 r.

root

Sejm, który zosta≥ rozwiπzany 30 sierpnia 1930 r.
Parliament

nom

which
sg.nom

be
praet.sg.ter

dissolve
ppas.sg.nom

on August 30, 1930

pred

subj

aux
adjunct

adjunct

Figure 4.11: Conversion of the constituent tree (top tree) of the noun phrase Sejm,
który zosta≥ rozwiπzany 30 sierpnia 1930 r. (Eng. ‘Parliament, which was dissolved
on August 30, 1930’) into the dependency structure (bottom tree). Dependency arcs
which are directly transferred but do not appear in the final tree are marked with dotted
lines. Reordered arcs and other arcs which are directly transferred but not modified are

marked with solid lines.

4.4.3 Subordinate Clauses

Various types of subordinate clauses functioning as adjuncts are distinguished in the con-
stituent treebank. However, we found out that subordinate clauses of the same type are
diÄerently annotated in the treebank. Divergent trees with subordinate clauses result
from the annotation procedure which consists in simultaneous annotation of trees and
modification of the underlying grammar. As the Polish constituent grammar improved,
annotation rules changed and new sentences were annotated with the amended rules.
However, some trees annotated before the modification of the grammar could be incom-
patible with the improved version of the grammar, but they were not upgraded.

Incompatible constituent analyses of complex sentences are rather isolated cases, but
they violate our conversion rules. Conversion rules designed for transferring relations
from constituent trees annotated in accordance with one grammar version may be un-
suitable for converting other constituent trees. Therefore, some additional rules are de-
signed to annotate complex sentences of the same type (identified by categories of phrase
structure rules) with uniform dependency structures. This rearrangement process does
not apply to all complex sentences, but only to those whose annotations deviate from
the following annotation principles.

4.4. Rearrangement of Dependency Structures 67

In subordinate clauses introduced by a conjunction, e.g., albowiem, bo or gdyø (Eng. ‘be-
cause, since’), the conjunction constitutes the head of the subordinate clause and depends
on the sentence predicate of a superordinate clause. Similarly, conjunctions jeúli or gdyby
(Eng. ‘if’) introducing subordinate clauses depend on the sentence predicate of a super-
ordinate clause. If an optional particle to (Eng. ‘then’) introduces such superordinate
clause, this particle depends on the sentence predicate of the superordinate clause and
the relation is labelled with the adjunct function (see Figure 4.12).6

Gdyby- -m mia≥ pieniπdze, to kupi≥- -by- -m bez namys≥u.
if be

aglt

have
praet

money
acc

then buy would beaglt without reflectiongen

comp fin comp
adjunct

comp
aglt

cond

adjunct

adjunct
aglt

Figure 4.12: A dependency structure of the sentence with a subordinated clause
Gdybym mia≥ pieniπdze, to kupi≥bym bez namys≥u. (Eng. ‘If I had money I would buy

it immediately.’).

4.4.4 Incorporated Conjunction

Polish admits complex sentences with a conjunction taking a non-initial position in
a clause. We distinguish coordinating constructions with conjunctions (e.g., przeto, wiÍc,
zatem, Eng. ‘therefore, then’) incorporated into the second of coordinated clauses. Fur-
thermore, there are also subordinating constructions with conjunctions (e.g., bowiem,
Eng. ‘since, as’) which may appear anywhere in the subordinate clause, subject to vari-
ous island constraints. In the constituent trees, an incorporated conjunction depends on
the immediately preceding constituent, e.g., verb, adverb or noun. Even if the conversion
results in a non-projective dependency structure, an incorporated conjunction is anno-
tated either as the governor of coordinated clauses (see Figure 4.13) or as the governor
of a subordinate clause.

4.4.5 Clauses with Correlative Pronouns

The correlative pronoun (Pol. ‘korelat’, åwidziÒski, 1992) is a pronoun (also a pronoun
in a prepositional phrase) that correlates with a succeeding relative clause. In the con-
stituent trees, the predicate of the relative clause with the correlative pronoun is anno-
tated as the phrase structure head. Direct conversion of such constructions would require
an additional dependency type which would be equivalent to the phrase structure cat-
egory korelat. As clauses with correlative pronouns can be handled with relation types
6Since the example sentence is long, the root node is not displayed here.

68 Chapter 4. Conversion-based Dependency Bank

zdanie

zdanie

Ä

fwe

Pragnie

fw

fwe

pomagaÊ

fw

ludziom

przec

,

zdanie

Ä

fwe

myúli spójnik

wiÍc

fw

fpm

o fno

zdawaniu fw

na resocjalizacjÍ

root

Pragnie pomagaÊ ludziom, myúli wiÍc o zdawaniu na resocjalizacjÍ.
want

sg.ter

to help people
dat

think
sg.ter so about taking

loc

for resocialisation
acc

compcomp inf obj th comp comp

pred

conjunct

conjunct

comp

Figure 4.13: Conversion of the constituent tree with an incorporated conjunction (top
tree) of the sentence Pragnie pomagaÊ ludziom, myúli wiÍc o zdawaniu na resocjalizacjÍ.
(Eng. ‘He wants to help people, so he is thinking about taking an entrance exam for
resocialisation.’) into the dependency structure (bottom tree). Dependency arcs which
are directly transferred but do not appear in the final tree are marked with dotted
lines. Reordered arcs and other arcs which are directly transferred but not modified are

marked with solid lines.

already defined in the dependency annotation schema, an additional type is unneces-
sary in the context of dependency structures. Such constructions are thus converted as
nominal phrases realised as correlative pronouns with depending relative clauses.

In the constituent tree in Figure 4.14, there is a clause with a correlative prepositional
phrase. The correlative pronoun tym is converted as the governor of the relative clause.
The relation between the correlative pronoun and the verbal head of the relative clause
is labelled with the comp fin function (see the dependency tree in Figure 4.14). The cor-
relative pronoun depends on the preposition (the relation O comp���!tym in the dependency
tree in Figure 4.14) and the preposition, in turn, is governed by the predicate of the su-
perstructured clause (the relationO comp ���wiedzieli in the dependency tree in Figure 4.14).

4.5 Experimental Setup

The conversion-based dependency treebank is used to train Polish dependency parsers
with publicly available parser generation systems.

4.5. Experimental Setup 69

zdanie

fw

fzd

korelat

O tym

fzd

zdanie

fw

fno

co

fw

siÍ

Ä

fwe

dzia≥o

Ä

fwe

wiedzieli

fw

fno

modpart

tylko

fno

notable

root O tym, co siÍ dzia≥o, wiedzieli tylko notable.
about this

loc

what refl

happened
sg.ter

knew
pl.ter

only notables
nom

refl
subj

adj
subj

comp

comp fin

comp
pred

Figure 4.14: Conversion of the constituent tree (top tree) of the sentence with a cor-
relative pronoun O tym, co siÍ dzia≥o, wiedzieli tylko notable. (Eng. ‘Only notables knew
what was happening.’) into the dependency structure (bottom tree). Dependency arcs
which are directly transferred but do not appear in the final tree are marked with dot-
ted lines. Reordered arcs and other arcs which are directly transferred but not modified

are marked with solid lines.

4.5.1 Data

A dependency treebank acquired with the constituency-to-dependency conversion
method consists of 8227 dependency trees. We are aware that this treebank is relatively
small, so we will verify if it is suÖcient to train a dependency parser. Moreover, sentences
in the treebank are rather short and consist of 10.16 tokens on average. The entire tree-
bank contains only 125 non-projective arcs (0.15% of all arcs). Therefore, it is very likely
that sentences have relatively simple syntactic structures in many cases.7 Furthermore,
7The selection of sentences with relatively simple syntactic structures results from the procedure of

annotating source constituent trees. This procedure starts with generation of candidate parse trees for
a sentence with the åwigra parser (WoliÒski, 2004, 2005b). Then, the candidate trees are disambiguated
and validated by human annotators in order to select an appropriate constituent tree. However, only
8227 sentences from the entire set of 20,000 sentences randomly selected from NKJP are in the version
of Sk≥adnica which is employed in our experiments. There are two reasons for rejecting a large part
of sentences. First, 42.3% of sentences were not accepted by the constituent grammar. The rejected
sentences contained grammatical errors, they did not contain a finite verb or they were too complex to

70 Chapter 4. Conversion-based Dependency Bank

the procedure of annotating source constituent trees was iterative,8 and some linguis-
tic phenomena can be diÄerently annotated in Sk≥adnica trees. It is thus possible that
the converted dependency structures vary since the conversion is an automatic process.

In view of possible errors in the converted dependency structures, we decided to manually
verify at least a part of the treebank. Some of the automatically converted dependency
trees are manually corrected by a linguist experienced in the Polish syntax. The first
1,000 trees are thoroughly checked for errors. Other trees are skimmed through focus-
ing on potentially recurring errors. Hence, the converted dependency structures may
still contain errors. Even though we investigate whether they are suÖcient for training
a Polish dependency parser.

According to our knowledge, this is the first attempt at building a Polish dependency
treebank using constituency-to-dependency conversion. Moreover, we are not aware of
the existence of an already annotated dependency treebank of Polish. Therefore, we use
the converted treebank both for training and for evaluation purposes. The entire depen-
dency treebank is split into a validation set with 822 trees (10.08 tokens per sentence on
average, 0.46% of non-projective arcs) and a training set with 7405 trees (10.17 tokens
per sentence on average, 0.12% of non-projective arcs).

4.5.2 Dependency Parsing Systems

Two dependency parsing systems are selected for training dependency parsers for Polish:
the transition-based MaltParser (Nivre et al., 2006a) and the graph-based Mate parser
(Bohnet, 2010). We start with a short description of both parsing systems.

The transition-based dependency parser MaltParser9 uses a deterministic parsing al-
gorithm that builds a dependency structure of an input sentence based on transitions
(shift-reduce actions) predicted by a classifier. The classifier learns to predict the next
transition given training data and the parse history. The architecture of the deterministic
MaltParser consists of three main components: a parsing algorithm that derives a la-
belled dependency structure from an input sentence, a treebank-induced classifier that
deterministically predicts an optimal next transition given the feature representation in
the current configuration of the parser, and a feature model that supports the prediction
of the next parser transition.

be parsed. Second, 27.7% of parsed sentences were rejected because human validators could not select
any appropriate tree from the candidate parse trees. We suppose that the rejected sentences could have
more complex syntactic structures.
8The iterative annotation process consisted in the parallel development of the treebank and the under-

lying grammar. If human validators asserted that there was no appropriate tree for a sentence, grammar
rules were corrected or new grammar rules were defined to cover syntactic phenomena in this sentence.
These rules were then used to parse new sentences. Since previously annotated trees were not improved,
some inconsistencies could arise in the treebank.
9We use MaltParser 1.7.2 downloaded from http://maltparser.org.

http://maltparser.org

4.5. Experimental Setup 71

The MaltParser system provides some built-in implementations of parsing algorithms.
There are some algorithms for projective dependency structures: nivreeager, nivre-
standard, covproj (Nivre, 2008) and stackproj (Nivre, 2009). Besides, there are some
algorithms for non-projective dependency structures: covnonproj (Nivre, 2008), stack-
lazy (Nivre et al., 2009), and stackeager (Nivre, 2009), and for m-planar10 dependency
structures: planar and 2planar (Gómez-Rodŕıguez and Nivre, 2010)

The MaltParser system enables switching between two implementations of machine
learning algorithms used to train a classifier given training data: the LIBSVM library
(Chang and Lin, 2001) being an implementation of support vector machines and the LI-
BLINEAR package (Fan et al., 2008) with diÄerent linear classifiers.

The history-based feature model is employed by the MaltParser classifier to predict
next actions at non-deterministic choice points. Features are defined in terms of token
attributes, i.e., word form (FORM), part of speech (POS), morphological features (FEATS),
and lemma (LEMMA) available in input data or dependency types (DEPREL) extracted
from partially built dependency graphs and updated during parsing.

The Mate parser (Bohnet, 2010)11 is a graph-based parser that improves parsing time
simultaneously maintaining the accuracy level. There are two main components of
the Mate parser – a decoder and a feature model. As the decoder, the parser applies
the implementation of the second-order MST parsing algorithm by Carreras (2007).
The model, in turn, is a linear multi-class classifier trained with the passive-aggressive
perceptron algorithm (McDonald et al., 2005a; Crammer et al., 2006) implemented as
the hash kernel.

Since the employed parsing algorithm produces only projective dependency structures,
Bohnet (2010) applies the Non-Projective Approximation Algorithm (McDonald and
Pereira, 2006) for non-projective parsing. The idea behind this algorithm is to find
the highest scoring projective tree and to rearrange arcs in this tree. Rearrangements
should increase the tree score and may not lead to violate constraints on dependency
trees. Transformed trees may be non-projective. Bohnet (2009) adds a further parameter
10A planar dependency structure can be drawn on the plane without crossing arcs, i.e., it corresponds
to a projective dependency tree. Gómez-Rodŕıguez and Nivre (2010) gives the following definition of
a multiplanar (m-planar) graph:

A dependency graph G = (V,E) is m-planar iÄ there exist planar dependency graphs G1 =
(V,E1), ..., Gm

= (V,E
m

) (called planes) such that E = E1 [... [E
m

.

The following dependency structure (taken from Gómez-Rodŕıguez and Nivre, 2010) is 2-planar, because
there are two planes with two distinct sets of non-crossing arcs (represented by solid and dotted lines):

v1 v2 v3 v4 v5 v6 v7 v8 v9

11We use the Mate dependency parser (version 3.6) downloaded from http://code.google.com/p/
mate-tools/.

http://code.google.com/p/mate-tools/
http://code.google.com/p/mate-tools/

72 Chapter 4. Conversion-based Dependency Bank

to the algorithm – the threshold of the non-projective approximation which indicates
a minimal increase of the tree score after rearrangement of arcs.

Compared to a baseline parser with the MST-parser architecture presented in Bohnet
(2010), the hash kernel implementation significantly shortens the parsing time by a faster
estimation of feature weights. Furthermore, the Mate parser improves the accuracy by
taking into account features of negative examples which are built during the training
process. Moreover, this parser applies parallelisation across several CPUs. The paralleli-
sation significantly accelerates the feature extraction and parsing.

4.5.3 Evaluation Methodology

To evaluate the quality of the converted dependency trees, we employ an extrinsic evalua-
tion that consists in training a parser on converted data (the training set) and evaluating
to what extent the converted trees aÄect performance of the parser. The trained parser
is evaluated using the standard evaluation metrics: labelled attachment score (LAS) and
unlabelled attachment score (UAS). LAS is the percentage of tokens that are assigned
the correct governor and the correct dependency type. UAS, in turn, is the percentage
of tokens that are assigned the correct governor.

In the standard evaluation setting, parsers are evaluated against 822 gold standard de-
pendency structures (the validation set) with manually annotated part of speech tags
and morphosyntactic features (Manual Test). Furthermore, in a more realistic scenario,
parsers are evaluated against the validation trees with automatically assigned part of
speech tags and morphosyntactic features (Automatic Test). For purposes of our ex-
periments, an additional set of 100 sentences was manually annotated with dependency
trees (Additional Test). Sentences in this set are quite long (16.6 tokens per sentence
on average). Additional trees contain 2.8% of non-projective arcs. 50 sentences were
randomly selected from the Polish part of the parallel corpus (see Section 5.4.1 Data)
and 50 sentences were randomly selected from NKJP (33 sentences) and two Polish
magazines. We annotated two excerpts from Newsweek Polska (13 sentences) and from
Zwierciad≥o (4 sentences). Sentences from magazines and the parallel corpus were au-
tomatically tokenised and tagged. The consequent morphosyntactic annotations were
manually validated and corrected by two experienced linguists. NKJP sentences were
already assigned morphosyntactic annotations. The same linguists manually annotated
sentences with dependency trees.

4.6. Experiments and Results 73

4.6 Experiments and Results

4.6.1 Experiment 1 – MaltParser

For purposes of our experiments on training a MaltParser model, we used the built-in
non-projective parsing algorithm stackeager and the LIBLINEAR learning algorithm.
The results of experiments on dependency parser training reported in Wróblewska and
WoliÒski (2012) show that the learning algorithm has a relatively insignificant impact
on parser performance. An important advantage of the LIBLINEAR algorithm is its
speed. The implementation of a machine learning algorithm based on linear classifiers
(the LIBLINEAR package) is considerably faster than the implementation based on
support vector machines (the LIBSVM library).12 Therefore, the LIBLINEAR algorithm
was used in our experiments.

Model Manual Test Automatic Test Additional Test
uas las uas las uas las

Malt default 88.2 80.4 84.6 76.1 72.7 63.3
Malt optimised 90.5 85.4 85.3 78.4 73.3 66.1
Malt automatic 88.4 82.9 87.8 81.6 75.8 68.0
Mate default 92.7 87.2 88.4 81.0 76.0 69.5
Mate automatic 91.2 85.6 90.8 84.7 76.6 70.1

Table 4.1: Performance of parsers trained with MaltParser and Mate parsing systems
on the Polish dependency structures converted from the constituent trees. Settings of
model training:Malt default – theMaltParser model trained on trees with manual mor-
phosyntactic annotations using the built-in StackSwap feature model; Malt optimised –
the MaltParser model trained on trees with manual morphosyntactic annotations using
the optimised feature model; Malt automatic – the MaltParser model trained on trees
with automatic morphosyntactic annotations using the optimised feature model; Mate
default – the Mate model trained on trees with manual morphosyntactic annotations
in 10 iterations, with the default heap size and the threshold of 0.3; Mate automatic
– the Mate model trained on trees with automatic morphosyntactic annotations in 10
iterations, with the default heap size and the threshold of 0.3. Validation data sets:
Manual Test – the set of 822 conversion-based test trees; Automatic Test – the set of
822 conversion-based test trees with automatically assigned morphosyntactic annota-
tions; Additional Test – the set of 100 sentences manually annotated with dependency

trees.

12Learning a parsing model on 7405 dependency structures took 11 seconds when the LIBLINEAR
learning algorithm was used and 103 seconds when the LIBSVM algorithm was used. Furthermore,
the learning algorithm has also an indirect impact on the parsing time. Parsing of 822 test dependency
structures with the LIBLINEAR-trained model took 2 seconds, while parsing of the same test set with
the LIBSVM-trained model took 17 seconds.

74 Chapter 4. Conversion-based Dependency Bank

The model Malt default was learnt with the LIBLINEAR algorithm using the built-in
stackeager parsing algorithm and the StackSwap feature model included in the Malt-
Parser distribution. Performance of the default MaltParser is given in the first row in
Table 4.1.13

FORM POS DEPREL LEMMA FEATS
Stack: TOP � � + +
Stack: TOP-1 � � + +
Stack: TOP-2 � ⇤
Stack: PRED(TOP) ⇤ +
Stack: PRED(TOP-1) +
Stack: SUCC(TOP) ⇤ +
Stack: SUCC(TOP-1) +
Input: NEXT � ⇤ ⇤
Input: NEXT+1 ⇤
Input: PRED(NEXT) ⇤
Lookahead: LOOK � � + +
Lookahead: LOOK+1 � ⇤
Lookahead: LOOK+2 � ⇤
Lookahead: PRED(LOOK) +
Lookahead: SUCC(LOOK) +
Tree: HEAD(TOP) ⇤ ⇤ +
Tree: LDEP(TOP) ⇤ ⇤ �
Tree: RDEP(TOP) ⇤ ⇤ �
Tree: HEAD(TOP-1) ⇤ ⇤ +
Tree: LDEP(TOP-1) ⇤ ⇤ �
Tree: RDEP(TOP-1) ⇤ ⇤ �

Table 4.2: Repertoire of history-based features. Rows correspond to lexical nodes in
a parser configuration: TOP – the lexical node on the top of the stack, NEXT – the next
lexical node in the remaining input, PRED(NEXT/TOP) – the lexical node immediately
preceding NEXT or TOP, SUCC(NEXT/TOP) – the lexical node immediately succeeding
NEXT or TOP, LOOK – the next plus one input lexical node, HEAD(TOP) – the head of TOP
in the partially built tree, LDEP(TOP/NEXT) – the leftmost dependent of TOP or NEXT),
RDEP(TOP/NEXT – the rightmost dependent of TOP or NEXT. Columns correspond to fea-
ture types: FORM – word form, POS – part of speech, DEPREL – dependency relation, LEMMA
– lemma, FEATS – morphological features. � – a default feature for the StackSwap fea-
ture model; + – an additional feature in the optimised feature model; ⇤ – an additional

feature tested in extended feature models.

The history-based feature model combines static features (word forms, lemmata, part
of speech tags, morphological features) available in input data and dynamic features
(dependency relations) extracted from partially built dependency trees and updated
during parsing. The baseline feature model StackSwap contains the following features:
FORM, POS and DEPREL. This baseline feature model can be extended with LEMMA and/or
FEATS features. In order to improve performance of the PolishMaltParser, we conducted
an experiment on adjusting model features. The default and additional features used in
the experiment are presented in Table 4.2. Our results indicate that the best performing
parser uses the feature model combining default features (marked with �) with addi-
tional features (marked with +). Features marked with the asterisk (⇤) were tested, but
13In this and the following paragraphs we will only consider the columns under Manual Test. The re-
sults from other columns will be referred to in the following sections.

4.6. Experiments and Results 75

they are not included in the final feature model. The feature model extended with some
additional features contributes to the improvement of Polish parsing.

As shown in the second row in Table 4.1, the optimised MaltParser achieves 90.5%
UAS and 85.4% LAS if tested against the validation trees with manual morphosyntactic
annotations. There is a significant improvement of 5 percentage points over the default
MaltParser in terms of LAS and of 2 percentage points in terms of UAS.

4.6.2 Experiment 2 – Mate Parser

In addition to experiments with the transition-based MaltParser, we conducted some
experiments with a graph-based parser. We applied the Mate dependency parser for
purposes of a comparative analysis between transition-based and graph-based parsing
systems. We used the Mate parser with standard settings – 10 iterations and the default
size of the weight vector (hence,Mate default). Since Polish admits non-projective depen-
dency structures, we also setMate parameters to decode non-projective arcs. The thresh-
old of the non-projective approximation was set to 0.3.

The Mate parser trained on the converted Polish dependency structures outperforms
the optimised MaltParser by nearly 2 percentage points in terms of LAS (see the third
row in Table 4.1). As mentioned above, we used the default size of the weight vector
(134,217,727). However, since there are only 3,132,538 nonzero values in the feature
vector, it may indicate that training data is relatively sparse.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

Threshold

N
on
-p
ro
je
ct
iv
e
ar
cs

91.6

91.8

92

92.2

92.4

92.6

92.8

93
U
A
S
[%
]

Figure 4.15: The Impact of the non-projective approximation thresholds (x-axis) on
the number of non-projective arcs in the parsed test trees (blue y-axis on the left) and

on parsing performance measured in UAS (orange y-axis on the right).

76 Chapter 4. Conversion-based Dependency Bank

We also conducted an experiment to determine whether the approximation threshold of
0.3 is the best choice for Polish. Experiments carried out by Bohnet (2010) indicate that
a threshold of about 0.3 is the best choice for German, English and Czech. Since both
Czech and Polish belong to the group of West Slavic languages, we assume that they are
similar in terms of their syntactic structures and should allow for a similar amount of
non-projective dependency arcs. In accordance with the information on theMate website
(http://code.google.com/p/mate-tools/wiki/Training), a higher threshold causes
fewer non-projective arcs. However, our experiments show the opposite (see Figure 4.15).
Along with increasing the threshold value, we may notice an increase in the number of
non-projective arcs in parsed dependency structures. Since our test set of 822 dependency
trees contains only 38 non-projective arcs (i.e., about 0.46% of all 8289 arcs), the smaller
thresholds ensure better parsing results.

We have to admit that diÄerences in performance (UAS scores) of parsers trained with
diÄerent thresholds are relatively insignificant. The Mate parser trained with the thresh-
old of 0.3 achieves the best parsing results. It might be assumed at first that it is due
to the number of reordered arcs (i.e., 25) which is closest to the number of gold stan-
dard non-projective arcs (38). However, a cursory analysis showed that non-projective
arcs were correctly reorganised only in one test dependency structure. We also analysed
dependency trees which were parsed with the Mate parser trained with the threshold of
0.5. These trees contain 104 non-projective arcs. Even if the number of non-projective
arcs in parsed trees is significantly higher, we did not find any tree in which arcs were
reorganised correctly. Therefore, even if the number of automatically reorganised non-
projective arcs is relatively high, they do not cover the gold standard non-projective arcs.
This confirms our conjecture that training data may not be suÖcient to train a parser
that correctly reorganises arcs in dependency trees.

4.6.3 Evaluation against Automatic and Additional Test Sets

Supervised dependency parsers build on correct dependency trees in the first place, but
also on correct parts of speech and morphological features underlying dependency trees.
Correct trees are essential for training parsers. Correct morphosyntactic annotations
of tokens, in turn, are substantial both for training and parsing. But what happens in
the parsing scenario if a raw text is first automatically tokenised and annotated with part
of speech tags and morphological features, and then processed by a dependency parser
trained on perfectly annotated data? It may not be an important issue for English,
which is a language with a wide range of highly accurate tools. However, for languages
like Polish it is certainly a problem since state-of-the-art tokenisers and taggers are still
far from being accurate.

The evaluation scenario presented above assumes that sentences given to the parser are
annotated with correct parts of speech, lemmata and morphological features. However,

http://code.google.com/p/mate-tools/wiki/Training

4.6. Experiments and Results 77

sentences which are parsed in real NLP tasks are typically annotated automatically
with state-of-the-art taggers. In order to evaluate parser performance in a more real-
istic scenario, manual morphosyntactic annotations in the test trees are replaced with
annotations generated automatically by the Pantera tagger (AcedaÒski, 2010).

The results of this evaluation task are given in the second column (Automatic Test) in
Table 4.1. When tested against the set of 822 converted sentences with automatically
assigned morphosyntactic annotations, a significant decrease in parsing performance can
be noticed in comparison to the results of evaluation against the test trees with manual
morphosyntactic annotations. The optimised MaltParser tested against the Automatic
Test trees achieves 85.3% UAS and 78.4% LAS. The default Mate parser performs bet-
ter (88.4% UAS and 81% LAS) than the optimised MaltParser. Parsing performance in
terms of LAS may even decrease by 7 percentage points if there is noise in token anno-
tations. It indicates that the quality of tagging and morphological analysis of individual
tokens has a crucial impact on the dependency parsing of Polish and possibly other fu-
sional languages. Nevertheless, a dependency parser which is trained on the conversion-
based trees may assign a correct governor and a correct grammatical function to about
80% of all tokens from the Automatic Test set (LAS of 81% for the Mate parser and of
78.4% for MaltParser).

Dependency parsers are trained and evaluated on trees from the same source –
the conversion-based treebank which consists of relative simple dependency structures.
In order to validate the parsers on real data, we employ the set of 100 manually anno-
tated test trees. The results of parser evaluation against the Additional Test trees are
presented in the third column in Table 4.1. The parsing results are generally worse than
those reported above. The default Mate parser obtains 76% UAS and 69.5% LAS and
thereby it outperforms the optimised MaltParser which achieves 73.3% UAS and 66.1%
LAS.

4.6.4 Experiment 3 – Automatic Malt and Mate Models

There is a significant decrease in performance of parsers evaluated against trees with
noisy morphosyntactic annotations. One solution would be to enhance the underlying
tools so that they could produce more adequate morphosyntactic analyses. Since this
solution is beyond the scope of this dissertation, we verify whether it is possible to
train a dependency parser on noisy data and whether such parser could predict better
dependency structures. Hence, we conducted another experiment that consists in train-
ing a dependency parser on noisy data, i.e., the converted trees with automatic part of
speech tags and morphological features assigned to tokens. As previously, MaltParser
was trained using the optimised feature model and the Mate parser was trained in 10
iterations, with the default heap size and the non-projective approximation threshold of
0.3.

78 Chapter 4. Conversion-based Dependency Bank

The results achieved by these parsers are given in Table 4.1 – in the third row for
MaltParser (Malt automatic) and in the fifth row for theMate parser (Mate automatic).
There is no significant diÄerence between results of evaluation against the Manual Test
trees and the Automatic Test trees. The automatic MaltParser achieves 88.4% UAS
and 82.9% LAS if evaluated against the Manual Test trees and 87.8% UAS and 81.6%
LAS if evaluated against the Automatic Test trees. The automatic Mate parser, in
turn, achieves 91.2% UAS and 85.6% LAS if evaluated against the Manual Test trees
and 90.8% UAS and 84.7% LAS if evaluated against the Automatic Test trees. When
evaluated against the Manually Test trees, the ‘automatic’ parsers perform worse than
the parsers trained on fully correct data (Malt optimised and Mate default). When
evaluated against the Automatic Test trees, the ‘automatic’ parsers outperform parsers
trained on trees with correct morphosyntactic annotations of tokens (Malt optimised
and Mate default). The ‘automatic’ parsers evaluated against the Additional Test trees
perform rather poorly but at least better than the defaultMate parser and the optimised
MaltParser.

These results show that it is possible to train dependency parsers on possibly noisy data.
The parser trained on the converted trees with automatically annotated tokens analyses
both manually and automatically annotated sentences almost equally well.

4.6.5 Evaluation of Individual Relation Labels

As the right choice of dependency labels aÄects the parsing quality measured with the la-
belled attachment score (LAS), we evaluate parsers for appropriateness of labels assigned
to dependency relations in parse trees. Individual dependency labels are evaluated in
the Manual Test trees and in the Automatic Test trees in terms of precision, recall and
f-measure. Precision is the empirical probability that a label induced by a parser is cor-
rect. Recall is the empirical probability that a correct label is induced. F-measure, in
turn, is the harmonic mean of precision and recall. Results are presented in two tables:
Table 4.3 for dependency labels assigned by parsers trained on the converted trees with
manually annotated tokens (Malt optimised and Mate default) and Table 4.4 for labels
assigned by parsers trained on the converted trees with automatically annotated tokens
(Malt automatic and Mate automatic).

4.6. Experiments and Results 79

D
ep
en
d
en
cy

M
an
u
al
T
es
t

A
u
to
m
at
ic
T
es
t

R
el
at
io
n

M
al
t
op
ti
m
is
ed

M
at
e
d
ef
au
lt

M
al
t
op
ti
m
is
ed

M
at
e
d
ef
au
lt

L
ab
el

F
re
qu
en
cy

pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e

ad
ju
nc
t

21
85

0.
80

0.
83

0.
81

0.
82

0.
85

0.
83

0.
72

0.
78

0.
75

0.
72

0.
81

0.
76

co
m
p

13
11

0.
89

0.
90

0.
90

0.
90

0.
90

0.
90

0.
88

0.
85

0.
86

0.
87

0.
83

0.
85

pu
nc
t

11
59

0.
85

0.
87

0.
86

0.
87

0.
90

0.
89

0.
78

0.
81

0.
80

0.
83

0.
87

0.
85

pr
ed

77
0

0.
95

0.
92

0.
94

0.
96

0.
94

0.
95

0.
91

0.
88

0.
89

0.
94

0.
92

0.
93

su
bj

60
8

0.
91

0.
90

0.
90

0.
92

0.
93

0.
92

0.
80

0.
74

0.
77

0.
83

0.
78

0.
80

co
nj
un
ct

45
5

0.
77

0.
81

0.
79

0.
85

0.
84

0.
84

0.
68

0.
76

0.
72

0.
80

0.
80

0.
80

ob
j

41
9

0.
87

0.
90

0.
88

0.
89

0.
91

0.
90

0.
72

0.
78

0.
75

0.
79

0.
78

0.
78

ob
j
th

19
7

0.
87

0.
76

0.
81

0.
87

0.
76

0.
81

0.
73

0.
65

0.
69

0.
80

0.
68

0.
73

re
fl

16
6

0.
96

0.
99

0.
97

0.
96

0.
99

0.
98

0.
95

0.
97

0.
96

0.
96

0.
98

0.
97

ne
12
0

0.
78

0.
53

0.
63

0.
80

0.
50

0.
61

0.
54

0.
22

0.
31

0.
74

0.
27

0.
39

ne
g

11
9

1.
00

0.
99

1.
00

0.
99

0.
99

0.
99

1.
00

0.
99

1.
00

0.
99

0.
99

0.
99

co
m
p
in
f

11
2

0.
94

0.
91

0.
92

0.
94

0.
91

0.
93

0.
88

0.
82

0.
85

0.
92

0.
89

0.
90

co
m
p
fin

10
1

0.
78

0.
85

0.
81

0.
84

0.
81

0.
83

0.
69

0.
74

0.
72

0.
80

0.
74

0.
77

pd
10
1

0.
84

0.
67

0.
75

0.
82

0.
65

0.
73

0.
76

0.
65

0.
70

0.
76

0.
61

0.
68

m
w
e

86
0.
94

0.
79

0.
86

0.
97

0.
86

0.
91

0.
80

0.
45

0.
58

0.
85

0.
51

0.
64

it
em

65
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

co
m
pl
m

60
0.
87

0.
87

0.
87

0.
89

0.
92

0.
90

0.
87

0.
87

0.
87

0.
88

0.
90

0.
89

ag
lt

59
0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
96

0.
95

0.
96

au
x

51
0.
83

0.
96

0.
89

0.
84

0.
94

0.
89

0.
80

0.
92

0.
85

0.
84

0.
92

0.
88

ap
p

43
0.
68

0.
44

0.
53

0.
69

0.
51

0.
59

0.
54

0.
28

0.
37

0.
61

0.
32

0.
42

ab
br
ev
pu
nc
t

29
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
90

0.
62

0.
73

0.
90

0.
62

0.
73

co
or
d

26
0.
64

0.
61

0.
63

0.
70

0.
61

0.
65

0.
56

0.
58

0.
57

0.
64

0.
54

0.
58

co
or
d
pu
nc
t

26
0.
31

0.
77

0.
44

0.
31

0.
73

0.
44

0.
25

0.
58

0.
34

0.
25

0.
61

0.
35

co
nd

11
0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

0.
91

co
m
p
ag

9
0.
87

0.
78

0.
82

0.
87

0.
78

0.
82

0.
87

0.
78

0.
82

0.
87

0.
78

0.
82

pr
e
co
or
d

1
0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

av
er
ag
e:

0.
85

0.
85

0.
85

0.
87

0.
87

0.
87

0.
78

0.
79

0.
78

0.
81

0.
81

0.
80

T
a
b
l
e
4
.
3
:
P
ar
si
ng
pe
rf
or
m
an
ce
in
te
rm
s
of
ac
cu
ra
cy
of
in
di
vi
du
al
de
pe
nd
en
cy
ty
pe
s
as
si
gn
ed
by
M
al
tP
ar
se
r
(M
al
t
op
ti
m
is
ed
)
an
d
th
e
M
at
e
pa
rs
er

(M
at
e
de
fa
ul
t)
tr
ai
ne
d
on
th
e
co
nv
er
te
d
de
pe
nd
en
cy
st
ru
ct
ur
es
w
it
h
m
an
ua
lly
an
no
ta
te
d
to
ke
ns
.
V
al
id
at
io
n
se
ts
:
M
an
ua
l
T
es
t
–
th
e
se
t
of
82
2

co
nv
er
si
on
-b
as
ed
de
pe
nd
en
cy
st
ru
ct
ur
es
w
it
h
m
an
ua
lm
or
ph
os
yn
ta
ct
ic
an
no
ta
ti
on
s
of
to
ke
ns
;A
ut
om
at
ic
T
es
t
–
th
e
se
t
of
82
2
co
nv
er
te
d
de
pe
nd
en
cy

st
ru
ct
ur
es
w
it
h
au
to
m
at
ic
m
or
ph
os
yn
ta
ct
ic
an
no
ta
ti
on
s
of
to
ke
ns
;a
ve
ra
ge
–
w
ei
gh
te
d
ar
it
hm
et
ic
m
ea
n.

80 Chapter 4. Conversion-based Dependency Bank

D
ep
en
d
en
cy

M
an
u
al
T
es
t

A
u
to
m
at
ic
T
es
t

R
el
at
io
n

M
al
t
au
to
m
at
ic

M
at
e
au
to
m
at
ic

M
al
t
au
to
m
at
ic

M
at
e
au
to
m
at
ic

L
ab
el

F
re
qu
en
cy

pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e

ad
ju
nc
t

21
85

0.
77

0.
81

0.
79

0.
79

0.
85

0.
82

0.
76

0.
79

0.
78

0.
79

0.
83

0.
81

co
m
p

13
11

0.
88

0.
89

0.
88

0.
90

0.
90

0.
90

0.
87

0.
88

0.
87

0.
91

0.
89

0.
90

pu
nc
t

11
59

0.
82

0.
86

0.
84

0.
85

0.
91

0.
88

0.
81

0.
85

0.
83

0.
85

0.
90

0.
88

pr
ed

77
0

0.
92

0.
90

0.
91

0.
95

0.
94

0.
94

0.
92

0.
90

0.
91

0.
95

0.
93

0.
94

su
bj

60
8

0.
87

0.
88

0.
87

0.
89

0.
90

0.
90

0.
81

0.
82

0.
81

0.
84

0.
87

0.
85

co
nj
un
ct

45
5

0.
75

0.
76

0.
76

0.
82

0.
81

0.
82

0.
74

0.
74

0.
74

0.
80

0.
80

0.
80

ob
j

41
9

0.
83

0.
86

0.
85

0.
85

0.
85

0.
85

0.
76

0.
80

0.
78

0.
82

0.
77

0.
79

ob
j
th

19
7

0.
81

0.
69

0.
75

0.
81

0.
73

0.
77

0.
83

0.
64

0.
72

0.
79

0.
69

0.
73

re
fl

16
6

0.
96

0.
99

0.
97

0.
96

0.
99

0.
98

0.
96

0.
97

0.
97

0.
96

0.
99

0.
97

ne
12
0

0.
75

0.
31

0.
44

0.
79

0.
37

0.
50

0.
78

0.
47

0.
58

0.
82

0.
53

0.
65

ne
g

11
9

1.
00

0.
99

1.
00

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

co
m
p
in
f

11
2

0.
90

0.
87

0.
89

0.
93

0.
90

0.
91

0.
91

0.
87

0.
89

0.
92

0.
90

0.
91

co
m
p
fin

10
1

0.
72

0.
82

0.
77

0.
81

0.
78

0.
79

0.
74

0.
80

0.
77

0.
78

0.
78

0.
78

pd
10
1

0.
84

0.
67

0.
75

0.
80

0.
67

0.
73

0.
78

0.
62

0.
69

0.
79

0.
63

0.
70

m
w
e

86
0.
99

0.
52

0.
68

0.
91

0.
56

0.
69

0.
94

0.
70

0.
80

0.
96

0.
84

0.
89

it
em

65
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

co
m
pl
m

60
0.
85

0.
87

0.
86

0.
82

0.
82

0.
82

0.
86

0.
85

0.
86

0.
82

0.
83

0.
83

ag
lt

59
0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

au
x

51
0.
79

0.
98

0.
88

0.
81

0.
90

0.
85

0.
79

0.
96

0.
87

0.
80

0.
88

0.
84

ap
p

43
0.
58

0.
44

0.
50

0.
76

0.
44

0.
56

0.
70

0.
44

0.
54

0.
69

0.
51

0.
59

ab
br
ev
pu
nc
t

29
0.
96

0.
96

0.
96

0.
93

1.
00

0.
97

0.
93

1.
00

0.
97

1.
00

1.
00

1.
00

co
or
d

26
0.
62

0.
58

0.
60

0.
82

0.
54

0.
65

0.
67

0.
61

0.
64

0.
81

0.
50

0.
62

co
or
d
pu
nc
t

26
0.
38

0.
65

0.
48

0.
41

0.
69

0.
51

0.
32

0.
54

0.
41

0.
40

0.
73

0.
52

co
nd

11
0.
91

0.
91

0.
91

0.
69

0.
82

0.
75

0.
91

0.
91

0.
91

0.
75

0.
82

0.
78

co
m
p
ag

9
0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

0.
89

pr
e
co
or
d

1
0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

av
er
ag
e:

0.
82

0.
83

0.
82

0.
85

0.
86

0.
85

0.
81

0.
81

0.
81

0.
84

0.
84

0.
84

T
a
b
l
e
4
.
4
:
P
ar
si
ng
pe
rf
or
m
an
ce
in
te
rm
s
of
ac
cu
ra
cy
of
in
di
vi
du
al
de
pe
nd
en
cy
ty
pe
s
as
si
gn
ed
by
M
al
tP
ar
se
r
(M
al
t
au
to
m
at
ic
)
an
d
th
e
M
at
e

pa
rs
er
(M
at
e
au
to
m
at
ic
)
tr
ai
ne
d
on
th
e
co
nv
er
te
d
de
pe
nd
en
cy
st
ru
ct
ur
es
w
it
h
au
to
m
at
ic
al
ly
an
no
ta
te
d
to
ke
ns
.
V
al
id
at
io
n
se
ts
:
M
an
ua
l
T
es
t
–
82
2

co
nv
er
te
d
de
pe
nd
en
cy
st
ru
ct
ur
es
w
it
h
m
an
ua
lly
as
si
gn
ed
pa
rt
s
of
sp
ee
ch
an
d
m
or
ph
ol
og
ic
al
fe
at
ur
es
;A
ut
om
at
ic
T
es
t
–
th
e
sa
m
e
se
t
of
82
2
co
nv
er
te
d

de
pe
nd
en
cy
st
ru
ct
ur
es
w
it
h
pa
rt
s
of
sp
ee
ch
an
d
m
or
ph
ol
og
ic
al
fe
at
ur
es
au
to
m
at
ic
al
ly
au
to
m
at
ic
al
ly
pr
ed
ic
te
d
by
th
e
P
an
te
ra
ta
gg
er
;
av
er
ag
e
–

w
ei
gh
te
d
ar
it
hm
et
ic
m
ea
n.

4.6. Experiments and Results 81

Generally, the Mate parser assigns labels more precisely than MaltParser – the weighted
arithmetic means of precision and recall of the Mate parser are higher than the weighted
arithmetic means of precision and recall of MaltParser. Furthermore, regardless of data
which the parser is trained on (i.e., trees with noise or without noise in token anno-
tations), parsers assign more accurate labels to arcs in trees predicted for manually
annotated sentences (Manual Test) than to arcs in trees predicted for automatically
annotated sentences (Automatic Test). However, the diÄerence is insignificant if we
compare average F-scores obtained by MaltParser – 0.82 vs. 0.81 – and the Mate parser
– 0.85 vs. 0.84 – trained on the trees with automatically annotated tokens. The worst
labelling results are obtained in the parsing scenario in which parsers were trained on
gold standard trees and evaluated against the Automatic Test trees. It is important to
note that this parsing scenario is most commonly applied to sophisticated NLP tasks.

Dependency relations occurring more than 100 times in the test trees (except for the ne
relation type) are assigned labels quite accurately with precision and recall often above
80% or even 90%. Furthermore, a lot of less frequent labels have precision and recall
above 70%. The results show that there are some dependency relations particularly easy
to label, e.g., refl, neg, or aglt. On the other hand, there are also syntactic phenomena
which are problematic to annotate and to label, e.g., apposition (app), coordination
(coord, coord punct, pre coord) or named entites (ne). The reasons for the poor qual-
ity of labelling these constructions could be that they are too sparsely represented in
the training corpus or they are not uniquely identified based on their morphosyntactic
characteristics.

Precision and recall of several dependency labels are not only relatively high but also
often balanced. Hence, the assigned labels are accurate as the majority of them are
appropriate and complete as the majority of appropriate labels are induced. However,
there are some dependency labels with unbalanced precision and recall values. In some
cases, e.g., coord, ne, pd, mwe, or app, precision is much higher than recall. It suggests
that only a small part of relations of a particular type is assigned a relevant label. Other
relations of this type are labelled with incorrect grammatical functions. In the case of
coord punct, in turn, precision is much lower than recall. It means that multiple relations
are labelled with the grammatical function coord punct, but many of these labels are
wrongly assigned.

There are also two dependency labels – item and pre coord – which obtain precision
and recall of 0. The grammatical function item was not automatically assigned during
constituency-to-dependency conversion. It was added later when a part of the treebank
was manually corrected. Thus, the item label only appears in the first 1000 dependency
trees. Since 822 of these manually corrected trees constitute the validation set, it is prob-
able that there are only a few (or none) item instances in the training set. The pre coord
relation has only one realisation in the test trees. It is identified by the Mate parser but
not by MaltParser.

82 Chapter 4. Conversion-based Dependency Bank

4.7 Constituency-to-Dependency Conversion: Related
Work

With increasing interest in data-driven dependency parsing, new methods of gathering
annotated data have been explored since manual annotation of large corpora is a very
expensive and time-consuming process. As constituency treebanks extended with de-
pendency information are available for some languages, e.g., the Penn Treebank II for
English (Marcus et al., 1994) or the TIGER Treebank for German (Brants et al., 2002), it
may be a reasonable solution to convert extended phrase structure trees into dependency
structures.

The basic constituency-to-dependency conversion procedure usually consists of three
steps. First, heads of all constituents are identified in a phrase structure tree. In order
to find a head of a constituent, a head percolation table that consists of priority lists
based on constituent types is employed. The concept of a head percolation table was
introduced by Magerman (1994, 1995) to improve performance of a constituent parser.
Afterwards, Magerman’s rules were modified by Collins (1999, 2003) to further improve
the parsing performance. An example rule (taken from Collins, 1999, Appendix A) – VP
! TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP – determines which of VP’s
children should be its head. The head selection algorithm iterates over VP’s children
starting from the left-most child and tries to find a child of the type TO. If it does not
find any TO child, it searches for the next type – VBD. The algorithm continues searching
until the first head child with a type from the priority list is found. If none of the types
are found, the left-most child is chosen as the default head.

Yamada and Matsumoto (2003) propose some further modifications of the table leading
to an improvement of the conversion procedure. Choi and Palmer (2010) design a new set
of head percolation rules to better identification of heads. Gelbukh et al. (2005), in turn,
define some heuristic rules which mark a head in automatically extracted patterns. These
patterns are actually combinations of phrase structure categories of nodes and of their
children nodes. The concept of a pattern is similar to the idea of the head percolation
table, but patterns are obtained automatically from constituent trees.

In the procedure of converting Polish constituent trees into dependency trees, which
is described in the previous sections of this chapter, we did not have to define head
selection rules for all constituents since heads of many phrase structures were already
denoted. Head selection heuristics covering other cases are described in Section 4.3 Head
Selection.

Second, each token of a constituent tree is connected with its head token. Starting
from a token and following child-parent links in the bottom-up direction, the highest
constituent headed by this token is found. The current token depends on the head token
of the parent of the found constituent and this relation is transferred to a dependency

4.7. Constituency-to-Dependency Conversion: Related Work 83

tree. For example, in order to find a governor of the token they in the constituent tree
in Figure 4.16, the highest constituent NP headed by this token is identified. The parent
of the constituent NP is labelled with S. The head token wonder of the S constituent is
identified as the governor of they. Hence, the dependency relation they SUB ���wonder is
transferred to the dependency tree (the label of the dependency relation SUB is derived
from the grammatical function SBJ encoded in the Penn tree). Section 4.2.2 Unlabelled
Dependency Relations describes the implementation of this step for Polish.

Figure 4.16: The conversion of the top constituent tree from the Penn Treebank into
the bottom dependency tree using the Penn2Malt procedure. The example trees are

taken from Johansson and Nugues (2007).

Third, converted dependency relations are labelled with appropriate grammatical func-
tions. The earliest research on constituency-to-dependency conversion paid more atten-
tion to the accurate selection of constituents’ heads and kept aside the issue of appropri-
ate labelling dependency relations. Therefore, converted dependency structures remained
unlabelled. First methods of inferring grammatical functions used to annotate arcs in
converted dependency structures were proposed by Nivre (2006) and de MarneÄe et al.
(2006). The Penn2Malt converter by Nivre (2006) is a reimplementation of the con-
version model by Yamada and Matsumoto (2003) with some heuristic rules to label arcs
with appropriate dependency types. In order to label dependencies with grammatical
functions, de MarneÄe et al. (2006) propose a set of hand-crafted rules using tregex
patterns (Levy and Andrew, 2006). The conversion-based Polish dependency structures
were labelled with rules described in Section 4.2.3 Labelling Dependency Relations.

Further modifications of the conversion procedure by Yamada and Matsumoto (2003)
are proposed by Johansson and Nugues (2007). Johansson and Nugues notice that not
all of the syntactic facts encoded in the Penn Treebank II are taken into account in
the previous conversion approaches. For example, phenomena such as wh-movement, top-
icalisation, discontinuous constituents, it-clefts, expletives, gaping, etc., annotated with
secondary edges in the Penn Treebank II are not converted into dependency structures.
Hence, they propose a method of converting these phenomena. However, as secondary

84 Chapter 4. Conversion-based Dependency Bank

edges are hard to encode in the format used byMaltParser andMST parser employed in
their experiments, the conversion is conducted at the expense of primary edges. A mod-
ification of dependency structures consists in converting some of the phrase structure’s
secondary edges into dependency arcs (non-projective dependency structures are per-
mitted) and deleting some primary edges to keep dependency graphs in accordance with
the well-formedness dependency principles. Johansson and Nugues (2007) also introduce
some further modifications to head percolation rules defined by Yamada and Matsumoto
(2003). First of all, rules are based not only on constituent types but also on grammatical
functions and the context of a phrase. Furthermore, the presented repertoire of depen-
dency labels is extended in comparison to the set of labels used by the Penn2Malt
converter. Property labels (e.g., loc – location, mnr – manner) describing properties
of constituents in Penn trees and structural labels (e.g., exp – expletive, clf – cleft,
gap – ellipses in coordinate structures) are established as dependency types. Results
of experiments performed by Johansson and Nugues (2007) indicate that the modified
conversion procedure and the extended set of grammatical functions cause a decrease in
parsing performance, but they have a positive impact on semantic role classification.

Apart from experiments on converting the English Penn Treebank (cf. Yamada and Mat-
sumoto, 2003; Nivre, 2006; Johansson and Nugues, 2007), constituency-to-dependency
conversion is employed to derive dependency structures from constituency treebanks in
other languages, e.g., from the German NEGRA corpus (Bohnet, 2003), from the Spanish
Cast3LB treebank (Gelbukh et al., 2005), from the Swedish Talbanken treebank (Nivre
et al., 2006b) and from the Bulgarian BulTreeBank (Chanev et al., 2006; Marinov, 2009).

4.8 Partial Conclusions

The procedure of converting Polish constituent trees described in this chapter is con-
sistent, to a certain degree, with conversion procedures proposed for English and many
other languages. However, as considered languages vary, the head selection rules and
labelling rules had to be designed for Polish anew. We would like to draw attention to
the structural complexity of the labelling rules. Since Polish is a fusional language with
numerous inflected forms, rules could not solely rely on parts of speech and topologi-
cal features as in English or other isolated languages, but they also took into account
morphological features of related tokens, subcategorisation information and types of
construction rules used to build the source constituent trees.

Unlike previous conversion approaches, we did not have to focus first and foremost on
the definition of head selection rules since information about the head of the majority
of phrase structures was already encoded in Sk≥adnica trees. The availability of phrase
structure heads was undoubtedly an important advantage in the first phase of the con-
version procedure. On the other hand, the pre-defined phrase structure heads made it

4.8. Partial Conclusions 85

necessary to rearrange acquired dependency trees, so that they became as consistent
with the dependency annotation schema as possible. Application of the rearrangement
rules is a novelty compared to the aforementioned conversion approaches.

In order to evaluate the acquired dependency structures, we performed an extrinsic
evaluation that consisted in training a dependency parser on the converted trees and
in evaluating performance of the parser. As the evaluation experiments showed, it is
possible to train a Polish dependency parser on a relatively small set of constituency-
to-dependency converted trees. The best Polish parser trained with the Mate parsing
system achieved quite high performance: 92.7% UAS and 87.2% LAS.

However, there was a precondition that the Mate parser was trained and evaluated on
trees with manually annotated tokens. As this precondition cannot be met in the case
of Polish sentences which are fully automatically processed, we conducted an evalua-
tion experiment that consisted in evaluation of the parser against the conversion-based
test trees with tokens annotated with automatically predicted part of speech tags and
morphological features. In this evaluation setting, performance of the parser decreased
even by 6 percentage points. It indicates that morphological analysis and tagging that
precede dependency parsing have a significant impact on parser performance.

Furthermore, if a dependency parser was trained on the conversion-based trees with
automatically annotated tokens, it parsed sentences with manually and automatically
annotated tokens almost equally well. The parser trained on the converted trees with
automatically annotated tokens performed as well as the parser trained on the con-
verted trees with manually annotated tokens if evaluated against the test trees with
automatically annotated tokens.

Presented parsing models were also evaluated against an additional validation set of
100 complex dependency structures. In this more realistic evaluation scenario, the Mate
parser trained on the converted trees with automatically assigned morphosyntactic an-
notations of tokens beat other dependency models, reaching 76.6% UAS and 70.1% LAS.
To the best of our knowledge, this kind of comparative analysis has not been carried out
with respect to Polish syntactic parsers.

Chapter 5

Projection-based Dependency
Bank

Supervised methods are very well-established in data-driven dependency parsing and
they give the best results so far. However, the manual annotation of training data re-
quired by supervised frameworks is a very time-consuming and expensive process. For
this reason, intensive research has been conducted on unsupervised grammar induction.
However, performance of unsupervised dependency parsers is still significantly below per-
formance of supervised systems. Moreover, performance of unsupervised parsers is also
substantially below performance of systems based on cross-lingual projection methods
(McDonald et al., 2011).

The cross-lingual projection of linguistic information (so-called annotation projection) is
an alternative method of annotating sentences with dependency trees in less researched
languages. The method builds on the assumption that the dependency analysis of a sen-
tence largely carries over to its translation since valency relations encoded in dependency
structures are relatively invariant across languages. A sentence in one language and its
translation in another language tend to have not only parallel semantic structures but
also correlated syntactic structures. The cross-lingual projection of source language de-
pendencies to the target language does not take into account the order of words. It is
thus perfectly suited for projection between languages with diÄerent word order.

The main idea behind the cross-lingual dependency projection is to automatically parse
source sentences and to project acquired dependency trees to equivalent target sentences.
Since relations encoded in dependency structures connect tokens, projection of these
relations may be suÖciently guided by word alignment which links corresponding tokens
in parallel sentences. In the ideal case, projected dependency relations constitute valid
dependency structures of the target sentences. Projected annotations can be used to
train dependency parsers for the target language.

87

88 Chapter 5. Projection-based Dependency Bank

This chapter describes a novel weighted induction method of obtaining Polish depen-
dency structures. In a parallel English-Polish corpus, the English side is automatically
annotated with a syntactic parser and resulting annotations are transferred to Polish
equivalent sentences. Dependencies are projected via an extended set of word alignment
links. Projected arcs are initially weighted according to the certainty of word alignment
links used in projection. In the induction step, initial arc weights are recalculated using
a method based on the expectation maximisation (EM) algorithm. Maximum spanning
trees that conform to requirements of well-formed dependency trees are then extracted
from digraphs containing all projected arcs with recalculated weights. Dependency trees
selected from EM-scored digraphs constitute a treebank that may be employed to train
dependency parsers for Polish. The novelty of the method proposed here consists in in-
volving a weighting factor in processes of projecting dependency relations and inducing
dependency trees.

The weighted induction procedure consists of two successive processes – projection of
dependency relations (Section 5.1 Weighted Projection) followed by inference of depen-
dency structures from projected directed graphs (Section 5.2 Weighted Induction). In-
duced trees constitute a bank of unlabelled Polish dependency structures. To create
a bank of labelled dependency structures, arcs of induced trees are assigned labels corre-
sponding to grammatical functions of dependents (Section 5.3 Rule-based Adaptation of
Polish Dependency Structures). The final dependency treebank is employed for training
a Polish dependency parser (Section 5.4 Experimental Setup and Section 5.5 Experiments
and Results). This work is set within the mainstream of the study on cross-lingual infor-
mation projection. Some relevant or important dependency projection frameworks are
thus outlined in Section 5.6 Annotation Projection: Related Work. Section 5.7 Partial
Conclusions closes this chapter.

5.1 Weighted Projection

This section describes weighted projection which is the first step in the entire process
of acquiring valid Polish dependency structures. As word alignment is a crucial issue
in projection of linguistic information, Section 5.1.1 Bipartite Alignment Graph starts
with a presentation of the idea of word alignment and some related issues. Subsequently,
the concept of bipartite alignment graph is outlined. Instead of projecting relations via
links of single word alignment, dependency relations are projected via links gathered
from diÄerent automatic word alignments and extended with some additional links.
The extended set of alignment links that connect tokens of parallel sentences consti-
tutes a bipartite alignment graph. Bipartite edges are weighted with scores indicating
their certainty. The next main topic of this section is the weighted projection proce-
dure outlined in Section 5.1.2 Projection of Dependency Relations. English relations are

5.1. Weighted Projection 89

projected via weighted edges of bipartite alignment graphs to the equivalent Polish sen-
tences even if it results in directed graphs with multiple arcs between two tokens, i.e.,
multi-digraphs. A multi-digraph spans over all tokens of a Polish sentence. All projected
arcs in the multi-digraph are weighted with initial scores using an intuitive weighting
method which is almost solely based on weights of bipartite edges and the projection fre-
quency. The heuristic of assigning initial weights to arcs of the projected multi-digraph
is described in Section 5.1.3 Intuitive Weighting Method.

5.1.1 Bipartite Alignment Graph

The idea of word alignment comes from the large field of statistical machine translation.
Word alignment as introduced by Brown et al. (1993) is an intermediate result of sta-
tistical machine translation. DiÄerent alignment models have been defined since then,
e.g., IBM models (Brown et al., 1993) or a hidden Markov model (Vogel et al., 1996).
An alignment model determines minimal translational correspondences between words
of a sentence in one language and words of a sentence in another language. However,
alignments are not given in advance. They need to be revealed in the translation process.
Hence, alignments between corresponding sentences are treated as hidden variables in
the alignment model. Parameters of the alignment model with hidden variables may
be estimated with the expectation maximisation algorithm (Dempster et al., 1977). In
the expectation step, the current model is applied to data and missing alignment links
between foreign and target words are filled with the most likely values. In the maximi-
sation step, counts for word translations over all weighted alignments are collected and
a new probability distribution is estimated given these counts. The model parameters
are updated and the updated model can be used in the next iteration. IBM models may
run successively, i.e., parameters of the current model are given as prior parameters of
a higher-order model. The Viterbi alignment, which is assigned the highest probability
in the last iteration, constitutes the output of model learning.

The bilingual word alignment is a mapping between any foreign sentence f = f1, ..., fm

and its target translation e = e1, ..., e
l

in a bitext.1 An alignment a indicates which
target word e originates from which foreign word f . An alignment a may be defined as
a sequence of values {a1, a2, ..., am} for each foreign word f

j

, where each a
j

indicates
the index of the aligned target word e

i

, for i 2 {1, ..., l}. Any of alignment variables a
j

can take any value in {0, 1, ..., l}, where 0 corresponds to an extra word null. Since
1Tiedemann (2011, p. 7) gives the following description of the term bitext :

A bitext B = (B
src

, B
trg

) is a pair of texts B
src

and B
trg

that correspond to each other in one way or
another. Correspondence can, for example, be translational equivalence in the case of bilingual bitexts.
Even though the indexes src and trg commonly refer to source language and target language respectively,
we usually do not require that one half of the bitext is the original source text and the other half is
the target text that has been produced on the basis of that source text. However, it is often convenient
to think of source and target texts when talking about bitexts. Correspondence between the texts is
treated as a symmetric relation between both halves of a bitext.

90 Chapter 5. Projection-based Dependency Bank

each foreign word f
j

can be aligned with a single target word e
i

or the additional
null token, there are l + 1 possible alignments for each foreign word. As there are m
words in the foreign sentence, there are (l + 1)m possible values for a, i.e., (l + 1)m

possible alignments between f and e. The idea behind the alignment model is to define
the probability distribution over the set A of all possible alignments between f and e
(see Equation (5.1)) and to compute the most likely alignment a’ (see Equation (5.2)).

p(a|f, e,m) =
p(f,a|e,m)P
a2A p(f,a|e,m)

(5.1)

a’ = argmax
a

p(a|f, e,m) (5.2)

We have already said that each foreign word f may be aligned with one target word e

or the null word. However, such alignment links are not suÖcient to cover all trans-
lational correspondences. We illustrate this with the example given in Figure 5.1. Two
top matrices correspond to the Polish-to-English word alignment (the top left matrix)
and the English-to-Polish word alignment (the top right matrix). Assuming that jest is
a translation of he’s, it is desirable to align the Polish token jest with two English tokens
he and ’s. It is possible in the English-to-Polish word alignment since any English token
may be aligned with one Polish token (or the null token), i.e., he is aligned with jest
and ’s is aligned with jest. On the other hand, it is not possible to align jest with he
and ’s in the Polish-to-English word alignment since a Polish token may be aligned with
only one English token (or the null token). Hence, the English-to-Polish word alignment
should be selected to cover translational correspondences in this sentence pair. However,
the English-to-Polish word alignment cannot cover other correspondences between these
languages since one English token may not be aligned with multiple Polish tokens (e.g.,
Eng. simply vs. Pol. po prostu, literary by just

adj

). There are well-known typological
diÄerences between considered languages2 and unidirectional word alignments are not
suÖcient to cover relevant linguistic phenomena. For example, a Polish noun marked
for genitive may correspond to an of -prepositional phrase in English (e.g., Pol. Statua
Wolnoúci, lit. Statue

nom

Liberty
gen

, vs. Eng. Statue of Liberty), a Polish prepositional
phrase may correspond to an adverb in English (e.g., aforementioned Pol. po prostu vs.
Eng. simply), the number of tokens in multiword expressions may diÄer (e.g., Pol. zgodnie
z, lit. appropriately

adv

with, vs. Eng. in accordance with), etc. It follows from the above
that unidirectional word alignment cannot cover translational correspondences between
one source token and multiple target tokens, or multiple source tokens and multiple
target tokens. It is a major limitation of IBM models that they are not able to generate
such links even if translational discrepancies between languages are frequent.
2Polish is an inflecting language with a relatively free word order; English is an isolating language

with the topological argument marking.

5.1. Weighted Projection 91

Since their conceptualisation by Brown et al. (1993), IBM models have been extended
and word alignment induced with these models has improved. In order to improve
word alignment quality and overcome the limitation of unidirectional word alignment,
a method of symmetrisation of unidirectional alignments was proposed by Och and
Ney (2003). The symmetrisation heuristic assumes that two unidirectional word align-
ments (Ae!f and Af!e) are combined together. If symmetrisation is applied as a post-
processing step of model learning, the quality of word alignment improves.

Chyba
jest
w

samochodzie
!

I th
in
k

he ’s in a ca
r
! nu
l

l

Chyba
jest
w

samochodzie
!

null

I th
in
k

he ’s in a ca
r
!

Chyba
jest
w

samochodzie
!

null

I th
in
k

he ’s in a ca
r
! nu
l

l

Figure 5.1: Symmetrisation of unidirectional word alignments: Polish-to-English word
alignment (top left matrix); English-to-Polish word alignment (top right matrix);
the symmetrisation (bottom matrix) of both unidirectional word alignments: inter-

section links – black squares, union links – black and grey squares.

The most fundamental symmetrisation methods are union and intersection (Och and
Ney, 2003). The union set contains all alignment points that occur in either of the uni-
directional word alignments (A[= Ae!f [Af!e). The intersection set contains all
alignment points coexisting in both unidirectional word alignments (A\ = Ae!f\Af!e).
The union set is characterised by high recall and low precision scores. The intersection
links, in turn, have high precision and low recall. An example of symmetrising unidirec-
tional word alignments with the union and intersection heuristics is given in the bottom
matrix in Figure 5.1.

Next to union and intersection, there exist some rather complex symmetrisation con-
cepts. The grow-diag-final-and symmetrisation method (Koehn, 2010) iteratively ex-
tends the set of established alignment links. In the first step, all intersection alignment
links are selected. Then, the set of intersection alignment links is extended with other
links from union of unidirectional word alignments. The grow step adds some links con-
necting words at least one of which is currently unaligned. The grow-links have to be
adjacent (left, right, top, bottom) to established alignment links. Similarly, the diag

92 Chapter 5. Projection-based Dependency Bank

step adds some links that connect words at least one of which is currently unaligned and
they are diagonally adjacent to already established links. The final step adds alignment
links not adjacent to established alignment links. The final-links relate two words at
least one of which is currently unaligned. In the and step, not adjacent alignment links
between two unaligned words are added. The growing method that symmetrises uni-
directional word alignments derived from the IBM model training is implemented in
the statistical machine translation system MOSES (Koehn et al., 2007).

Since we aim to project relations which are restricted to sentence boundaries, only word
alignment links within a pair of aligned parallel sentences are considered in projection
of dependency structures. In our projection scenario, we make use of both unidirectional
word alignments and the set of bidirectional word alignment links symmetrised with
the grow-diag-final-and heuristic (henceforth referred to as gdfa). The three word
alignment sets (Apl!en, Aen!pl and Agdfa) are referred to while scoring edges E =

Ven ⇥ Vpl of a complete bipartite graph BG = (Ven [Vpl, E) which is built for each
sentence pair. Since edges of the graph BG partially correspond to links from alignment
sets, we refer to BG as bipartite alignment graph. Bipartite alignment graphs are used
to project English dependencies to Polish corresponding sentences.

Vertices in a bipartite alignment graph are decomposed into two disjoint sets Ven and
Vpl corresponding to English tokens together with an additional root node and Polish
tokens with a root node respectively. Each edge (u, v) of BG has its one end u in Ven
and another one v in Vpl. Any two distinct vertices u and v, for u 2 Ven and v 2 Vpl,
are joined by an edge, i.e., every pair of graph vertices from Ven ⇥ Vpl is adjacent.

Edges in a bipartite alignment graph are labelled in accordance with their occurrence
in the three word alignment sets. If an edge connecting an English token with a Polish
token occurs in one of the word alignment sets, it is presumed to be labelled as true.
Otherwise, it is labelled as false. Since there are 3 sets of alignment links, any edge in
the bipartite alignment graph is labelled with a triple of Boolean values. The first value
corresponds to the occurrence of an edge in the Apl!en set. The second one denotes
the occurrence of an edge in the Aen!pl set. The third value stands for the occurrence
of an edge in the Agdfa set. For example, if an edge is present in all alignment sets, it
is labelled with 111; if an edge is not present in any alignment set, it is labelled with
000; if an edge only occurs in Apl!en, it is labelled with 100. An example of a complete
bipartite alignment graph is given in Figure 5.2.

There seem to be 8 possible labels for edges in bipartite graphs. However, as Agdfa links
are selected from union of both unidirectional word alignments, the label 001, which
indicates that an edge occurs in Agdfa set but not in unidirectional word alignments,
is not possible. Moreover, the label 110 is also not possible since any link occurring
in both unidirectional word alignments (therefore, in intersection of unidirectional word

5.1. Weighted Projection 93

Ven : root I think he ’s in a car !

Vpl : root Chyba jest w samochodzie !

001 011 111 010 111 111 101 111

Figure 5.2: A complete bipartite alignment graph BG := (Ven [Vpl, E) for project-
ing English dependency relations to Polish. Vertices of BG are decomposed into two
disjoint sets: Ven of English tokens together with an additional root node and Vpl of
Polish tokens with an additional root node. Every pair of graph vertices from diÄer-
ent sets are adjacent. An edge (u, v), for u 2 Ven and v 2 Vpl, indicates the alignment
correspondence between u and v. Edges E are labelled with sets of Boolean values that
indicate presence of an edge in automatically generated word alignment sets. For clar-
ity’s sake, edges which are absent in any set of word alignment links (i.e., labelled with

000) are marked grey.

alignments) is an inherent element of the Agdfa set. The following labels are thus possible
in complete bipartite alignment graphs: 111, 101, 011, 100, 010, 000.

Any dependency tree originates from a root node. The relation between the root
node and its dependent node should also be projected in order to enable inducing
proper dependency trees on the Polish side. Therefore, the additional root nodes are in
the disjoint sets of bipartite vertices, i.e., root 2 Ven and root 2 Vpl. Since the edge
between root nodes is not present in any word alignment set, it should be labelled
with 000. However, as automatic word alignment is prone to errors, we cannot exclude
that the predicate of an English sentence is aligned with a Polish token that does not
fulfil the function of the sentence predicate. If the bipartite edge between root nodes
was labelled with 000, the incorrect dependency relation would only be projected since
projection via two edges labelled with 000 is not allowed (see below). Therefore, edges
between root nodes are assigned the special label 001 in order to make projection via
these edges possible.

Labelled bipartite edges are weighted with the function w : E ! {0, 1, 2, 3}. The edge
weight w(u, v) is the sum of Boolean values on an edge label (see (5.3)). The sum of
Boolean values on each edge indicates the certainty of this edge.

w(u, v) =

8
>>>>>><

>>>>>>:

0, for edge label 000

1, for edge labels 100, 010, 001

2, for edge labels 101, 011

3, for edge label 111.

(5.3)

Weighted complete bipartite alignment graphs as one shown in Figure 5.3 are employed
to project English dependency relations to Polish.

94 Chapter 5. Projection-based Dependency Bank

Ven : root I think he ’s in a car !

Vpl : root Chyba jest w samochodzie !

1 2 3 1 3 3 2 3

Figure 5.3: A weighted complete bipartite alignment graph BG := (Ven [Vpl, E)
for projecting English dependency relations to Polish. Vertices of BG are decomposed
into two disjoint sets: Ven of English tokens with an additional root node and Vpl of
Polish tokens with an additional root node. An edge (u, v), for u 2 Ven and v 2 Vpl,
indicates the alignment correspondence between u and v. Edges E are weighted with
sums of Boolean values on edge labels. For clarity’s sake, edges which are absent in any

set of word alignment links (i.e., weighted with 0) are marked grey.

5.1.2 Projection of Dependency Relations

English dependencies are projected to Polish according the following procedure. The pro-
jection algorithm (see Algorithm 5.1) takes as input an English dependency tree Ten
and a weighted bipartite alignment graph BG. The English tree Ten = (Ven, Aen) con-
sists of a set of vertices Ven = {u0, u1, ..., um}, where u0 corresponds to the root
node, and a set of directed edges (arcs) Aen ✓ {(u 0, u, gf)|u 0, u 2 Ven, gf 2 GF} la-
belled with grammatical functions from GF. The weighted bipartite alignment graph
BG = (Ven [Vpl, E) is built of two sets of vertices Ven [Vpl and a set of weighted edges
E ✓ {(u, v, w)|u 2 Ven, v 2 Vpl, w 2 {0, 1, 2, 3}}, such that there is exactly one edge
between u and v and this edge is assigned a weight from {0, 1, 2, 3}.

Algorithm 5.1 The projection procedure.

projection(Ten, BG)

Ten = (Ven, Aen), where Ven = {u0, u1, ..., um} and Aen ✓ {(u 0, u, gf)|u 0, u 2 Ven,
gf 2 GF}

BG = (Ven [Vpl, E), where Ven = {u0, u1, ..., um}, Vpl = {v0, v1, ..., vn}, E ✓ {(u, v, w)|
u 2 Ven, v 2 Vpl, w 2 {0, 1, 2, 3}} and 8u 2 Ven 8v 2 Vpl 9!w 2 {0, 1, 2, 3} :
(u, v, w) 2 E

Apl := ;

For (u, v, w) 2 E, such that u 6= u0
Find u0 2 Ven, such that (u0, u, l) 2 Aen
For v0 2 Vpl, such that v0 6= v and (u0, v0, w0) 2 E
If w > 0 or w0 > 0
If (v0, v, l) 2 Apl, where l = (w ,w 0, gf , f)

l := (w,w0, gf , f + 1)
Else add (v0, v, (w,w0, gf , 1)) to Apl

Return (Vpl, Apl)

5.1. Weighted Projection 95

The algorithm iteratively projects arcs of an English tree to the Polish equivalent sen-
tence. For each Polish lexical node v, the algorithm finds its governor node v0 in the fol-
lowing way. First, it looks for an English non-root node u connected with the node
v in the bipartite alignment graph BG. Then, the governor node u0 of u is found in
the English dependency tree Ten. Finally, the Polish node v0 which is connected with u0

in BG is identified and recognised as the governor of v.

The arc (v0, v, l), which corresponds to the relation between tokens v0 and v and is
assigned the label l, may be added to the Polish directed graph. The only restriction is
that it is not possible to project relations via bipartite edges which are both weighted
with 0. The reason for this limitation is to avoid projection of relations considered to be
the most error prone (e.g., [I 0 jest] � [samochodzie 0 think] in Figure 5.4). However,
projection via two edges one of which is weighted with 0 is permitted in order to cover
relations between English tokens one of which is not aligned with any Polish token in
any of word alignment sets.

The projection algorithm outputs the set of Polish vertices Vpl and the set of arcs Apl
between these vertices. The set of vertices Vpl = {v0, v1, ..., vn} consists of an addi-
tional root node v0 and a set of lexical nodes {v1, ..., vn}, for each vertex v

i

corre-
sponding to the ith token of a Polish sentence S = t1, ..., tn. The vertices from Vpl

are connected with arcs from the set Apl ✓ {(v
i

, v
j

, l)|v
i

, v
j

2 Vpl, l = (w ,w 0, gf , f)}, for
w,w0 2 {0, 1, 2, 3}, gf 2 GF, f 2 N+. These two sets constitute the Polish digraph
Gpl = (Vpl, Apl) which fulfils the following requirements:

• Gpl originates from the root node v0, i.e., each node in Vpl directly or indirectly
depends on the root node,

• the root node does not have any predecessor, i.e., (v
i

, v0) /2 Apl, for all vi 2 Vpl,

• all vertices Vpl are weakly connected,3 i.e., every vertex is reachable from every
other disregarding the direction of arcs (Bang-Jensen and Gutin, 2009),

• each arc (v
i

, v
j

, l) is assigned an initial score s(v
i

, v
j

, l) 2 R estimated on the basis
of information in the label l (see Section 5.1.3 Intuitive Weighting Method).

Any projected arc is assigned a label l = (w ,w 0, gf , f), i.e., a quadruple composed of two
integer values w and w0, an English grammatical function gf and a projection frequency
f . The integer values correspond to weights of bipartite edges E connecting two related
3Each projected digraph is weakly connected. Assume that the English dependency tree is connected

and there is at least one bipartite edge which is assigned a non-zero score. Then, it is possible to project
all English arcs coming in or out of the node connected by this bipartite edge with a positive score as
arcs coming to each token of the Polish corresponding sentence. The bipartite edge linking root nodes
is always assigned a score of 1. Therefore, in the worst case when all bipartite edges linking Polish and
English tokens are assigned a score of 0, we may project at least English arcs coming out of the English
root node (see dotted arcs on the schema below).

96 Chapter 5. Projection-based Dependency Bank

English nodes with two Polish nodes. These bipartite edges are used to project an English
dependency relation to the Polish sentence. The first integer value (the dependent link
value) in the quadruple refers to the weight of a bipartite edge connecting English and
Polish tokens with the dependent status. The second integer value (the governor link
value) in the quadruple refers to the weight of a bipartite edge connecting English and
Polish tokens with the governor status. The third element is a string indicating the label
of the English dependency relation projected to Polish. The fourth element indicates
the frequency of projecting a particular relation to the same Polish tokens via equally
weighted edges in the bipartite alignment graph.

root I think he ’s in a car !

root Chyba jest w samochodzie !

pred

subj

comp

subj

x-p

spec det

obj

punct

1 2 3 1 3 3 2 3

Figure 5.4: The Polish digraph (bottom arcs) projected from the English dependency
structure (top arcs) via edges of the bipartite alignment graph (the middle edges be-
tween English and Polish nodes). The arc labels in the Polish digraph are not displayed

to preserve the clarity of presentation. x-p is short for xcomp-pred.

For example, the projected arc between the dependent node samochodzie governed by
the node w (see Figure 5.4)4 should be labelled with (2, 3, obj, 1). This label indicates

root u1 u2 ... u
m

root v1 v2 ... v
n

1

4Arcs of the projected digraph are assigned labels, but they are not displayed in the schema for
clarity’s sake.

5.1. Weighted Projection 97

that the relation is projected via two bipartite edges: the first one with the weight 2 con-
nects dependents (car and samochodzie) and the second one with the weight 3 connects
governors (in and w). The English grammatical function obj, i.e., the object function
which is fulfilled by the dependent car of the preposition in, is directly transferred to
the Polish relation and stored as the third element in the labelling quadruple. The last
element in the quadruple indicates the frequency of projecting English arcs labelled with
the same grammatical function via bipartite edges with the same governor link value
and the same dependent link value.

The projection frequency is typically equal to 1, but we may not rule out higher fre-
quency values. In Figure 5.5, the arc Historia

(0,3,adjunct,3)���������!úredniowiecza corresponds to
three adjunct arcs of the English tree: History adjunct�����!of, History adjunct�����!from, His-
tory adjunct�����!to, all of which are projected via (0,3)-weighted pairs of links. The arc
Historia

(0,3,adjunct,2)���������!po, in turn, corresponds to two adjunct arcs of the English tree:
History adjunct�����!of and History adjunct�����!from, which are projected via (0,3)-weighted pairs
of links.

root

History of Livonia from the Middle Ages to the Present Day

root Historia Inflant od úredniowiecza po czasy wspó≥czesne

PRED ADJUNCT

ADJUNCT

OBJ SPEC DET

OBJ
SPEC DET

OBJ

ADJUNCT

(0,3,ADJUNCT,3)

(0,3,ADJUNCT,2)

(3,3,ADJUNCT,1)

0 0 00 03 3

Figure 5.5: Estimation of a higher frequency value which is the last integer in quadru-
ples labelling Polish arcs. For clarity, only bipartite edges used to project the three

Polish dependency relations are displayed.

A projected digraph may have several arcs between the same two vertices (multiple
arcs). Since English relations are projected through all possible pairs of alignment links,
projected digraphs may contain diÄerently labelled multiple arcs between the same Pol-
ish nodes (see two relations between Historia and po in Figure 5.5). Therefore, we refer
to them as projected multi-digraphs.

In comparison to the number of relations directly projected via word alignment links,
projection via two edges of a bipartite alignment graph one of which is assigned a score

98 Chapter 5. Projection-based Dependency Bank

of 0 significantly increases the number of projected relations encoded as arcs in multi-
digraphs. Some of these arcs correspond to invalid Polish dependency relations, cause
noise in projected multi-digraphs and need to be filtered out. On the other hand, we want
to eliminate some translational discrepancies by extending the set of possible arcs. For
example, if we applied projection via links present in symmetrised word alignments only,
it would not be possible to acquire the correct Polish dependency tree marked with solid
bottom arcs in Figure 5.6. The English sentence I think he’s in a car! was translated into
Polish as a simple sentence Chyba jest w samochodzie!. The particle chyba expressing
a presumption corresponds to the English matrix clause I think. However, the particle
chyba cannot function as the predicate of the Polish sentence and the projected tree
marked with dotted arcs in Figure 5.6 is incorrect. In contrast to the particle chyba,
the finite verb form jest can be the sentence predicate and the arc root pred���!jest should
thus appear in the final dependency tree. This arc could be acquired if the English
relations are projected via edges of the bipartite alignment graph.

root I think he ’s in a car !

root Chyba jest w samochodzie !

1 2 3 1 3 3 2 3

Figure 5.6: Discrepancies between the gold standard Polish dependency tree (solid
bottom arcs) and the Polish dependency tree (dotted bottom arcs) projected from
the English dependency structure (top arcs) via automatically generated word align-

ment links.

A projected multi-digraph not only spans over all Polish tokens but also connects all
tokens (connected digraph). A spanning tree can be found in any connected directed
graph. Since some spanning trees are equivalent to dependency structures, the idea is to
find such spanning trees in projected multi-digraphs. The idea of searching for maximum
spanning trees in directed graphs comes from MST-based dependency parsing (McDon-
ald et al., 2005b; Kübler et al., 2009). In graph-based dependency parsing, a pre-trained
parsing model is applied to score arcs in candidate spanning trees. Then, the highest
scored spanning tree is selected as the valid dependency structure of an input sentence.
Details of the MST-based parsing are provided in Section 2.4.2 Graph-based Dependency
Parsing.

5.1. Weighted Projection 99

In our approach, we assume that there is no manually annotated data to train a model
scoring arcs in projected multi-digraphs. All arcs are projected with the same significance
and all of them may equally likely be selected as edges of a final dependency tree. Since
only some of projected arcs correspond to correct dependency relations, it is essential
to identify the most probable arcs and assign them appropriate scores. To do this, we
first assign initial weights to arcs in projected multi-digraphs (see Section 5.1.3 Intuitive
Weighting Method). The initial weights are then optimised in order to select the most
probable arcs that can constitute dependency trees (see Section 5.2Weighted Induction).

5.1.3 Intuitive Weighting Method

The main goal of the intuitive weighting method is to score arcs in projected digraphs
assuming that the weight of an arc indicates how likely is a corresponding relation. Intu-
itively, a relation between two tokens might be more important than relations between
other tokens if it is projected via bipartite edges categorised as more certain. Hence,
the intuitive weighting method is based on the hypothesis that the strength of a relation
primarily depends on scores of bipartite edges which the relation was projected through.

There are two bipartite edges which are involved in projection of a dependency relation –
one with the score w

d

connects dependents and another one with the score w
g

connects
governors. These two scores are included in the label assigned to each projected arc.
Apart from dependent and governor scores, the arc label contains information about
the English grammatical function gf and the projection frequency f. As the dependent
edge score, the governor edge score and the projection frequency are the only clues to
identify fundamental arcs, they are taken into account in estimation of initial weights of
projected arcs. The scoring function s (see (5.4)) is defined to estimate an initial weight
for any arc (v

i

, v
j

, (w
d

,w
g

, gf , f)) 2 A in a projected multi-digraph G = (V,A):

s(v
i

, v
j

, (w
d

,w
g

, gf , f)) = w

d

+ w

g

+ 2w
d

w

g

f (5.4)

The intuition behind this definition is as follows. Since dependency relations projected
via two bipartite edges one of which is assigned a score of 0 are predominantly unreliable,
they should be assigned significantly lower scores than dependency relations projected
via two bipartite edges with positive scores. Furthermore, the frequency f should not
considerable increase scores of unreliable relations which are numerous and may domi-
nate other projected relations. The initially weighted multi-digraphs provide a starting
point to induce dependency trees.

In the example in Figure 5.7, the English relation in obj��!car is projected to the Polish
corresponding sentence via all approved bipartite edge pairs. There are, among others,
the projected arc w

(2,3,obj,1)������!samochodzie and the arc jest (0,3,obj,1) ������w. The first arc is

100 Chapter 5. Projection-based Dependency Bank

projected via bipartite edges with scores higher than 0. The second arc, in turn, is
projected via two bipartite edges one of which is assigned a weight of 0. The function
s scores the unreliable second arc significantly lower than the first arc. Zero score of
the bipartite edge diminishes the weight of the second arc, but this weight is not reduced
to 0.

root I think he ’s in a car !

root Chyba jest w samochodzie !

pred

subj

comp

subj

x-p

spec det

punct

obj

1 2 3 1 3 3 2 3

3

3
17

3

2

2

2

Figure 5.7: The initially weighted projected multi-digraph (bottom arcs). For clarity’s
sake, only arcs projected from the English arc in obj��!car (marked with a thick line) are
displayed on the schema, whereas projected arcs with a score of 0 are marked with grey
lines. The projection frequency is equal to 1 in this case. x-p is short for xcomp-pred.

5.2 Weighted Induction

This section presents weighted induction which is the second step in the process of ac-
quiring Polish dependency structures. The main idea behind weighted induction is to
identify the most likely arcs in initially scored projected multi-digraphs and to assign
them appropriate weights. Using methods of selecting maximum spanning trees from
weighted directed graphs, final well-formed dependency structures (i.e., maximum span-
ning dependency trees, MSDTs) are inferred from weighted projected multi-digraphs.
Induced dependency structures may be used as data for training a Polish dependency
parser.

As noted above, projected multi-digraphs contain unreliable arcs which are predomi-
nantly projected via bipartite edges one of which is assigned a score of 0. These arcs
may cause noise in projected multi-digraphs and they are less likely to enter into final
dependency trees. Since they are numerous and may quantitatively dominate correct

5.2. Weighted Induction 101

Initially
weighted
projected
multi-
digraphs

Arcs of
k-best
MSDTs

Probability
distribution
over arcs

Multi-
digraphs with
recalculated
arc weights

Final
MSDTs

k-best MSDT
algorithm

EM selection
algorithm

recalculation
of arc weights

k-best MSDT
algorithm

Figure 5.8: Schema of the weighted induction procedure.

arcs, methods based on the frequency of arcs in projected multi-digraphs may not lead
to the identification of higher priority arcs. Therefore, we propose a method of the iden-
tification of higher priority arcs based on an EM-inspired algorithm which is trained
on a restricted set of projected arcs. A schema of the weighted induction procedure is
shown in Figure 5.8.

The set of arcs used in the EM training is restricted to arcs of k-best maximum span-
ning dependency trees found in initially weighted projected multi-digraphs. Details of
the MSDT selection procedure are described in Section 5.2.1Maximum Spanning Depen-
dency Trees. Then, the probability distribution is estimated over arcs of k -best MSDTs
using the EM-inspired selection algorithm. It should be noted that arcs are identified
by their feature representations (see Section 5.2.2 Feature Representations of Arcs).
The probability distribution over arcs, in turn, is employed to recalculate initial weights
on arcs in projected multi-digraphs. The procedures of estimating the probability distri-
bution over arcs and optimising weights of arcs in projected multi-digraphs are described
in Section 5.2.3 Recalculation of Arc Weights in Projected Multi-Digraphs. Projected
multi-digraphs with recalculated arc weights are used to induce final dependency struc-
tures. A final dependency structure of a sentence is the first well-formed dependency tree
on the list of k-best maximum spanning trees. The entire induction procedure results in
a bank of Polish unlabelled dependency structures. The following subsections describe
relevant parts of the weighted induction procedure in detail.

102 Chapter 5. Projection-based Dependency Bank

5.2.1 Maximum Spanning Dependency Trees

As known from graph theory (e.g., Diestel, 2000, p. 14), every connected graph contains
a normal spanning tree with any vertex specified as its root. The spanning tree G0 =

(V 0, E0) of the connected graph G = (V,E) is a tree, vertices V 0 of which span all of
G, i.e., V 0 = V , and edges E0 constitute a subset of E, i.e., E0 ✓ E. If edges E in G

are weighted, it is possible to select a maximum spanning tree, i.e., a spanning tree that
maximises the sum of edge weights.

Therefore, we may search for a maximum spanning tree in a weighted projected multi-
digraph G = (V,A) which fulfils the weak connectedness criterion. A maximum spanning
tree that meets the criteria of a well-formed dependency tree is referred to as maximum
spanning dependency tree (see Definition 5.1 of MSDT).

Definition 5.1. A maximum spanning tree T = (V 0,A0) extracted from a weighted
projected multi-digraph G = (V ,A), for A0 ✓ A and V 0 = V = {v0, v1, ..., vn}, where
v
i

corresponds to the ith token of a sentence S = t1, ..., tn and v0 is an additional
root node, corresponds to a valid dependency structure if v0 is the root of T , i.e.,
(v

i

, v0, l) /2 A0, for v
i

2 V 0, l 2 L, and v0 has only one successor, i.e., if (v0, vi, l) 2 A0,
then (v0, vj , l0) /2 A0, for v

i

6= v
j

. Such T is called maximum spanning dependency tree
of G.

A maximum spanning tree extracted from a weighted projected multi-digraph coincides
with a dependency structure of a sentence if it is rooted, acyclic and connected, spans
over all lexical nodes, and contains nodes which have exactly one incoming arc, except
for the root node which has no predecessor and only one successor. Hence, finding a ma-
ximum spanning dependency tree in a weighted projected multi-digraph is equivalent to
inducing a dependency structure of a sentence.

In order to find a maximum spanning tree in a weighted projected multi-digraph, we
might apply the Chu-Liu-Edmonds algorithm adapted to purposes of dependency pars-
ing by McDonald et al. (2005a). The pseudocode of this algorithm is given in Algo-
rithm 2.1, p. 18 of this dissertation. The maximum spanning tree selected with the Chu-
Liu-Edmonds algorithm (see the top tree in Figure 5.9) meets the properties of a well-
formed dependency tree. However, this MST does not correspond to a dependency struc-
ture which we want to acquire (see the bottom tree in Figure 5.9). The extracted MST
lacks some arcs corresponding to appropriate relations. Furthermore, it contains arcs
that are highly scored but invalid. In order to improve initial arc weights in projected
multi-digraphs and thereby to enable induction of more adequate dependency trees, we
propose a procedure of recalculating initial arc scores (see Section 5.2.3 Recalculation of
Arc Weights in Projected Multi-Digraphs).

The general idea behind the recalculation consists in estimation of the probability dis-
tribution over reliable arcs selected from initially weighted projected multi-digraphs and

5.2. Weighted Induction 103

root Chyba jest w samochodzie !

root Chyba jest w samochodzie !

Figure 5.9: Two dependency trees of the Polish sentence Chyba jest w samochodzie!
(Eng. ‘I think he is in a car!’): the top tree is automatically found in the initially weighted
projected multi-digraph using the Chu-Liu-Edmonds algorithm and the bottom one is

the gold standard tree.

then, in recalculation of all arc weights in projected multi-digraphs based on the esti-
mated probability distribution. A candidate for a restricted set of reliable arcs could be
a maximum spanning tree. A MST contains some reliable arcs but not necessarily all of
them. Therefore, it is essential to enlarge the set of reliable arcs which are taken into ac-
count in estimation of the probability distribution. Even if the maximum spanning tree
does not correspond to an appropriate dependency structure of a sentence (i.e., it does
not encode all required dependency relations), a proper tree may be selected as second
or next best spanning tree. In order to increase the chance of selecting all accurate arcs
that constitute a dependency tree, we do not confine the set of arcs to those building
the maximum spanning tree. Instead, we enlarge this set with arcs which are in k-best
maximum spanning dependency trees assuming that each required arc is contained in at
least one of these trees. The set of arcs in k-best maximum spanning dependency trees is
larger than the set of arcs in a maximum spanning tree. It may even contain all arcs re-
quired to build a final dependency tree. Moreover, k-best MSDTs contain less noisy arcs
then projected multi-digraphs. Therefore, arcs in k -best MSDTs are more suitable for
estimation of the probability distribution than entire projected multi-digraphs. An ex-
ample of k-best maximum spanning dependency trees selected from a initially weighted
projected multi-digraph is given in Figure 5.10.

root Chyba jest w samochodzie !

10 24 24
24

10

1

24 24

24
3

Figure 5.10: k-best MSDTs (for k = 50) selected from the initially weighted projected
multi-digraph built for the Polish sentence Chyba jest w samochodzie! (Eng. ‘I think he
is in a car!’). For clarity’s sake, arcs from the 1st MSDT (marked with solid lines) and

from the 33rd MSDT (marked with dashed lines) are only displayed.

104 Chapter 5. Projection-based Dependency Bank

In order to select k-best maximum spanning dependency trees, we apply a slightly mod-
ified version of the algorithm by Camerini et al. (1980). The pseudocode of the k -best
MSDT selection algorithm and its explanation are presented in Appendix D, p. 183
of this dissertation. The algorithm finds k-best MSDTs in a weighted directed graph
G = (V

G

, E
G

) with the set of vertices V
G

= {v0, ..., vn}, where v0 is the root node, and
the set of edges E

G

= {e1, ..., em}. All found k-best MSDTs are rooted at the same
vertex v0.

A list of k-best MSDTs of the digraph G is computed with the ranking function rank
of the k -best MSDT selection algorithm. This function is slightly modified in relation
to the original function rank which outputs a list of k-best MSTs (c.f., Camerini et al.,
1980, p. 107). In our version, some additional conditions are imposed on candidate
MSTs so that they meet properties of well-formed dependency trees. Since not all MSTs
fulfil properties of well-formed dependency trees, they are not taken into account in
estimation of the probability distribution. We reject all MSTs with multiple dependents
of the root node (see Figure 5.11) since they do not correspond to valid dependency
trees. Furthermore, if the best MST found in a multi-digraph G is ill-formed (i.e., it
has more than one arc coming out of the root node), then k-best MSDTs are not
selected from this multi-digraph at all. A cursory analysis shows that if the best MST
has multiple root dependents, it typically corresponds to a noisy dependency analysis
of a sentence. Noise may result from incorrect word alignment or an inaccurate English
tree. In order to reduce noise in training data, invalid MSTs are rejected.

root

Mapa polityczna Europy årodkowej zmienia≥a siÍ wielokrotnie .
map

nom

political Europe
gen Central change

praet refl

frequently

subj

adjunct

adjunct

ne

obj

interp

pred

pred

Figure 5.11: An invalid dependency structure of the Polish sentence Mapa polity-
czna Europy årodkowej zmienia≥a siÍ wielokrotnie. (Eng. ‘The political map of Central
Europe has changed numerous times.’) with multiple dependents of the root node

(marked with thick arrows).

The weighted induction procedure starts with the selection of P sets of k-best
MSDTs T = {T1, T2, ..., TP

} from M initially weighted projected multi-digraphs G =

{G1, ..., GM

} (see the function extractMSDTs in Algorithm 5.2). k-best MSDTs are
extracted with the k-best MSDT selection algorithm. The numberM of initially weighted
projected multi-digraphs diÄers from the number P of sets of selected k-best MSDTs
since some MSTs do not fulfil requirements of well-formed dependency trees and are

5.2. Weighted Induction 105

rejected from the EM training. Any set T
p

contains at most k-best MSDTs. Since it
may not be possible to extract k spanning trees for short sentences, k is thus the upper
bound of the number of selected MSDTs. Nevertheless, we refer to this set as k-best
MSDTs in this dissertation.

Arcs from any set of k-best MSDTs are then composed into sets of individual arcs
coming into particular nodes B = {B1, ..., BN

}. The number N of sets in B is equal
to the number of individual vertices in T (see the function prepareTrainingData in
Algorithm 5.2). The training data B is used to estimate the probability distribution over
arcs with the EM-inspired selection algorithm.

5.2.2 Feature Representations of Arcs

Arcs which are used in the EM training are represented with their features. Any projected
arc (v

h

, v
i

, (w
d

,w
g

, gf , f)) representing a dependency relation connects two vertices one
of which v

h

corresponds to the governor of the relation, while the other one v
i

is its depen-
dent. Each of related vertices represents a token in a sentence and encodes information
about the token’s lemma, part of speech tag, and morphological features. Furthermore,
any arc is assigned a label (w

d

,w
g

, gf , f) and an initial weight s(v
h

, v
i

, (w
d

,w
g

, gf , f)).
The information available in the arc label and in the related vertices may be used in
the feature representation j of the arc. The set of features identifying an arc is given
with the function fr, i.e., fr(v

h

, v
i

, (w
d

,w
g

, gf , f)) = j . Particular arcs may be denoted
by the following sets of features (or combinations of these sets):

1. surface forms of the dependent and the governor, and the grammatical function
labelling the dependency relation,

2. lemmata of the dependent and the governor, and the grammatical function,

3. part of speech tags of the dependent and the governor, and the grammatical func-
tion.

root Chyba jest w samochodzie !
lemma: chyba byÊ w samochód !
pos: qub fin prep subst interp
morph : sg.ter.imperf loc.nwok sg.loc.m3

pred

adjunct

xcomp-pred

obj

interp

Figure 5.12: A structurally valid dependency tree of the Polish sentence Chyba jest w
samochodzie! (Eng. ‘I think he is in a car!’) with arcs labelled with English grammat-
ical functions and with available token annotations: lemmata, part of speech tags and

morphological features.

106 Chapter 5. Projection-based Dependency Bank

Algorithm 5.2 The induction procedure of the final dependency tree.

Algorithm:
T := extractMSDTs(G, k)
B := prepareTrainingData(T)
G0 := updateWeights(G, B, t)
T 0 := extractMSDTs(G0, 1)
Return T 0 # the final set of maximum spanning dependency trees

extractMSDTs(G, k)
G = {G1, ..., GM

}, where G
x

= (V
x

, A
x

), for x 2 {1, ...,M}; V
x

= {v0, ..., vn};
A

x

✓ {(v
h

, v
i

, l)|v
h

, v
i

2 V

x

, l = (w ,w 0, gf , f)}, for w,w0 2 {0, 1, 2, 3}, gf 2 GF ,
f 2 N+

k is the number of well-formed MSDTs to extract
T := ;

For G
x

2 G
T
x

:= rank(G
x

, k) # the function rank is outlined in Appendix D
If T

x

6= ;
Add T

x

to T
Return T

prepareTrainingData(T)
T = {T1, ..., TP

}
i := 1
B := ;

For T
p

2 T , where T
p

= {MSDT

1

,,MSDT

r

}, for r k
For v

z

2 V

MSDT1

B
i

:= ;
For MSDT

y

2 T

p

, where MSDT

y

= (V
y

,A
y

)
Select from A

y

all arcs coming into v
z

and add these arcs to B
i

Add B
i

to B and set i := i+ 1
Return B

updateWeights(G, B, t)
G = {G1, ..., GM

}
B = {B1, ..., BN

}, for N being the number of individual nodes in T
t is the number of EM iterations
(p

j

) := EM(B, t) # estimation of probability distribution over arcs with Algorithm 5.3
G0 := ;

For G
x

2 G, where G
x

= (V
x

, A
x

)
A0

x

:= ;
For (v

h

, v
i

, l) 2 A
x

If the feature representation j of the arc (v
h

, v
i

, l) is represented in (p
j

)

s⇤ :=
p
s(v

h

, v
i

, l)⇥ p
j

Else s⇤ :=
p
s(v

h

, v
i

, l)⇥min
j

p
j

⇥ ↵, for some 0 < ↵ < 1

Add (v
h

, v
i

, l) with the weight s⇤ to A0
x

Add (V
x

, A0
x

) to G0

Return G0

5.2. Weighted Induction 107

An example of the first feature representation could be fr(jest, w, (3, 3, xcomp-pred,
1)) = {w, jest, xcomp-pred}, which corresponds to a projected dependency rela-
tion presented in the dependency tree in Figure 5.12.5 The dependency relation be-
tween the preposition w (Eng. ‘in’) and its governor realised as the verb form jest
(Eng. ‘be’3.sg.pres) is labelled with the English grammatical function xcomp-pred
(an open complement in predicative position). Since Polish is an inflecting language,
the diversity of word forms on the one hand and alternative meanings of the same word
forms on the other hand may cause problems (e.g., the data sparseness problem) in
estimation of the probability distribution over arcs identified by their surface forms.

The data sparseness problem should be less severe in the case of the second and the third
type of feature sets. The probability distribution may be estimated over arcs represented
by lemmata or part of speech tags of related tokens. Taking into account the previously
considered dependency relation, the second feature representation would be {w, byÊ,
xcomp-pred}, where w and byÊ are lemmata of tokens w and jest respectively. The third
feature representation of the same dependency relation is {prep, fin, xcomp-pred},
where prep (preposition) and fin (non-past finite verb form) constitute part of speech
tags of tokens w and jest respectively.

With respect to feature sets based on lemmata, we apply a common heuristic of genera-
lising lemma forms of tokens not recognised by the tagger (annotated with the ign part
of speech tag), similarly as in Finkel et al. (2005). The general idea is to replace digits,6

lowercase characters and uppercase characters in unrecognised strings with ‘d’, ‘l’ and
‘u’ respectively. There are some particularly frequent dependency relations between two
tokens one of which is a string of digits. Occurrences of these relations are generalised
by substituting each digit in the string of digits with the letter ‘d’, e.g., w �! 2013 �!
roku (Eng. ‘in 2013’) and w �! 1947 �! roku (Eng. ‘in 1947’) are generalised to w �!
dddd �! rok. The digit-based generalisations are not reduced to a single ‘d’ instance,
but we keep their decimal structure. Other unrecognised strings are replaced with their
generalised representations and reduced, e.g., ‘PZKosz’7 is generalised to ‘uuulll’ and
reduced to ‘ul’. Furthermore, we also replace Roman numerals, which are numerously
represented in the corpus, but they are not recognised by the Pantera tagger. Roman
numerals represented by strings of lowercase letters are replaced with ‘r’ and roman
numerals represented by strings of uppercase letters are replaced with ‘R’, e.g., XXI �!
wiek (Eng. ‘21st century’) is reduced to R �! wiek. This solution should significantly
reduce the number of possible lemma-based feature sets.
5For clarity, labels on arcs in the example tree are reduced to English grammatical functions.
6The state-of-the-art Pantera tagger recognises neither Arabic nor Roman numerals.
7
PZKosz is an acronym for Polski Zwiπzek Koszykówki (Eng. ‘Polish Basketball Federation’).

108 Chapter 5. Projection-based Dependency Bank

5.2.3 Recalculation of Arc Weights in Projected Multi-Digraphs

Arcs of projected multi-digraphs encoding dependency relations are assigned initial
weights. Initial arc weights are calculated on the basis of the certainty of bipartite
edges used in projection of these arcs (see Section 5.1.3 Intuitive Weighting Method).
Weights of bipartite edges, in turn, are estimated based on automatic word alignment
which is prone to errors (see Section 5.4.2 Experiments on Word Alignment). We there-
fore propose a heuristic of recalculating initial arc weights in projected multi-digraphs.
Recalculation of initial arc weights is based on the probability distribution over arcs in
k-best maximum spanning dependency trees selected from initially weighted projected
multi-digraphs. The probability distribution over arcs is estimated with a version of
the expectation maximisation algorithm8 defined by DÍbowski (2009).

The EM selection algorithm by DÍbowski (2009) was originally designed to select
the most probable valency frames from sets of valency frame candidates. First, a lan-
guage corpus is parsed with a rule-based parser (WoliÒski, 2005b) and parses of all
sentential clauses are reduced to valency frames (reduced parses). This process results
in a training set of valency frame forests with the number of reduced parses 40 per
clause. The EM selection algorithm disambiguates valency frame forests and extracts
a single valency frame with the largest conditional probability. DÍbowski’s algorithm
is adapted for our purposes of identifying the most reliable arcs in sets of arcs in k-
best MSDTs found in initially weighted projected multi-digraphs. The pseudocode of
the EM-inspired selection algorithm is shown in Algorithm 5.3.

Assume we have a training set B = {B1, ..., BN

}, where B
i

is a set of arcs of k-best
MSDTs coming into the ith vertex, for i = 1, ..., N . In this setting, model parameters
✓
t

=
⇣
p
(t)
j

⌘

j2J
, where t is the iteration number, for t = 2, ..., T , and j is a feature

representation of an arc, for j 2 J and J being a set of all possible feature representations
of arcs in B (see Section 5.2.2 Feature Representations of Arcs), are estimated with
the EM selection algorithm by DÍbowski (2009).

The original EM selection algorithm by DÍbowski (2009) iterates over the formulae in
(5.5) and (5.7), and defines a series of parameter values ✓2, ..., ✓t until the last iteration.
In the first step of each iteration, new parameter values p(t)

j

= P (j|✓
t

) are estimated.

The parameter value p(t)
j

is the probability of the feature representation j in the tth

iteration (for t � 2). The parameter value p(t)
j

satisfies the following constraints: p(t)
j

� 0

and
P

j2J p
(t)
j

= 1, except for the parameter values from the first iteration of the EM
selection algorithm. The probability p

j

of the jth feature representation is calculated by
the division of the sum of p

ij

(i.e., values for the feature representation j in each set B
i

,
for i = 1, ..., N) by the number of all vertices N (see Equation (5.7)).
8The standard expectation maximisation algorithm is presented in Dempster et al. (1977).

5.2. Weighted Induction 109

Algorithm 5.3 The EM-inspired selection algorithm.
EM(B, T)
B = {B1, ..., BN

}, where B
i

✓ {(v
h

, v
i

, l)|v
h

2 {v1, ..., vN} \ v
i

} is a set of arcs
of k-best MSDTs that come into the vertex v

i

T = number of iterations of the EM selection algorithm
s(v

h

, v
i

, l)! R – an arc weight function returning the initial weight for each arc
(v

h

, v
i

, l) 2 B

For j = 1, ..., |J |, where J is the set of feature representations of arcs in k-best MSDTs
p
(1)
j

:= 1
For i = 1, ..., N
For j = 1, ..., |J |, calculate p

ij

:

If j 2 B
i

then p(1)
ij

:=
p
(1)
j

⇥ s(v
h

, v
i

, l)X

j

02B
i

p
(1)
j

0 ⇥ s(v
h

0 , v
i

, l0)

Else p(1)
ij

:= 0

For t = 2, ..., T
For j = 1, ..., |J | calculate new parameter values:

p
(t)
j

:= 1
N

NX

i=1

p
(t�1)
ij

For i = 1, ..., N

For j = 1, ..., |J |, calculate p(t)
ij

:

If j 2 B
i

then p(t)
ij

:=
p
(t)
j

⇥ s(v
h

, v
i

, l)X

j

02B
i

p
(t)
j

0 ⇥ s(v
h

0 , v
i

, l0)

Else p(t)
ij

:= 0

Return parameter values
⇣
p
(T)
j

⌘

The second step of each iteration is to estimate values p(t)
ij

= P (j|B
i

, ✓
t

), for each i =

1, ..., N and for each possible feature representation of arcs j 2 J . The value p(t)
ij

is
a conditional probability of an arc with the feature representation j assuming that this
arc is in the set B

i

and given the parameter values ✓
t

in the tth iteration. The coeÖcient
p
(t)
ij

fulfils the following constraints: p(t)
ij

� 0 and
P

j2B
i

p
(t)
ij

= 1, for i 2 {1, ..., N}
and j 2 J . In the original version of the EM selection algorithm, the coeÖcient p

ij

is
a quotient of the probability value p

j

of the arc j and the sum of probability values p
j

0 of
all arcs in the set B

i

(see Equation (5.5)). We modify the way of estimating the coeÖcient
p
ij

in order to take into account the initial weight s(v
h

, v
i

, l) of the arc represented as
j (see Equation (5.6)). The coeÖcient p

ij

is a quotient of the probability value p
j

of
the arc (v

h

, v
i

, l) with the feature representation j multiplied by the initial arc weight
s(v

h

, v
i

, l), and the sum of probability values p
j

0 of all arcs in the set B
i

multiplied by

110 Chapter 5. Projection-based Dependency Bank

the initial weights s(v
h

0 , v
i

, l0) of corresponding arcs.

p
(t)
ij

=

8
>>>><

>>>>:

p
(t)
jX

j

02B
i

p
(t)
j

0

, if j 2 B
i

0 , otherwise.

(5.5)

p
(t)
ij

=

8
>>>><

>>>>:

p

(t)
j

⇥ s(v
h

, v
i

, l)X

j

02Bi

p

(t)
j

0 ⇥ s(v
h

0 , v
i

, l 0)
, if fr(v

h

, v
i

, l) = j and j 2 B
i

0 , otherwise.

(5.6)

p
(t+1)
j

=
1

N

NX

i=1

p
(t)
ij

(5.7)

The initial parameter values are set to 1, i.e., p(1)
j

= 1, as in the original approach
by DÍbowski (2009). At each iteration, the new parameter values ✓

t

are calculated as
a function of the previous parameter values ✓

t�1 and the training set B. The EM-inspired
selection algorithm (iteration (5.6)–(5.7)) iterates until the final iteration T is reached.

According to the original procedure by DÍbowski (2009), the most likely arc would be
selected from the set of possible arcs B

i

. However, the most probable incoming arcs
for each lexical node do not have to necessarily constitute a valid dependency tree for
a sentence (e.g., the resulting graph may contain a cycle). Therefore, our approach to
recalculating weights does not build directly on the selected arcs but on the probability
distribution over feature representations of arcs J estimated in the last iteration of
the EM selection algorithm. The estimated probabilities of relation types

⇣
p
(T)
j

⌘
are

used to recalculate initial weights on arcs in projected multi-digraphs.

The new weight of an arc (v
h

, v
i

, l) with the feature representation j is calculated as
the product of the square root9 of the previous arc weight and the value p

j

(see Equa-
tion (5.8)).

s⇤ =
p
s(v

h

, v
i

, l)⇥ p
j

, for fr(v
h

, v
i

, l) = j (5.8)

If an arc is not present in any of the extracted k-best MSDTs, its probability value is
equal to 0. Because there is a risk that some multi-digraph arcs would be assigned 0
and they would have the same priority in the extraction of final maximum spanning
dependency trees, we assign them the following value:
9Arcs in projected multi-digraphs are assigned initial weights from N+. In order to diminish the dif-

ference between multiplied initial weights and probability values, and therefore to raise the importance
of relatively low probability values, initial weights are square rooted.

5.3. Rule-based Adaptation of Polish Dependency Structures 111

s⇤ =
p

s(v
h

, v
i

, l)⇥min
j

p
j

⇥ ↵, for some 0 < ↵ < 1 (5.9)

The new score s⇤ of an unselected arc (v
h

, v
i

, l) is the product of the square root of
the initial arc weight, the lowest value p

j

in
⇣
p
(T)
j

⌘
and an optimisation factor ↵ (for

some 0 < ↵ < 1) which further decreases weights of unselected arcs.

The idea behind these modifications is to optimise initial weights of arcs in projected
multi-digraphs. Arcs with particular feature representations which have multiple in-
stances in sets of k-best MSDTs should get higher scores than other arcs. On the other
hand, arcs with particular feature representations which are not in J should get rather
low scores. Arcs with higher weights are more likely to be selected as part of final de-
pendency trees.

Finally, maximum spanning dependency trees are selected from projected multi-digraphs
with recalculated arc weights. For the purpose of selecting one maximum spanning de-
pendency tree from a multi-digraph with recalculated arc weights, we apply the k -best
MSDT algorithm (see Appendix D) with k = 1. The entire induction procedure results
in a collection of dependency structures labelled with English grammatical functions.
Arc labels need to be adapted to Polish dependency types as defined by the schema
of annotating Polish dependency structures. The labelling procedure is described in
the subsequent sections.

5.3 Rule-based Adaptation of Polish Dependency Struc-
tures

This section presents a procedure of labelling automatically induced dependency struc-
tures in accordance with the annotation schema presented in Chapter 3 Polish De-
pendency Annotation Schema. Induced dependency structures encode domination rela-
tions between Polish tokens accepted by the dependency annotation schema. However,
these relations are labelled with projected English grammatical functions which need to
be adapted to dependency types defined for Polish. For this purpose, we design a rule-
based labeller that annotates dependency relations in induced dependency trees with
appropriate Polish grammatical functions. Polish labels are inferred from projected En-
glish grammatical functions and morphosyntactic features of Polish related tokens.

5.3.1 Labelling Rules

Relations in induced dependency structures are labelled with English grammatical func-
tions which diÄer from dependency types defined for Polish in terms of naming con-
vention and their functionality. Regarding the naming convention, diÄerences are rather

112 Chapter 5. Projection-based Dependency Bank

insignificant since labels of Polish dependency relations are largely inspired by the En-
glish LFG grammar which is used to parse English sentences. Labels of many Polish
arguments and non-arguments have their equivalents in Lexical Functional Grammar
(e.g., comp fin vs. comp, comp inf vs. xcomp, obj vs. obj, obj th vs. obj-th, pd vs.
xcomp-pred, subj vs. subj or adjunct vs. adjunct). Other Polish labels are derived
either from grammatical functions of the English LFG grammar (e.g., comp ag vs. obl-
ag, adjunct qt vs. adjunct-qt or pre-coord vs. precoord-form) or from dependency
types designed for the purpose of converting English f-structures into dependency struc-
tures (e.g., aux vs. aux, complm vs. comp-form, conjunct vs. conjunct, coord vs.
coord-form, punct vs. interp, or neg vs. neg). Finally, there are also some Polish
dependency types which are language-specific and have no English equivalents (e.g., imp,
refl, aglt or cond).

Even if Polish and English dependents have similar labels, they may diÄer in terms
of functions they fulfil. In the LFG f-structure of the sentence He gave her flowers.,
the pronoun her is assigned the object function (obj) and the noun flowers is assigned
the thematically restricted object function (obj-th). In the corresponding Polish sen-
tence Da≥ jej kwiatki., the noun kwiatki (Eng. ‘flowers’) fulfils the object function (obj)
since it is promoted to subject in passivisation (Zosta≥y jej dane kwiatki., Eng. ‘Flowers
were given to her.’). The pronoun jej (Eng. ‘her’), in turn, fulfils the obj th function
since it is a non-passivisable and thematically restricted (Recipient) argument realised
as a noun phrase. Direct projection of grammatical functions from English dependency
structures to Polish results in Polish verb arguments which are assigned the exact op-
posite functions than required. The Polish thematically restrictive object jej is assigned
the obj function and the object kwiatki is annotated with obj-th (see Figure 5.13).
Therefore, we need to define labelling rules that cover such syntactic shifts.

root He gave her flowers.

root Da≥ jej kwiatki.

pred

subj

obj

obj-th

pred ! pred obj ! obj th
obj-th ! obj

Figure 5.13: Divergences in labelling relations in the Polish dependency tree (bottom
tree) based on the English dependency tree (top tree).

The definition of labelling rules was preceded by an analysis of the most common con-
figurations of projected English grammatical functions and morphosyntactic properties

5.3. Rule-based Adaptation of Polish Dependency Structures 113

of related Polish tokens. The analysis was performed on 30,322 induced dependency
structures (developing set) taken from the entire treebank. Furthermore, the labelling
procedure also applies information about the number and types of arguments subca-
tegorised by some verbs or quasi-verbal predicates. This information is extracted from
the Polish Valency Dictionary Walenty.10

The labelling process consists of three successive steps in which induced relations are
assigned labels. In the first two steps, we consider only relations between verbs which
are represented in the valency dictionary and their dependents. In the first step, can-
didate Polish dependency labels should directly map to projected English grammatical
functions as defined in Algorithm 5.4. In the second step, the functional correspondence
between English and Polish labels is not necessary. In the third step, we label all rela-
tions which remain unlabelled after the first two steps. The three steps are described in
more detail below.

In the first step, it is verified whether a dependent of a verb is its argument according
to one of valency frames associated with this verb in the valency dictionary. The depen-
dent is considered to be an argument fulfilling a particular grammatical function only if
two conditions are satisfied. First, the dependent and its governing verb have some pre-
defined morphosyntactic properties. Second, the candidate grammatical function which
is proposed by a valency frame corresponds to the projected English function which is
already assigned to the dependent.

Let’s look at the following example of the first step of the labelling process. The top de-
pendency tree in Figure 5.14 corresponds to an automatically induced dependency struc-
ture of the Polish sentence Policjant analizuje dowody. (Eng. ‘The policeman analyses
the evidence.’). This sentence contains only one verb form analizuje, which is the sen-
tence predicate. There are two frames which may be mapped to dependents of analizowaÊ
in the employed version of the valency dictionary:

1. analizowaÊ: imperf: subj{np(str)} + obj{cp(int)},

2. analizowaÊ: imperf: subj{np(str)} + obj{np(str)}.

Both frames contain the subj argument which should be realised as a noun phrase marked
for the structural case. Since most subjects bearing the structural case are in nominative,
10The Polish Valency Dictionary Walenty is being developed at the Institute of Computer Science of
the Polish Academy of Sciences. We use the version of the dictionary released on 30 January 2013. This
version contains subcategorisation frames for 1774 Polish verbs and quasi-verbal predicates. The dictio-
nary is publicly available at http://clip.ipipan.waw.pl/Walenty. For the purpose of labelling, entries
in the valency dictionary have been slightly modified. The modification consists in assigning grammat-
ical functions to all unlabelled verb arguments: unlabelled noun phrase arguments of predicative verbs
are assigned the pd function, other unlabelled noun phrase arguments are assigned the obj th func-
tion, adjective arguments of predicative verbs are assigned the pd function, clausal complements are
assigned the comp fin function, infinitival complements are assigned the comp inf function and all other
arguments of verbs are assigned the comp function.

http://clip.ipipan.waw.pl/Walenty

114 Chapter 5. Projection-based Dependency Bank

root

Policjant analizuje dowody .
translation: policeman analyses the evidence
lemma: policjant analizowaÊ dowód .
pos: subst fin subst interp
morph: sg.nom.m1 sg.ter.imperf pl.acc.m3

subj

obj

pred

interp

root

Policjant analizuje dowody .
policeman analyses the evidence

subj obj

pred

interp

Figure 5.14: Labelling dependency relations (1st step). The top tree is an initial
dependency tree the relations of which are labelled with projected English grammatical
functions. The bottom tree contains some dependency relations labelled according to
the Polish dependency annotation schema after the first step of the labelling process.
The dotted arrows indicate the dependency labels modified on the basis of information

from the tails of arrows.

we look for a dependent of the predicate analizuje that is realised as a nominative noun
phrase. There is one dependent that fulfils morphological properties of the subject –
Policjant. The first condition is thus satisfied. It is then checked if the English grammat-
ical function assigned to this dependent corresponds to the subj argument. According to
Algorithm 5.4, the subj function assigned to the dependent Policjant corresponds with
the frame argument subj. The second condition is thus satisfied.

The second argument of the first frame is an interrogative clausal complement fulfilling
the obj function. However, the predicate analizuje does not have any dependent that
could morphosyntactically correspond to this argument. Therefore, there is only one
argument in the first frame that maps to dependents of analizuje. The second argument
of the second frame is an object realised as a noun phrase bearing the structural case
(accusative or genitive of negation). There is a dependent of the sentence predicate
that is realised as a noun phrase marked for accusative dowody. Moreover, according
to the functional correspondence rules (see Algorithm 5.4), the English grammatical
function obj, which the dependent is annotated with, corresponds to the obj argument,
which is given by the frame. Hence, there are two arguments of the second frame that
map to dependents of the predicate analizuje. A general strategy for identifying the best
frame is to count up mappings between verb dependents and frame arguments, and to
select the frame with the largest number of mappings. Since the second frame maps
to both verb dependents, the grammatical functions from this frame are used to label
appropriate dependents in the tree (see the bottom tree in Figure 5.14).

5.3. Rule-based Adaptation of Polish Dependency Structures 115

Algorithm 5.4 Functional correspondence.

functionalCorrespondence(gff, gfd, posd)

gff is a grammatical function given by the valency frame
gfd is an English grammatical function currently assigned to the dependent
posd is a part of speech of the dependent

If gff = comp and gfd = obl
Return True

Elif gff = comp fin and gfd = comp
Return True

Elif gff = comp inf and gfd = xcomp
Return True

Elif gff = obj
If gfd = obj and posd in [subst, depr, num, numcol, ppron12, ppron3, ger

siebie, conj, ign]
Return True

Elif gfd = comp and posd in [fin, impt, praet, winien, pred, ppas]
Return True

Elif gfd = xcomp and posd = inf
Return True

Elif gff = obj th and gfd = obj
Return True

Elif gff = subj and gfd in [subj, xcomp-pred, obj-ag]
Return True

Elif gff = pd and gfd = xcomp-pred
Return True

Return False

In the second step of the labelling process, we once again take into account only relations
between verbs which are represented in the valency dictionary and their dependents.
However, there are some additional restrictions on this labelling step. First, it is allowed
to modify only these relation labels which correspond to English grammatical functions.
Second, the set of frames which are taken into account is restricted to those which contain
already assigned arguments. Finally, there is a restricted set of Polish arguments (i.e.,
subj, obj, pd, comp fin, comp inf) which are not allowed to be repeatedly governed by
a verb. The idea is to label a dependent of a verb with a candidate Polish grammatical
function which is in the set of possible and not multiplied arguments defined by a frame.
However, the English grammatical function currently assigned to the dependent doesn’t
have to correspond to the candidate label as in the first labelling step.

The second step of the labelling process is illustrated in Figure 5.15, which shows
an example of a dependency structure automatically induced for the Polish sen-
tence Innym problemem jest nieobecnoúÊ kobiet w polityce. (Eng. ‘Another problem

116 Chapter 5. Projection-based Dependency Bank

Innym problemem jest nieobecnoúÊ kobiet w polityce .
another problem is lack women in politics .
inny problem byÊ nieobecnoúÊ kobieta w polityka .
adj subst fin subst subst prep subst interp
sg.inst sg.inst sg.ter.imperf sg.nom pl.gen loc sg.loc

spec det

subj

subj
xcomp-pred

adjunct

obj

interp

Innym problemem jest nieobecnoúÊ kobiet w polityce .
another problem is lack women in politics .

spec det pd subj

dep
adjunct

obj

punct

Figure 5.15: Labelling dependency relations (2nd step) in the automatically induced
dependency structure. The top tree is a dependency tree the relations of which are
labelled with both projected English grammatical functions and Polish grammatical
functions assigned after the first step of the labelling procedure. The bottom tree con-
tains some dependency relations assigned in the second step of the labelling process.
The dotted arrows indicate dependency types modified in the second labelling step

based on information indicated by the tails of arrows.

is the lack of women in politics.’). The top tree in Figure 5.15 contains the rela-
tion jest subj��!nieobecnoúÊ labelled with the subj function in the first step of the la-
belling process. This tree is considered to be an input in the second step of the la-
belling process. The input tree contains only one verb form jest (the sentence pred-
icate), which has 31 various frames in the valency dictionary. However, only 10 of
these frames contain an argument represented as a nominative noun phrase bearing
the subj function. Hence, these 10 frames are taken into account in this labelling step.
Starting from the dependent with the smallest index problemem, we try to map it to
a possible argument which is in at least one of the selected valency frames. The de-
pendent problemem is a noun marked for instrumental and is labelled with the En-
glish subj function. Since the subj function is already reserved and may not be dou-
bled, other functions (e.g., obj, pd, obj th) are thus examined. The dependent proble-
mem maps to the argument controlee{np(inst)} of the valency frame byÊ: imperf:

5.3. Rule-based Adaptation of Polish Dependency Structures 117

subj,controller{np(str)} + controlee{np(inst)}11 and is assigned the pd func-
tion. This frame is best suited to labelling arguments of the predicate jest in the example
sentence.

The example structure in Figure 5.15 is taken from the automatically induced treebank
without any enhancement in order to illustrate assignment of the default type dep to
incorrect arcs.12 In the induced tree, the token kobiet is incorrectly annotated as the de-
pendent of the sentence predicate jest instead of functioning as an adjunct of nieobecnoúÊ.
Since byÊ does not admit any argument realised as a genitive noun phrase, the incorrect
relation between jest and kobiet is labelled with the default function dep. The full stop is
the last dependent of the predicate jest in our example tree. It is identified on the basis
on its part of speech tag interp and is labelled with punct.13 The bottom tree given in
Figure 5.15 results from the second labelling step.

In the last step of the labelling process, relations which remained unlabelled are anno-
tated with dependency types. We start with a presentation of rules labelling relations
in which the root node fulfils the role of the governor. The root node can govern only
one dependent in an induced dependency tree and this dependent should be labelled
with one of the following grammatical functions:

• coord if the dependent is realised as a conjunction coordinating sentences or
clauses, except for the sentence predicate coordination,14

• coord punct if the dependent is realised as a punctuation mark coordinating sen-
tences or clauses, except for the sentence predicate coordination,

• pred if the dependent is realised as any part of speech including a conjunction or
a punctuation mark coordinating sentence predicates (except for a conjunction or
a punctuation mark coordinating sentences or clauses).

11The control relations – controller and controllee – represented in the Polish valency dictionary
are currently not considered in the labelling process. The controller argument controls the syntactic
form of another element determined as controllee.
12The correct dependency structure for the example sentence should looks like this one:

Innym problemem jest

nieobecnoúÊ kobiet w

polityce .
another problem

inst

is lack
nom

women
gen in politics

loc

.

adjunct

pd

subj adjunct

adjunct

comp

punct

13The relation between the predicate jest and the full stop is labelled using Rule 20. from Appendix A,
p. 164. Note that for conciseness of the description, an overview of defined labelling rules is presented in
the further course of this chapter. However, it is important to notice that some of labelling rules apply
in this step in order to label non-argument dependents of verbs represented in the valency dictionary.
14A construction with the sentence predicate coordination is characterised by the following properties:
coordinated sentence predicates agrees in terms of number and possibly person; there is a dependent
of the coordinating element which fulfils the subject function and this subject is shared by coordinated
sentence predicates.

118 Chapter 5. Projection-based Dependency Bank

Now, we present rules used to label other relations in which almost every node except
for the root node may function as a governor. First, we shortly describe a set of 31
rules designed to identify language-specific relations on the basis of morphosyntactic
properties of related tokens and to label these relations with appropriate dependency
types (see Appendix A). Then, we present a set of 14 labelling rules which are primarily
based on projected English grammatical functions (see Appendix B).

Labels of dependencies encoding some language-specific phenomena may not be inferred
from English grammatical functions since they are assigned a wide variety of functions.
For example, mobile inflections, which do not have any structural equivalent in En-
glish, are labelled with aux, subj, adjunct, comp, obj, part, poss, pred, spec-det,
spec-poss, xcomp and xcomp-pred in the developing set of induced dependency struc-
tures. Relations encoding language-specific phenomena are clearly distinguishable from
other relations on the basis of morphosyntactic properties of related tokens, e.g., parts
of speech, lemmata, surface forms, preceding or succeeding positions of dependents in
relation to their governors and morphological features such as case or number.

We define some rules labelling complement relations, adjunct relations and relations
encoding multi-word expressions (see Appendix A Labelling Rules Based on Morphosyn-
tactic Properties). Among complement relations (labelled with the comp function), there
are prepositional phrases functioning as complements of constituents marked for the com-
parative degree (Rule 1., p. 161), complements of numbers (Rule 2., p. 161), complements
of numerals (Rule 4., p. 162), complements of prepositions (Rules 7–10, pp. 162–162) and
complements of subordinating conjunctions (Rule 12., p. 163). The following rules label
multi-word expressions with the mwe function: 3., 5., 6. and 11. (pp. 161–163). Among
adjunct relations (labelled with the adjunct function), there are adverbial modifiers of
adverbs and adjectives (Rule 13., p. 163), modifiers of nouns (Rules 14–18, pp. 163–164),
modifiers of unknown tokens (Rule 19., p. 164), and adjuncts of verb forms (Rule 30.,
p. 166). There are also other rules employed to label relations governed by a verb form.15

The following relations are covered by these rules: a relation between a main verb and
an auxiliary verb (aux, Rule 21., p. 164), a relation between a verbal head of a subor-
dinating clause and a complementiser (complm, Rule 22., p. 164), a relation between
a verb and a conditional clitic (cond, Rule 23., p. 165), a relation between a verb and
an imperative marker (imp, Rule 24., p. 165), a relation between a verb and a mobile
inflection (aglt, Rule 25., p. 165), a relation between a verb and a negation marker (neg,
Rules 26 and 27, p. 165), a relation between a verbal head of an interrogative clause and
a question marker czy (adjunct, Rule 28., p. 165), and a relation between a verb and
its reflexive marker (refl, Rule 29., p. 166). It should also be noted that some of these
rules (i.e., Rules 10., 17., 18., 19. and 30.) are treated as endmost rules which do not
apply until all other labelling rules (also rules from Appendix B) are exploited.
15It should be noted that these rules also apply in the second step of the labelling process to label
dependents of verbs not covered with valency frames.

5.3. Rule-based Adaptation of Polish Dependency Structures 119

Rules from the second set (see Appendix B Labelling Rules Based on English Gram-
matical Functions) assign labels to relations identified primarily on the basis of their
projected English grammatical functions. We distinguish between labelling rules de-
signed for English argument types16 and other grammatical functions. Labelling rules
are defined for the following English argument types: closed complement clause and
open complement clause (comp and xcomp,17 Rule 1, p. 167), object and thematically
restricted object (obj and obj-th, Rule 2., p. 168), oblique argument (obl, Rule 3.,
p. 168), oblique agent in passives (obl-ag, Rule 4., p. 169), comparing oblique in com-
paratives and equatives (obl-compar, Rule 5., p. 169), oblique partitive (obl-part,
Rule 6., p. 169), subject (subj, Rule 7., p. 170) and open complement in predicative
position (xcomp-pred, Rule 8., p. 170). Other labelling rules cover the following depen-
dents: adjunct (adjunct, Rule 9., p. 171), quotation adjunct (adjunct-qt, Rule 10.,
p. 171), modifying noun in a noun-noun compound (mod, Rule 11., p. 171), modifying
name in a proper name (name-mod, Rule 12., p. 171), precoordination (precoord,
Rule 13., p. 172) and cleft sentence (topic-cleft, Rule 14., p. 172).

Mapping of English grammatical functions to Polish arcs should result in completely
labelled dependency trees. In the third labelling step, unlabelled arcs of the partially
labelled dependency tree (see Figure 5.15) are assigned labels and the final dependency
tree is acquired (see Figure 5.16).

Innym problemem jest nieobecnoúÊ kobiet w polityce .
another problem is lack women in politics .

adjunct pd subj

dep adjunct

comp

punct

Figure 5.16: An induced dependency tree labelled with Polish dependency types (3rd
step).

5.3.2 Correction Rules

Parallel sentences in Polish and English tend to have correlated dependency structures.
This assumption seems to be largely true if we consider semantic predicate-argument
structures of corresponding sentences. However, a syntactic realisation of the semantic
predicate-argument structure may diÄer in both languages. For example, an argument
of a predicate may be realised as a noun phrase possibly marked for a particular case in
one language and as a prepositional phrase in the other language (see I’m going home.
vs. IdÍ do domu., PiszÍ o≥ówkiem. vs. I write with a pencil.).
16These rules only label relations between verbs which are not in the valency dictionary and their
arguments.
17An open complement clause is a subordinate clause without an internal subject.

120 Chapter 5. Projection-based Dependency Bank

We have already described labelling rules that cover many discrepancies between Polish
and English dependency types, e.g., the noun home with the obl function should corre-
spond to the prepositional phrase do domu labelled with the comp function. However,
labelling rules assume that induced dependency structures are correct in terms of do-
mination relations between tokens. Even if many Polish induced dependency structures
are correct, there are still some induced structures that are noisy. If the prepositional
phrase do domu is wrongly annotated as two independent tokens governed by the sen-
tence predicate idÍ in an induced dependency structure of the sentence IdÍ do domu.,
it will be impossible to label all relations in this dependency structure with appropri-
ate dependency types. For this reason, we apply the idea by Hwa et al. (2005) to use
a predefined set of correction rules.

Even though the induction process is straightforward, there are still some Polish-specific
morphosyntactic phenomena or phenomena diversely annotated in both languages whose
correct annotations may not be induced based on English dependency structures. More-
over, noise in induced dependency structures may result from erroneous English depen-
dency structures, incorrect word alignment or an inaccurate induction process. A lin-
guistic analysis of trees in the developing set indicates types of errors or divergences that
occur most frequently in induced dependency structures. These error types are covered
with 31 correction rules presented in Appendix C Correction Rules.

The following phenomena not reflected in English dependency structures are identified:
conditional clitic, imperative marker, mobile inflection, and reflexive marker. Errors in
annotations of these phenomena are corrected with manually designed modification rules.
The conditional particle by is used to indicate the conditional modality of a sentence.
Regardless of whether it is appended to a verb or appears anywhere in the sentence,
the conditional particle should be governed by a verb (Rule 1. in Appendix C, p. 173).
An imperative marker (e.g., niech, niechaj, niechøe or niechajøe) should also be governed
by a verb (Rule 2., p. 174). The mobile inflection is a verbal enclitic marked for number
and person. It should depend on a finite verb or a conditional clitic by appended to
such a verb (Rule 3., p. 174). The reflexive marker realised as the particle siÍ should be
governed by a verb (4., p. 174).

Apart from rules covering linguistic phenomena which are not reflected in English de-
pendency structures, some correction rules are designed to cover Polish-specific linguistic
constructions analysed diÄerently in both languages, i.e., negation markers and numeral
complements. The negation marker nie should be annotated as the dependent of the sub-
sequent token which is usually a verb (Rule 6., p. 174). In English, a numeral is treated
as a number specifier (spec-number) of the governing noun. In Polish, in turn, a nu-
meral governs a noun phrase whose case either agrees with the case of the governing
numeral or is determined as genitive. Polish numeral phrases in induced dependency
structures are modified in accordance with the dependency annotation schema. Rule 5.
(p. 174) covers numeral phrases realised as a numeral plus a noun phrase, e.g., ‘dwoje

5.4. Experimental Setup 121

dzieci’ (Eng. ‘two children’) and as a number plus a noun phrase, e.g., ‘2 dzieci’ (Eng. ‘2
children’).

There are also some rules designed to correct errors in induced dependency structures
resulting from inaccurate part of speech tagging, incorrect English dependency trees or
invalid word alignment. These correction rules modify wrongly annotated abbreviation
markers (Rule 7., p. 174), active adjectival participles (Rule 8., p. 175), ad-adjectival
adjective phrases (Rule 9., p. 175), appositions (Rule 10., p. 176), auxiliary verbs in
complex future constructions (Rule 11., p. 176), auxiliary verbs in passive constructions
(Rule 12., p. 176), comparative phrases (Rules 13 and 14, pp. 176–177), complementisers
(Rule 15., p. 177), conjunct dependents (Rules 16 and 17, p. 177), various modifiers
(Rules 19, 20, 21, 22, and 23, pp. 178–179), partitive phrases (Rule 24., p. 179), post-
prepositional adjectives (Rule 25., p. 180), prepositional complements (Rule 27., p. 180),
and punctuation dependents (Rule 28., p. 181).

Furthermore, there are also some rules that modify the global structure of sentences
headed by mieÊ (Rule 18., p. 178), predicative constructions (Rule 26., p. 180), sentences
headed by a non-verb (Rules 29 and 30, p. 181) and simple interrogative sentences (Rule
31., p. 182).

5.4 Experimental Setup

5.4.1 Data

In order to acquire dependency structures with the weighted induction method, a large
collection of Polish-English parallel texts was gathered from sources available on the In-
ternet: European Parliament Proceedings Parallel Corpus (Europarl, Koehn, 2005),
DGT-Translation Memory (Steinberger et al., 2012), OPUS (Tiedemann, 2012) and Pel-
cra Parallel Corpus (PÍzik et al., 2011). Europarl (version 6) consists of parallel texts
from the proceedings of the European Parliament in 21 European languages. The corpus
of translation memories DGT-TM consists of aligned sentences principally taken from
the Acquis Communautaire in 23 European languages. The open parallel corpus OPUS
is a collection of translated texts collected from the web. We use the Polish-English
part of the OPUS corpus of the European Medicines Agency documents, the text of
the European constitution, a PHP manual, and KDE4 localisation files. From the Pelcra
Parallel Corpus, we employ aligned sentences from Academia. The Magazine of the Pol-
ish Academy of Sciences, from CORDIS – a news database, and from RAPID – press
releases of the European Union. Furthermore, we also select some parallel texts form
the OÖcial Journal of the European Union (EUR-Lex), film subtitles, and contemporary
literature resources.

122 Chapter 5. Projection-based Dependency Bank

Collected documents were split into sentences using the sentence tokenizer Punkt (Kiss
and Strunk, 2006), which is distributed with the NLTK toolkit (Bird et al., 2009).
The sentence-segmented bitexts were then aligned at the sentential level using the sen-
tence aligner HunAlign (Varga et al., 2005). The HunAlign aligner is based on a hybrid
algorithm that combines two methods of aligning sentences in parallel texts: the length-
based method (Gale and Church, 1991) and the dictionary-based method (Chen, 1993;
Moore, 2002). The process of aligning sentences consists of three phases. HunAlign starts
with the identification of corresponding segment pairs18 based on the segment length and
the ratio of identical tokens. Then, a simple bilingual lexicon is automatically built from
randomly sampled segment pairs. Finally, alignment is rebuilt based on the extracted
bilingual lexicon. The number of segment pairs gathered from individual parallel corpora
is reported in the column Sentence Pairs in Table 5.1.

Text Sentence Filtered Bitexts
Pairs Sentence Pairs En t/s Pl t/s

Europarl 448,433 429,929 27.43 24.06
DGT-TM 1,052,136 736,822 26.81 23.96
EMEA (OPUS) 868,808 193,274 19.55 18.98
EU Constitution (OPUS) 9,937 5,271 25.85 21.36
PHP (OPUS) 33,687 4,990 20.51 18.32
KDE4 (OPUS) 165,172 105,609 10.76 10.38
Academia 17,859 12,273 20.90 15.35
CORDIS 176,558 140,005 23.65 22.62
RAPID 146,908 106,713 27.72 26.02
EUR-Lex 4,063,336 2,558,306 31.19 28.69
Subtitles 6,871,465 4,120,543 8.34 6.99
Literature 911,278 854,422 17.02 14.73
TOTAL: 14,765,577 9,268,157

Table 5.1: A statistical overview of the parallel Polish-English corpus after filtering
multiple and unrecognised segment pairs. Explanation: En t/s – the average number of
English tokens per sentence after filtering; Pl t/s – the average number of Polish tokens

per sentence after filtering.

A cursory analysis showed that many of segment pairs occur repeatedly within collected
bitexts aligned at the sentential level, especially in the legislative texts, e.g., terms of
political jargon or the legislative terminology such as ‘Opening of the sitting’, ‘Adjourn-
ment of the session’, or ‘Article 1’. Since the idea behind the experiment is to build
a bank of non-repetitive dependency structures, all multiple segment pairs were filtered
out.
18The procedure of aligning documents at the sentential level results in a collection of Polish-English
sentence pairs in most cases. However, since it may also result in aligned sequences of tokens that do
not correspond to properly built sentences, we thus refer to them as Polish-English segment pairs rather
than sentence pairs.

5.4. Experimental Setup 123

Moreover, some segments appear in the collected texts in languages other than the con-
cerned languages – Polish and English. For example, translations of an expression in all
oÖcial languages of the European Union may appear in a Polish or/and English doc-
ument. These segments are not appropriate for our experiment since we aim to create
a bank of dependency structures restricted to Polish. Therefore, we filtered out all seg-
ment pairs such that the Polish segment contained more than 60% of tokens unrecognised
by the Polish part of speech tagger Pantera (AcedaÒski, 2010).

After application of the filtering heuristics, 37% of segment pairs were filtered out from
the parallel corpus. A statistical overview of the remaining data is presented in the col-
umn Filtered Bitexts in Table 5.1.

5.4.2 Experiments on Word Alignment

Bitexts aligned at the sentential level were used to generate automatic word alignments.
Unidirectional word alignments (Polish-to-English and English-to-Polish) were learnt
with the statistical machine translation system MOSES (Koehn et al., 2007) based on
statistics captured from the entire corpus. The MOSES system is distributed with mo-
dules that symmetrise unidirectional word alignments based on diÄerent heuristics, e.g.,
union, intersection and grow-diag-final-and.

We conducted a series of experiments to achieve the best Polish-English word alignments.
The word alignment quality is evaluated against a set of 100 manually aligned sentence
pairs19 with the following metrics: precision(A,S) (see Equation (5.10)), recall(A,S)
(see Equation (5.11)), alignment error rate, AER(A,S)20 (see Equation (5.12)), and F

↵

-
measure(A,S), which is defined in Fraser and Marcu (2007) (see Equation (5.13)). In
these metrics, A is a set of automatic word alignment links, S is a set of gold standard
word alignment links, and ↵ is a parameter determining a trade-oÄ between precision
and recall (↵ = 0.5 in our evaluation experiments).

precision(A,S) =
|S \A|
|A| (5.10)

19The quality of word alignment is evaluated against a manually annotated gold standard corpus that
was created for purposes of the presented experiments. The gold standard corpus consists of 100 sen-
tence pairs randomly selected from the entire parallel corpus. The selected sentence pairs were manually
annotated by three annotators (native speakers of Polish proficient in English). The annotators followed
guidelines for solving some problematic issues (e.g., annotation of articles, case markers, dropped pro-
nouns, reflexive markers, dates or subordinate clauses). The manually produced annotations were unified
according to the following procedure. If at least two annotators assigned the same link, it was determined
as the gold/sure alignment link.
20The alignment error rate (AER) is commonly used to evaluate word alignments. Indicating the rate
of alignment errors, it lays the foundation for improvements of the word alignment quality. However,
Fraser and Marcu (2007) criticised the AER metric as not showing any correlation between the measured
alignment quality and the statistical machine translation performance.

124 Chapter 5. Projection-based Dependency Bank

recall(A,S) =
|S \A|
|S | (5.11)

AER(A,S) = 1 � 2 |S \A|
|S |+ |A| (5.12)

F

↵

-measure(A,S) =
1

↵

precision(A,S) +
(1�↵)

recall(A,S)

(5.13)

In the first experiment, we tested diÄerent training configurations of IBM models 1–4
(Brown et al., 1993) and the Hidden Markov model (HMM, Vogel et al., 1996). While
the remaining IBM models 5 and 6 are sophisticated, they did not significantly improve
the alignment quality. Furthermore, training these models is very time consuming. For
this reason, we limited the training procedure to IBM models 1–4 and HMM. The ex-
periment was conducted on parallel sentences with lowercase tokens. Tokenisation and
lowercasing were carried out with the standard scripts from the MOSES toolkit. Unidi-
rectional word alignments were symmetrised with the grow-diag-final-and heuristic
which is also implemented as part of the MOSES toolkit. The best word alignment (76.8
of F

↵

-score) for the Polish-English language pair was learnt with the following configu-
ration of models: 10 iterations of the IBM model 1 followed by 10 iterations of HMM,
5 iterations of the IBM model 3 and 5 iterations of the IBM model 4. It is also worth
noting that the best word alignment achieved not only the highest F

↵

-score but also
quite balanced precision and recall.

The second experiment verified whether the grow-diag-final-and symmetri-
sation heuristic is the best choice for unifying unidirectional Polish-English
word alignments. We evaluated word alignments symmetrised with intersection,
union, grow-diag-final and grow-diag-final-and heuristics. The quality of
the grow-diag-final-and symmetrised word alignment is better (76.8 F

↵

-measure)
than the quality of word alignments symmetrised with other heuristics. Word alignment
symmetrised with the intersection heuristic contains the most reliable alignment links
(high precision), but not all of them (low recall). In contrast to intersection, union
results are quite surprising. We had expected recall to be significantly higher than pre-
cision, but we obtained almost balanced values instead.

Word alignment underlies statistical machine translation which is one of the most impor-
tant and deeply explored topics in the language processing domain. Therefore, a lot of
eÄort has been invested in the improvement of the quality of word alignment. Some ideas
consist in the reduction of the vocabulary size with stemming (Fraser and Marcu, 2005)

5.4. Experimental Setup 125

or lemmatisation (Bojar and Hajič, 2008). Both referenced works consider inflecting-
isolating language pairs, i.e., Romanian-English (Fraser and Marcu, 2005) and Czech-
English (Bojar and Hajič, 2008) and report some improvement of the word alignment
quality.

Languages used in our experiment also represent two language types: Polish is a fusional
language with a large number of inflected word forms; English, in turn, is an isolating
language that makes use of function words. Polish often needs fewer words than English
to express the same content. On the other hand, Polish lexemes have many more diÄerent
forms than English lexemes what does substantially increase the Polish vocabulary size.
In order to reduce the vocabulary size, the Polish side of the parallel corpus can be
lemmatised.

In the third experiment, we tested the impact of lemmatisation on the word alignment
quality. There is no crucial improvement while training word alignment on data lem-
matised on both sides (76.4 of F

↵

-score).21 However, if unidirectional word alignments
are trained on the parallel corpus with the lemmatised Polish side and the English side
which is only tokenised, an improvement of the word alignment quality is significant:
the highest precision of 96.8% for intersected unidirectional word alignments, the highest
recall of 81.5% for unified unidirectional word alignments, and precision of 83.5%, re-
call of 80%, F

↵

-score of 81.7 and AER of 18.25 for grow-diag-final-and-symmetrised
bidirectional word alignment.

For each segment pair in our parallel corpus, we extracted three sets of word alignment
links (i.e., Polish-to-English word alignment, English-to-Polish word alignment, and
grow-diag-final-and-symmetrised bidirectional word alignment). These word align-
ments were trained on parallel corpus with the lemmatised Polish side and the tokenised
English side.

5.4.3 Conversion of English Dependency Structures

The English side of the parallel corpus was parsed with the handcrafted wide-coverage
English LFG grammar using the Xerox Linguistic Environment (XLE, Crouch et al.,
2011) as a processing platform. Within the Parallel Grammar Project (ParGram, Butt
et al., 2002), grammars for English, French, German, Norwegian, Japanese, Urdu, and
further languages have been written in the framework of Lexical Functional Grammar.
The architecture of Lexical Functional Grammar, with its strong lexicon component and
multiple levels of representations, seems especially suited for cross-lingual annotation
projection. Since LFG f-structures encode dependency relations and are largely invariant
across languages, they may serve as the pivot for the cross-lingual projection.
21The Polish part of the parallel corpus was lemmatised with the Pantera tagger. The English side
of the parallel corpus was lemmatised with the lemmatizer from the Stanford CoreNLP package http:
//nlp.stanford.edu/software/corenlp.shtml.

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml

126 Chapter 5. Projection-based Dependency Bank

Lexical Functional Grammar is a theory of grammar, the development of which was ini-
tiated by Joan Bresnan and Ronald M. Kaplan in the late 1970s (Kaplan and Bresnan,
1995). The LFG formalism focuses on syntax and its relations with morphology, seman-
tics and pragmatics. LFG treats each language as a multidimensional structure with
a syntactic dimension, a semantic dimension and a pragmatic dimension among oth-
ers. The syntactic dimension of a sentence contains three corresponding representations
– a constituent structure (c-structure), a functional structure (f-structure) and an ar-
gument structure (a-structure), which are diÄerent but parallel levels of the syntactic
structure. The semantic dimension of a sentence is represented as a semantic structure
(s-structure) and the pragmatic dimension is represented as an information structure
(i-structure).22

ROOT

EXCL-POINT

!

S

VP

CP

VP

PP

NP

N

car

D

a

P

in

V

is

NP

PRON

he

V

think

NP

PRON

I

Figure 5.17: LFG c-structure of the sentence I think he is in a car!.

The concept of a constituent structure (c-structure, see Figure 5.17) is similar to the con-
cept of a context-free phrase structure used, for example, in the transformational gram-
mar. A c-structure encodes language-specific syntactic properties of the surface structure
of a sentence: linear word order, syntactic constituency, dominance and precedence rela-
tions. The c-structure encodes both lexical categories (e.g., Noun, Verb, Adjective which
head the following phrases: NP – noun phrase, VP – verb phrase, AP – adjective phrase)
and functional categories (e.g., I – head of a finite clause IP, C – complementiser, CP
– a clause with a complementiser C taking an IP as its complement). Lexical and func-
tional categories are not universal across language. Therefore, grammatical rules based
22A-structures, s-structures and i-structures are not relevant for the current experiment.

5.4. Experimental Setup 127

on language-specific categories determine diÄerent c-structures as well-formed in vari-
ous languages. Hence, languages vary because they acknowledge diÄerent c-structures
as grammatical (LFG Principle of Variability, Bresnan, 2001, p. 44).

A c-structure exists simultaneously with a functional structure (f-structure, see Fig-
ure 5.18) that integrates information from the c-structure and from the lexicon. An f-
structure consists of a finite set of attribute-value pairs that encode functional properties
of a sentence and are organised in an attribute-value matrix. There are two main types
of attributes in f-structures: grammatical functions and morphosyntactic features.

2

6666666666666666666666666666666664

pred ‘thinkh 1 , 2 i’

subj

1

2

664

pred ‘I’
case nom
num sg
pers 1

3

775

comp

2

2

66666666666666666666664

pred ‘beh 3 i, 4 ’

subj

4

2

664

pred ‘he’
case nom
num sg
pers 3

3

775

xcomp-pred

3

2

66666666664

pred ‘inh 4 , 5 i’
subj

4

obj

5

2

6666664

pred ‘car’

spec

h
det

⇥
pred ‘a’

⇤i

case obl
num sg
pers 3

3

7777775

3

77777777775

3

77777777777777777777775

3

7777777777777777777777777777777775

Figure 5.18: LFG f-structure of the sentence I think he is in a car!.

Grammatical functions are divided into argument functions (e.g., subj, obj, obj
✓

, obl
✓

,
comp or xcomp), which are governed by a predicate, and non-argument functions (e.g.,
adjunct, mod, focus or topic), which are optional and ungovernable. The value
of a grammatical function is another subordinate f-structure. Apart from grammatical
functions, f-structures encode morphosyntactic features (e.g., num, gen, pers, case,
tense). The value of a feature may be an f-structure, a symbol or a semantic form in
the case of pred attributes. A semantic form that consists of a predicate and its argu-
ments constitutes an abbreviated representation of the entire f-structure. An f-structure
encodes non-context-free syntactic phenomena such as agreement, subcategorisation, dis-
continuity, or argument selection. While c-structures vary across languages, f-structures
are presumed to be largely universal and invariant across many languages (LFG Prin-
ciple of Universality, Bresnan, 2001, p. 45).

128 Chapter 5. Projection-based Dependency Bank

The mapping between c- and f-structures is given by a function that connects one c-
structure node or a set of nodes with a single f-structure. For example, correspondences
between nodes of the c-structure from Figure 5.17 and sub-f-structures building the en-
tire f-structure from Figure 5.18 are displayed in Figure 5.19 with dotted arrows (e.g.,
the node S corresponds to the top-level f-structure).

ROOT

EXCL-POINT

!

S

VP

CP

VP

PP

NP

N

car

D

a

P

in

V

is

NP

PRON

he

V

think

NP

PRON

I

2

66666666666664

pred ‘thinkh 1 , 2 i’
subj

1
⇥
pred ‘I’

⇤

comp

2

2

666666664

pred ‘beh 3 i, 4 ’
subj

4
⇥
pred ‘he’

⇤

xcomp-pred

3

2

6664

pred ‘inh 4 , 5 i’
subj

4

obj

5

"
pred ‘car’

spec

h
det

⇥
pred ‘a’

⇤i
#

3

7775

3

777777775

3

77777777777775

Figure 5.19: Correspondence between c-structure nodes and f-structures.

The LFG-driven XLE parser (Crouch et al., 2011) employed to parse the English side
of the parallel corpus may output an analysis or a number of analyses of an English
sentence. Each analysis consists of a c-structure, an f-structure and correspondences be-
tween these structures. Since the parser may output more than one analysis of a sentence,
it is necessary to disambiguate these analyses. The XLE parser is enhanced with a sta-
tistical disambiguation component (Kaplan et al., 2004) that selects the most probable
LFG analysis of an English sentence.

The English LFG grammar may deal with some ungrammatical sentences by applying
the shallow parsing (or chunking) technique. The parser identifies well-formed chunks
(constituents) in a sentence and then composes them linearly into a FIRST-REST struc-
ture marked as FRAGMENTS. Since the aim of the current experiment is to build a bank
of Polish dependency structures for strings of tokens considered as grammatical, analy-
ses marked as FRAGMENTS are not taken into account in projection. There are also
some ungrammatical sentences or very long sentences which could not be analysed by
the XLE parser at all. Sentence pairs in which the English sentence is annotated as

5.4. Experimental Setup 129

a FIRST-REST structure or is not assigned any analysis are filtered out from the paral-
lel corpus and thus rejected from the further projection experiment. Remaining sentence
pairs (4,706,688 sentence pairs) constitute our training corpus. A statistical overview of
the parallel corpus after both filtering steps is reported in the column 2nd Filter in
Table 5.2 (information in the column 1st Filter is repeated from Table 5.1).

Text Sentence 1st Filter 2nd Filter
Pairs Sents pairs Sents pairs En t/s Pl t/s

Europarl 448,433 429,929 247,389 20.71 18.05
DGT-TM 1,052,136 736,822 311,954 16.69 14.58
EMEA (OPUS) 868,808 193,274 105,232 15.01 14.89
EU Const (OPUS) 9,937 5,271 2,759 17.70 13.62
PHP (OPUS) 33,687 4,990 1,487 11.71 10.79
KDE4 (OPUS) 165,172 105,609 69,084 5.02 5.10
Academia 17,859 12,273 10,443 19.28 16.03
CORDIS 176,558 140,005 74,327 19.44 17.96
RAPID 146,908 106,713 57,317 19.98 18.15
EUR-Lex 4,063,336 2,558,306 649,593 18.26 16.18
Subtitles 6,871,465 4,120,543 2,623,280 7.75 7.37
Literature 911,278 854,422 553,823 14.52 12.48
TOTAL: 14,765,577 9,268,157 4,706,688

Table 5.2: A statistical overview of the parallel Polish-English corpus after filtering
multiple and unrecognised segment pairs (1st Filter, information transferred from Ta-
ble 5.1) and after filtering segment pairs in which the English sentence is not fully
parsed or has no correct analysis (2nd Filter). Explanation: En t/s – the average num-
ber of English tokens per sentence after 2nd filtering; Pl t/s – the average number of

Polish tokens per sentence after 2nd filtering.

The decision of applying the XLE parser is motivated by the fact that it is one of the best
performing parsers for English. It outputs f-structures which encode predicate-argument
structures and are largely equivalent to dependency structures. Moreover, it also out-
puts c-structures which encode some additional features (e.g., word order, punctuation
marks) which are also applied in the conversion of LFG analyses into dependency rep-
resentations.

The most probable analyses (c- and f-structures) output by the XLE parser are con-
verted into dependency structures and stored in the CoNLL data format (Buchholz and
Marsi, 2006). As noticed by Øvrelid et al. (2009), the process of converting f-structures
output by the XLE parser into dependency representations is quite straightforward since
f-structures can actually be interpreted as dependency structures. The main idea behind
the conversion is to extract a relation between values of two preds, to label the relation
with an English grammatical function, and to transfer the labelled relation to the cor-
responding lexical nodes of a dependency structure.

130 Chapter 5. Projection-based Dependency Bank

The conversion procedure is performed as follows. For each token in a c-structure,
its pred attribute is found in the f-structure using correspondences between c- and
f-structures encoded in the analysis. The value of the pred attribute corresponds to
a semantic form, i.e., a lemma (e.g., ‘I’, ‘he’, ‘a’ and ‘car’ in Figure 5.18) or a lemma
with its arguments (e.g., ‘thinkh 1 , 2 i’, ‘beh 3 i, 4 ’ or ‘inh 4 , 5 i’ in Figure 5.18). The pred
attribute is incorporated into an f-structure. This f-structure may be, in turn, incorpo-
rated into an superordinate f-structure as the value of a grammatical function attribute.
The grammatical function attribute corresponds to an argument or an adjunct required
by the superordinate predicate. The predicate of the superordinate f-structure is the go-
vernor of the current token and the relation between them is labelled with the grammati-
cal function. Hence, the labelled relation between the current token and the surface form
of the governing pred, which is encoded in the c-structure, is transferred to the equiv-
alent lexical nodes of the converted English dependency structure. If the f-structure of
the current token is the top-level f-structure, the relation between the current token and
the additional root node is added to the English dependency structure.

2

66666666666664

pred ‘thinkh 1 , 2 i’
subj

1
⇥
pred ‘I’

⇤

comp

2

2

666666664

pred ‘beh 3 i, 4 ’
subj

4
⇥
pred ‘he’

⇤

xcomp-pred

3

2

66664

pred ‘inh 4 , 5 i’
subj

4

obj

5

"
pred ‘car’

spec

h
det

⇥
pred ‘a’

⇤i
#

3

77775

3

777777775

3

77777777777775

root I think he is in a car !

pred

subj

punct

comp

subj

xcomp-pred

obj

spec det

Figure 5.20: The procedure of converting an LFG f-structure into a dependency struc-
ture of a sentence I think he is in a car!. Projection of grammatical functions is marked

with dotted arrows.

However, some tokens do not correspond to preds but rather to language-specific values
of the following form features: comp-form (the form of a complementiser, e.g., that),
coord-form (the form of a coordinating conjunction), precoord-form (the form of

5.5. Experiments and Results 131

the first part of a correlative conjunction, e.g., neither), postcoord-form (the form
of a conjunction closing a list, e.g., etc., et al.), pform (the form of a preposition that
does not have a pred, e.g., by), prt-form (the form of a particle). We defined a set of
rules to cover these cases. Generally, a complementiser is annotated as the dependent of
the predicate of a closed complement clause. This relation is labelled with comp-form.
In the case of coordinating constructions annotated as sets of single f-structures for
each coordinated element, the coordinating conjunction is annotated as the governor of
coordinated elements and as the dependent of the pred encoded in the superordinate
f-structure. Prepositions encoded in f-structures as pforms do not have lexical meaning
(e.g., He looks at me., It is made by hand.). We annotate them as dependents of pre-
ceding verbs and label these relations with pform. A word form annotated as a particle
prt-form depends on the pred of the current f-structure and the relation is labelled
with prt-form.

All transferred relations constitute an output dependency structure. The scheme of con-
verting an LFG f-structure into a dependency structure is illustrated in Figure 5.20. For
example, the top-level predicate think subcategorises two arguments – the subject and
the closed complement clause. These two arguments are encoded as grammatical func-
tion attributes subj and comp with values realised as f-structure 1 and f-structure 2
respectively. The subject is represented by the pronoun I, so the relation I subj ���think may
be transferred to the dependency tree. Since a closed complement clause is headed by
a verb in LFG, the comp argument is represented by the verb form is encoded in the c-
structure. The relation think comp���!is is thus transferred to the equivalent dependency
structure.

The conversion of all proper LFG analyses output by the XLE parser results in a bank
of 4,706,688 English dependency structures. These dependency structures are projected
to Polish.

5.5 Experiments and Results

Induction of Polish dependency trees is a two-stage process. First, the projection module
outputs initially weighted multi-digraphs given bipartite alignment graphs, English de-
pendency structures and Polish sentences. Second, the induction module acquires Polish
dependency structures from projected multi-digraphs with recalculated arc weights. In
this section, we provide some implementation details and results of an extrinsic evalua-
tion.

Application of the projection procedure described in Section 5.1Weighted Projection led
to a large set of initially weighted multi-digraphs. Given unidirectional word alignments
(Polish-to-English and English-to-Polish) and grow-diag-final-and-symmetrised bidi-
rectional word alignment (see Section 5.4.2 Experiments on Word Alignment), English

132 Chapter 5. Projection-based Dependency Bank

dependency structures converted from LFG structures (see Section 5.4.3 Conversion of
English Dependency Structures), and Polish sentences enriched with morphosyntactic
information (lemmata, parts of speech, morphological features, named-entity tags),23

the projection module outputs 4,706,688 initially weighted multi-digraphs.

For storing these multi-digraphs, a column-based format similar to the CoNLL format
was designed. An example of a multi-digraph encoded in this format is given in Fig-
ure 5.21. Similarly as in the CoNLL format, there is a blank line between multi-digraphs.
Information about a dependency relation which corresponds to an arc in a multi-digraph
is stored in a single line, in 11 columns. The first column and the second column encode
indices of the dependent node (idD) and the governor node (idG) respectively. The sur-
face form (token), the lemma form (lemma), the part of speech tag (pos) and possible
morphological features (morph) of the dependent are stored in the third, the fourth,
the fifth and the sixth column respectively. The seventh column contains the (initial)
weight of the arc (weight). Information encoded in the last four columns – the score
of an edge linking dependents in a bipartite graph (sD), the score of an edge linking
governors (sG), the projected grammatical function (gf) and the frequency of project-
ing the current labelled arc (freq) – builds a quadruple labelling the projected arc.
The projected multi-digraphs encoded in the column-based format constitute an input
to the induction module inferring final dependency trees.

The induction procedure described in Section 5.2 Weighted Induction starts with recal-
culation of initial weights of arcs in the projected multi-digraphs based on arc probabil-
ities estimated with the EM-inspired selection algorithm. From the entire set of initially
weighted multi-digraphs (4,706,688), 4,615,698 sets of k-best maximum spanning depen-
dency trees were extracted, for k = 10. Sets of arcs in these k-best MSDTs constitute
training data for estimation of the probability distribution over arcs. The probability
distribution over arcs was estimated in 10 iterations of the EM selection algorithm. Then,
initial weights of arcs in the projected multi-digraphs are recalculated based on the es-
timated probability distribution. The main idea behind the recalculation is to reward
arcs with the probability greater than zero and by assigning them higher weights (see
Equation (5.8), p. 110), and to penalise other arcs by assigning them lower weights (see
Equation (5.9), p. 111). The procedure of recalculating initial arc weights is outlined in
Section 5.2.3 Recalculation of Arc Weights in Projected Multi-Digraphs.

After recalculating weights of arcs in the projected multi-digraphs, the final maximum
spanning dependency trees are selected. Since the final dependency structures are la-
belled with English grammatical functions, we treat them as unlabelled dependency
structures. Arcs in these unlabelled dependency trees are then assigned Polish depen-
dency labels derived from projected English grammatical functions and morphosyntactic
23Polish tokens are annotated with lemmata, part of speech tags and morphological features using
the Pantera tagger. The named entities are recognised in Polish sentences using the statistical named
entity recognition tool Nerf (Savary and Waszczuk, 2012).

5.5. Experiments and Results 133

idD idG token lemma pos morph weight sD sG gf freq

1 0 Chyba chyba qub 10 3 1 pred 1
1 2 Chyba chyba qub 3 0 3 spec poss 1
1 2 Chyba chyba qub 2 2 0 subj 1
1 3 Chyba chyba qub 2 2 0 subj 1
1 4 Chyba chyba qub 2 2 0 subj 1
1 5 Chyba chyba qub 2 2 0 subj 1
2 0 jest byÊ fin sg.ter.imperf 1 0 1 pred 1
2 1 jest byÊ fin sg.ter.imperf 3 0 3 subj 1
2 1 jest byÊ fin sg.ter.imperf 3 0 3 interp 1
2 1 jest byÊ fin sg.ter.imperf 2 2 0 spec poss 1
2 1 jest byÊ fin sg.ter.imperf 24 3 3 obj 1
2 3 jest byÊ fin sg.ter.imperf 2 2 0 spec poss 1
2 3 jest byÊ fin sg.ter.imperf 3 3 0 obj 1
2 4 jest byÊ fin sg.ter.imperf 2 2 0 spec poss 1
2 4 jest byÊ fin sg.ter.imperf 3 3 0 obj 1
2 5 jest byÊ fin sg.ter.imperf 2 2 0 spec poss 1
2 5 jest byÊ fin sg.ter.imperf 3 3 0 obj 1
3 0 w w prep loc.nwok 1 0 1 pred 1
3 1 w w prep loc.nwok 24 3 3 interp 1
3 1 w w prep loc.nwok 3 0 3 obj 1
3 1 w w prep loc.nwok 3 0 3 subj 1
3 2 w w prep loc.nwok 3 0 3 spec poss 1
3 4 w w prep loc.nwok 3 3 0 interp 1
3 5 w w prep loc.nwok 3 3 0 interp 1
4 0 samochodzie samochód subst sg.loc.m3 1 0 1 pred 1
4 1 samochodzie samochód subst sg.loc.m3 3 0 3 obj 1
4 1 samochodzie samochód subst sg.loc.m3 3 0 3 subj 1
4 1 samochodzie samochód subst sg.loc.m3 3 0 3 interp 1
4 2 samochodzie samochód subst sg.loc.m3 3 0 3 spec poss 1
5 0 ! ! interp 1 0 1 pred 1
5 1 ! ! interp 3 0 3 obj 1
5 1 ! ! interp 3 0 3 subj 1
5 1 ! ! interp 3 0 3 interp 1
5 2 ! ! interp 3 0 3 spec poss 1

Figure 5.21: A weighted projected multi-digraph of the sentence Chyba jest w samo-
chodzie! (Eng. ‘I think he is in a car!) encoded in the column-based format. Explanation:
idD – the index of the dependent node, idG – the index of the governor node, token –
the surface form of the dependent, lemma – the lemma of the dependent, pos – the part
of speech of the dependent, morph – morphological features of the dependent, weight
– the score assigned to the dependency relation, sD – the score of the edge linking de-
pendents in the bipartite alignment graph, sG – the score of the edge linking governors
in the bipartite alignment graph, gf – the projected English grammatical function, freq

– the frequency of projecting the current arc.

features of related Polish tokens (see Section 5.3 Rule-based Adaptation of Polish Depen-
dency Structures). The entire induction procedure outputs a bank of 3,958,556 labelled
dependency structures on which a Polish dependency parser may be trained.

5.5.1 Preliminary Experiment

Since there is no Polish-English parallel corpus annotated with gold-standard depen-
dency structures on the Polish side, we cannot directly evaluate the induced dependency

134 Chapter 5. Projection-based Dependency Bank

structures. Instead, we perform an extrinsic evaluation, similarly as in Section 4.6 Ex-
periments and Results. We train a dependency parser on the induced dependency trees
and see to what extent these trees aÄect performance of the parser.

Performance of the dependency parser is evaluated against the set of 822 test trees taken
from the bank of converted dependency structures. The same test set was used to evalu-
ate Polish dependency parsers trained on the converted dependency structures. Parsing
performance of these ‘conversion-based’ parsers24 reported in Section 4.6 Experiments
and Results constitutes the point of reference (an upper bound) for comparison with
performance of ‘induction-based’ dependency parsers.

The conversion-based parsers were trained using two dependency parsing systems –
MaltParser (Nivre et al., 2006a) and the Mate dependency parser (Bohnet, 2010). In
order to compare results, we should use the same parsing systems. However, it turned
out that it is technically impossible to train MaltParser on the entire bank of induced
dependency structures using available machines because of limited memory.25 Therefore,
we only use the Mate system (Bohnet, 2010) in our evaluation experiments.

Even though the Mate parser is capable of learning a dependency parsing model on
the entire induced treebank, the learning process requires a huge amount of time (e.g.,
one iteration of the Mate training on nearly 1 million trees takes almost 38 hours on
a machine with up to 30G of memory and 8 cores). Therefore, we conducted some pre-
liminary experiments on a smaller collection of about one million unlabelled induced
trees. In these experiments, we tested diÄerent parameters of the Mate system in or-
der to identify the best setting for learning dependency models for Polish. Results of
the preliminary experiments indicate an approximate performance of Polish parsers and
thereby the quality of the induced dependency structures.

In the preliminary experiment, we used 1,108,434 projected multi-digraphs originating
from the following parts of the bitext collection: CORDIS (74,327 multi-digraphs), DGT-
TM (311,954 multi-digraphs), EMEA (105,232 multi-digraphs), Europarl (274,389 multi-
digraphs), and a part of EUR-Lex (342,532 multi-digraphs). Arcs of these projected
multi-digraphs are assigned initial weights.

As mentioned in Section 5.2.2 Feature Representations of Arcs, diÄerent features can
be used to represent arcs (e.g., surface forms, lemmata or part of speech tags of related
tokens, and grammatical functions). Table 5.3 outlines the evaluation results of theMate
parser trained on the limited set of unlabelled dependency trees. These trees were ac-
quired with the weighted induction method based on various feature representations of
24Since we compare parsing performance of dependency parsers trained on conversion-based depen-
dency structures with performance of parsers trained on projection-based dependency structures, we refer
to the dependency parsers trained on converted dependency structures as ‘conversion-based parsers’ and
to dependency parsers trained on dependency structures acquired with the weighted induction method
as ‘induction-based parsers’.
25Machines that we have at our disposal have 32G memory at most. They are insuÖcient to train
MaltParser on the entire induced dependency bank.

5.5. Experiments and Results 135

arcs. Results show that the best feature representation of arcs consists of lemmata of
related tokens and grammatical functions.

Feature Representation Input UAS
lemma

gov

, lemma
dep

, gf 924,733 76.4
token

gov

, token
dep

, gf 939,722 75.2
pos

gov

, pos
dep

, gf 1,005,114 75.6
lemma

gov

, lemma
dep

, pos
gov

, pos
dep

, gf 934,143 75.2
lemma

gov

, lemma
dep

, token
gov

, token
dep

, pos
gov

, pos
dep

, gf 939,855 75.5

Table 5.3: Performance of the Mate parser trained on Polish unlabelled dependency
structures obtained with the weighted induction method based on various feature repre-
sentations of arcs. The induction-based parsers are trained in one iteration with the heap
size of 50 million and the threshold of the non-projective approximation of 0.2. The num-

ber of training trees is given in the second column (Input).

From the limited set of projected multi-digraphs, 924,733 unlabelled dependency trees
(17.1 tokens per sentence on average) are acquired with the weighted induction method.
In the procedure of recalculating arc weights, the parameter k (i.e., the number of
the best MSDTs used to estimate the probability distribution over arcs) was set to
10 and the feature representation of arcs was built of lemmata of related tokens and
the grammatical function labelling the arc between these tokens. The total number of
induced trees diÄers from the number of initially weighted projected multi-digraphs. This
is due to our decision of training dependency parsers solely on properly built dependency
trees, e.g., trees with only one dependent of the root node. Improper structures are not
taken into account in the dependency parser training. The Mate parser model is trained
on this set of 924,733 induced dependency trees.

The point of reference for the induction-based parser is a baselineMate parser trained on
1,000,797 unlabelled maximum spanning dependency trees (16.7 tokens per sentence on
average). The baseline trees were extracted from the limited set of 1,108,434 projected
multi-digraphs with initial weights on arcs using the k -best MSDT selection algorithm
(see Appendix D), for k = 1. Hence, the baseline parser was trained on MSDTs extracted
from the initially weighted multi-digraphs, while the induction-based parser was trained
on MSDTs extracted with the weighted induction method.

Both parsers used the same training setting: the heap size of 50 million features and
the non-projective approximation threshold of 0.3. The models were learnt in 10 itera-
tions. The results show that the induction-based parser outperforms the baseline parser,
but the diÄerence is insignificant. The induction-based parser obtains 71.7% UAS, while
the baseline parser obtains 71.1% UAS when tested against the conversion-based test
trees.

We also tested how theMate parser performs when it is trained in a number of iterations
smaller than 10. We found out that parsing performance decreases with the increasing

136 Chapter 5. Projection-based Dependency Bank

number of iterations used to train the parser. The parser trained in one iteration performs
better than the parser trained in a number of iterations. The induction-based parser
trained in one iteration achieves 76.4% UAS, while the baseline parser obtains 74% UAS.
Hence, if the parsers are trained in one iteration, the induction-based parser significantly
outperforms the baseline parser. The decrease in parsing performance may be due to
noise which is learnt in successive iterations. Therefore, we limit the number of Mate
iterations to one in further experiments.

Similarly as in Section 4.6.2 Experiment 2 – Mate Parser, we conducted an experiment
with diÄerent approximation thresholds. The Mate parser applies the Non-Projective
Approximation Algorithm by McDonald and Pereira (2006) to rearrange arcs in a pre-
dicted dependency tree if it results in an enhancement of the tree score. The rear-
rangement threshold introduced in Bohnet (2009) determines the minimal enhancement
of the tree score. The threshold of 0.3 was proven to be the best option for training
the Mate parser on the conversion-based Polish dependency structures. However, it is
worth recalling that these dependency structures were converted from the constituent
trees which do not encode linguistic phenomena resulting in crossing edges. Single non-
projective arcs result from the post-conversion rearrangement or the manual correction,
but generally they are sparsely represented in the conversion-based dependency trees.
The entire converted treebank contains only 125 crossing edges (i.e., about 0.15% of all
arcs in the treebank trees).

We tested diÄerent non-projective approximation thresholds. The test results are dis-
played in Figure 5.22. The diagram can be interpreted as follows. The x-axis indicates
threshold values. The blue y-axis on the left indicates the percentage of non-projective
arcs in the test dependency structures parsed with the baseline parser (marked with
the blue line with ⇥ points) and the induction-based parser (marked with the blue line
with • points). The orange y-axis determines parsing performance in terms of the unla-
belled attachment score (UAS). Parsing performance of the baseline parser trained with
diÄerent approximation thresholds is marked with the orange line with ⇥ points, while
performance of the induction-based parser is given with the orange line with • points.

Figure 5.22 shows that the Mate parser trained on trees acquired with the weighted
induction method outperforms the baseline parser. The best induction-based parser ob-
tains UAS of 76.4%, while the best baseline parser obtains UAS of 75.2%. The threshold
of 0.1 is the best choice for training the baseline parser and the threshold of 0.2 is most
suitable for training the induction-based parser. For higher threshold values, parser per-
formance decreases rapidly.

With an increase of the threshold, the number of non-projective arcs increases radi-
cally. However, there are fewer non-projective arcs in the test dependency trees parsed
with induction-based parsers than in the test trees predicted by baseline parsers. This
could suggest that the weighted induction method reduced the number of incorrect

5.5. Experiments and Results 137

0.1 0.2 0.3 0.4 0.5

5

10

15

20

Threshold

N
on
-p
ro
je
ct
iv
e
ar
cs
[%
]

71

72

73

74

75

76

77

U
A
S
[%
]

baseline
induced

Figure 5.22: The impact of diÄerent non-projective approximation thresholds (x-axis)
on the number of non-projective arcs in parsed test trees (blue y-axis on the left) and
on parsing performance in terms of UAS (orange y-axis on the right). Baseline parsers
are trained on the dependency structures extracted from the initially weighted multi-
digraphs. Induction-based parsers are trained on the dependency structures acquired
with the weighted induction method. Numbers of non-projective arcs in baseline parse
trees and induced parse trees are marked with ⇥ points and • points respectively.
Similarly, UAS scores obtained with baseline parsers and induction-based parsers are

marked with ⇥ points and • points respectively.

non-projective arcs in training dependency trees and, thus, a parser trained on them
performs better. In order to prove this, we tested whether parsers rearrange arcs in de-
pendency trees into correct non-projective arcs. We found out that the baseline parser
with the threshold of 0.2 rearranged correctly only 3 of all 514 rearranged arcs (the best
baseline parser with the threshold of 0.1 rearranged correctly 2 of all 332 rearranged
arcs). The best induction-based parser rearranged correctly only 6 of all 365 rearranged
arcs. Since only few arcs were rearranged properly, it may suggest that training data
induced with the weighted method are too noisy. Nevertheless, there is a noticeable
improvement in relation to the number of incorrectly rearranged baseline arcs.

The model of the Mate parser was trained with the passive-aggressive perceptron al-
gorithm implemented as the hash kernel. The hash kernel uses a scoring function
F (x, y) = ~w ⇤ �(x, y), where x is a sentence, y is the corresponding dependency struc-
ture, ~w is the weight vector and �(x, y) is a numeric feature representation. The parsing
problem is to find a parse tree y

p

of the sentence x that maximises the scoring func-
tion argmax

y

F (x, y). The learning process consists in fitting the function F so that
the predicted parse tree y contains as minimal number of errors as possible. The learn-
ing algorithm implemented as the hash kernel extracts features for each training instance
(without storing them), maps the features to indices of the weight vector using the hash

138 Chapter 5. Projection-based Dependency Bank

Vector Size Nonzero Values UAS
50,000,000 49,150,506 76.4
100,000,000 86,941,894 75.9
200,000,000 127,658,581 76.3
500,000,000 166,895,804 75.9

Table 5.4: Performance of parsers trained with the Mate parsing system on Pol-
ish unlabelled dependency structures acquired with the weighted induction procedure.
The induction-based parsers are trained in one iteration on 924,734 induced trees (17.1
tokens per sentence on average). Explanation: Vector Size – the size of the weight
vector; Nonzero Values – the number of nonzero values in the feature vectors.

function and calculates the weight arrays. If the hash function maps more than one
feature to the same weight, a collision occurs. A large weight vector reduces the risk
of collisions. We found out that the accuracy of the Mate parser does not change sig-
nificantly for diÄerent sizes of the weight vector (see Table 5.4). However, for vector
sizes greater than 100 million values, there are multiple zero weights and hence many
collisions.

5.5.2 Experiments on the Entire Set of Induced Trees

In this section we report evaluation results of parsers trained on the entire set of de-
pendency trees acquired with the weighted induction method. The evaluation results
are presented in Table 5.5. The first parser (called induced) was trained on 3,958,556
induced dependency trees. These trees are treated as unlabelled since their arcs are still
assigned English grammatical functions not corresponding to Polish labels. The second
parser (denoted labelled) was trained on the same set of induced trees with Polish labels
assigned to dependency arcs. The third parser (modified) was trained on the same set of
induced trees which were labelled and modified with the predefined rules. We also out-
line some tests on filtering unreliable dependency trees. The filtered parsers are trained
on the refined set of labelled, modified and filtered trees acquired with the weighted
induction method.

We evaluate parsing performance against the test set of 822 dependency structures taken
from the converted Polish dependency bank (Manual Test). We also provide a version
of test trees with automatically generated part of speech tags and morphological fea-
tures (Automatic Test). Furthermore, we employ the additional test set of 100 manually
annotated complex sentences (Additional Test).

The induced dependency parser trained on unlabelled trees obtained with the weighted
induction method achieves 73.7% UAS when evaluated against the Manual Test trees
and 72.8% UAS when evaluated against the Automatic Test trees. Hence, the Mate

5.5. Experiments and Results 139

Model Training Filtering Manual Automatic Additional
Data (in %) Test Test Test

non-proj dep uas las uas las uas las

induced 3958556 – – 73.7 – 72.8 – 63.5 –
labelled 3958556 – – 74.6 69.4 74.0 68.1 63.7 58.3
modified 3958556 – – 85.1 79.2 84.0 77.3 74.3 68.5
filtered 3548347 50 30 85.0 79.1 83.9 77.2 74.5 69.2
filtered 3036020 30 30 85.2 79.3 83.6 77.0 74.4 68.5
filtered 2352940 30 10 86.0 80.5 84.7 78.3 76.1 70.3
default 7405 – – 92.7 87.2 88.4 81.0 76.0 69.5
automatic 7405 – – 91.2 85.6 90.8 84.7 76.6 70.1

Table 5.5: Performance of parsers trained with the Mate parsing system on the Polish
dependency structures acquired with the weighted induction method (induced), induced
and labelled (labelled), labelled and modified (modified), and labelled, modified and
filtered (filtered). Settings of model training: one iteration, the heap size of 100 million
features, the threshold of the non-projective approximation of 0.2. The default and
automatic models are trained on 7405 conversion-based dependency structures with
manually and automatically annotated tokens respectively (the results of these parsers
are repeated from Table 4.1 – Mate default and Mate automatic). Validation data sets:
Manual Test – the set of 822 conversion-based test trees; Automatic Test – the set of 822
conversion-based test trees with automatically assigned morphosyntactic annotations;
Additional Test – the set of 100 sentences manually annotated with dependency trees.

parser manages to parse test data with manually or automatically annotated tokens
almost equally well since there is a diÄerence of about 1 percentage point.

The Mate parser used in our experiments is designed to predict labelled dependency
structures. The induced dependency trees employed as training data in the previous ex-
periment were labelled with possibly noisy English grammatical functions. We treated
them therefore as unlabelled dependency trees and we only pointed out the UAS scores.
Now, we report on performance of the Mate parser trained on automatically induced
trees the arcs of which are labelled using the rule-based method presented in Section 5.3
Rule-based Adaptation of Polish Dependency Structures. There is no significant change
in terms of UAS if performance of parsers trained on labelled induced trees (labelled) is
considered (see the second row in Table 5.5). In the case of the labelled model, the diÄer-
ence between performance of the parser evaluated against the Manual Test trees (74.6%
UAS) and against the Automatic Test trees (74% UAS) is even slighter than for the in-
duced parser.

Table 5.5 also outlines the evaluation results of the parser trained on labelled in-
duced dependency structures which were modified with some correction rules (modified).
The parser obtains 85.1% UAS and 79.2% LAS when evaluated against the Manual Test
trees and 84% UAS and 77.3% LAS when evaluated against the Automatic Test trees.
Similarly as in the previous case, the modified parser analyses automatically annotated

140 Chapter 5. Projection-based Dependency Bank

sentences nearly as well as manually annotated sentences. The parser trained on the mod-
ified dependency structures considerably outperforms the parsers trained on the labelled
induced dependency structures. This indicates that some manually designed correction
rules significantly improve the quality of the labelled induced dependency structures.
However, the parser trained on the modified trees is still behind the conversion-based
parser when evaluated against conversion-based test trees (Manual Test and Automatic
Test).

root Pod wzglÍdem spo≥ecznym tworzy≥ siÍ zatem na terenie Inflant typowy kolonialny uk≥ad .

Figure 5.23: An incorrect dependency structure of the Polish sentence Pod wzglÍdem
spo≥ecznym tworzy≥ siÍ zatem na terenie Inflant typowy kolonialny uk≥ad. (Eng. ‘Socially,
a typical colonial system was thus created in the area of Livonia.’; the English corre-
sponding sentence from the parallel corpus: ‘Socially, this created a typically colonial

system.’) with long distances between related nodes.

We observe that incorrect dependency trees are mainly characterised by long distance
between related lexical nodes and thus a high number of non-projective arcs (see Fig-
ure 5.23 for an example of an incorrect dependency structure acquired with the weighted
induction method). Filtering is one of the most common optimisation techniques in
projection-based approaches. After automatic induction of trees, some of them were
filtered out. Two filtering criteria were used: percentage of non-projective arcs and per-
centage of arcs labelled with the default function dep. The filtered parsers were trained on
reduced sets of trees. Our results show that filtering of possibly incorrect trees does not
significantly improve parsing performance. The best results are achieved when the parser
was trained on trees with fewer than 30% of non-projective arcs and with fewer than
10% of dep-labelled arcs – 86% UAS and 80.5% LAS when tested against the Manual
Test trees and 84.7% UAS and 78.3% LAS when tested against Automatic Test trees.

The reported results are obtained by the Mate parser trained on induced trees and
evaluated against conversion-based trees. In this parsing scenario, the induction-based
parsers (i.e., induced, labelled, modified and filtered) are outperformed by the conversion-
based parsers. In a more realistic scenario, parsing models are tested against the set of
100 complex trees (Additional Test in Table 5.5). Parsing results are generally worse than
those reported above. However, the induction-based parsers approach the upper bound
(i.e., performance of the conversion-based parser) or even outperform the conversion-
based parsers. The Mate parser with the filtered model achieves 70.3% LAS and thus
slightly outperforms the Mate default parser that achieves 70.1% LAS.

5.5. Experiments and Results 141

2 4 6 8 10

82

83

84

85

86

Iteration

U
A
S

modified
filtered

Figure 5.24: The impact of the number of training iterations (x-axis) of the Mate
parser on parsing performance (y-axis) in terms of UAS. Explanation: modified parsers
are trained on the automatically induced, labelled and corrected dependency struc-
tures, filtered parsers are trained on the reliable dependency structures obtained with
the weighted induction method, labelled, corrected and filtered; blue lines indicate
the results of evaluation against the Manual Test trees and orange lines indicate the re-

sults of evaluation against the Automatic Test trees.

2 4 6 8 10

75

76

77

78

79

80

81

Iteration

L
A
S

modified
filtered

Figure 5.25: The impact of the number of training iterations (x-axis) of the Mate
parser on parsing performance (y-axis) in terms of LAS. Explanation: modified parsers
are trained on the automatically induced, labelled and corrected dependency struc-
tures, filtered parsers are trained on the reliable dependency structures acquired with
the weighted induction method, labelled, corrected and filtered; blue lines indicate
the results of evaluation against the Manual Test trees and orange lines indicate the re-

sults of evaluation against the Automatic Test trees.

142 Chapter 5. Projection-based Dependency Bank

Similarly as in the case of preliminary parsers trained on the limited set of unlabelled
induced dependency trees, the number of Mate iterations has a negative impact on pars-
ing performance (see Figures 5.24 and 5.25). Performance of the Mate parser trained on
the entire set of modified induced dependency structures decreases from 85.1% UAS and
79.2% LAS when the parsing model is trained in one iteration to 83% UAS and 76.8%
LAS when the parsing model is trained in ten iterations. A relatively small decrease
in parsing performance is also noticed when the parser is trained on filtered depen-
dency trees. Performance of the filtered parser decreases from 86% UAS and 80.5% LAS
when the parsing model is trained in one iteration to 84.8% UAS and 79.2% LAS when
the parsing model is trained in ten iterations.

5.5.3 Evaluation of Individual Relation Labels

In this section we evaluate individual relation labels which are assigned to arcs of trees
predicted by the labelled parser trained on labelled induced trees and by the modified
parser trained on labelled induced trees which are modified with correction rules. Ta-
ble 5.6 presents the results of evaluation of individual dependency labels against the Man-
ual Test trees and the Automatic Test trees.

The results indicate that induction-based parsers perform better on manually anno-
tated sentences than on sentences with automatic morphosyntactic annotations. How-
ever, the diÄerence is insignificant. The labelled parser labels dependency trees predicted
for manually annotated sentences with the average F-score of 0.71 and trees predicted
for automatically annotated sentences with the average F-score of 0.69. The modified
parser achieves the average labelling accuracy of 0.79 and 0.78 in terms of F-score for
predicted trees with manually and automatically annotated tokens respectively.

Most of dependency types profit from the application of correction rules. There are
three dependency relations – mwe, abbrev punct and cond – with the F-score close to 0
in the test parse trees predicted by the labelled parser. The average F-score of these la-
bels increases to 0.67 in the test trees predicted by the modified parser. An improvement
of nearly 10 percentage points is also achieved in the case of comp, subj, refl, item, aglt
and aux labels. There are also some other dependency types which profit from the appli-
cation of correction rules – adjunct, punct, pred, conjunct, obj, obj th, neg, comp fin and
pd. For other dependency types, an improvement is marginal (e.g., comp inf) or there
is no slightest improvement (e.g., app, comp ag, coord punct and pre coord). Three of
dependency labels with no improvement – app, coord punct and pre coord – were only
assigned to wrong dependency relations. Finally, there are two dependency types – co-
ord and ne – F-scores of which decrease after application of additional correction rules.
To explain why there is no enhancement in these cases, a manual error analysis was
performed.

5.5. Experiments and Results 143

D
ep
en
d
en
cy

M
an
u
al
T
es
t

A
u
to
m
at
ic
T
es
t

R
el
at
io
n

L
ab
el
le
d

M
od
ifi
ed

L
ab
el
le
d

M
od
ifi
ed

L
ab
el

F
re
qu
en
cy

pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e
pr
ec
is
io
n
re
ca
ll
f-
sc
or
e

ad
ju
nc
t

21
85

0.
67

0.
72

0.
70

0.
74

0.
79

0.
76

0.
64

0.
70

0.
67

0.
71

0.
77

0.
74

co
m
p

13
11

0.
83

0.
68

0.
75

0.
89

0.
87

0.
88

0.
81

0.
66

0.
73

0.
89

0.
86

0.
88

pu
nc
t

11
59

0.
64

0.
68

0.
66

0.
70

0.
73

0.
71

0.
65

0.
69

0.
67

0.
69

0.
73

0.
71

pr
ed

77
0

0.
85

0.
87

0.
86

0.
92

0.
94

0.
93

0.
85

0.
87

0.
86

0.
92

0.
94

0.
93

su
bj

60
8

0.
78

0.
74

0.
76

0.
86

0.
84

0.
85

0.
76

0.
71

0.
73

0.
84

0.
77

0.
81

co
nj
un
ct

45
5

0.
78

0.
64

0.
71

0.
86

0.
65

0.
74

0.
75

0.
63

0.
69

0.
83

0.
64

0.
72

ob
j

41
9

0.
84

0.
73

0.
78

0.
87

0.
79

0.
83

0.
81

0.
67

0.
73

0.
81

0.
72

0.
76

ob
j
th

19
7

0.
71

0.
56

0.
63

0.
74

0.
67

0.
70

0.
71

0.
51

0.
59

0.
73

0.
64

0.
68

re
fl

16
6

0.
84

0.
58

0.
69

0.
90

0.
93

0.
91

0.
83

0.
58

0.
68

0.
89

0.
92

0.
90

ne
12
0

0.
67

0.
44

0.
53

0.
72

0.
40

0.
51

0.
59

0.
56

0.
57

0.
61

0.
49

0.
55

ne
g

11
9

0.
94

0.
87

0.
91

0.
96

0.
96

0.
96

0.
95

0.
88

0.
92

0.
96

0.
96

0.
96

co
m
p
in
f

11
2

0.
93

0.
84

0.
88

0.
97

0.
83

0.
89

0.
92

0.
83

0.
87

0.
97

0.
82

0.
89

co
m
p
fin

10
1

0.
76

0.
61

0.
68

0.
79

0.
64

0.
71

0.
76

0.
61

0.
68

0.
81

0.
66

0.
73

pd
10
1

0.
73

0.
58

0.
65

0.
72

0.
65

0.
69

0.
75

0.
57

0.
65

0.
73

0.
60

0.
66

m
w
e

86
0.
23

0.
05

0.
08

0.
74

0.
62

0.
67

0.
23

0.
05

0.
08

0.
73

0.
60

0.
66

it
em

65
0.
60

0.
60

0.
60

0.
77

0.
77

0.
77

0.
60

0.
60

0.
60

0.
75

0.
75

0.
75

co
m
pl
m

60
0.
77

0.
77

0.
77

0.
74

0.
85

0.
79

0.
75

0.
77

0.
76

0.
74

0.
85

0.
79

ag
lt

59
0.
97

0.
64

0.
77

0.
97

0.
97

0.
97

0.
97

0.
66

0.
79

0.
95

0.
93

0.
94

au
x

51
0.
84

0.
63

0.
72

0.
84

0.
82

0.
83

0.
84

0.
63

0.
72

0.
83

0.
84

0.
83

ap
p

43
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

ab
br
ev
pu
nc
t
29

0.
00

0.
00

0.
00

0.
79

0.
79

0.
79

0.
00

0.
00

0.
00

0.
67

0.
41

0.
51

co
or
d

26
0.
62

0.
81

0.
70

0.
61

0.
73

0.
66

0.
64

0.
81

0.
71

0.
58

0.
73

0.
64

co
or
d
pu
nc
t
26

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

co
nd

11
0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

co
m
p
ag

9
1.
00

0.
67

0.
80

1.
00

0.
67

0.
80

1.
00

0.
67

0.
80

1.
00

0.
67

0.
80

pr
e
co
or
d

1
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

av
er
ag
e:

0.
73

0.
69

0.
71

0.
80

0.
79

0.
79

0.
72

0.
68

0.
69

0.
78

0.
77

0.
78

T
a
b
l
e
5
.
6
:
P
ar
si
ng
pe
rf
or
m
an
ce
in
te
rm
s
of
ac
cu
ra
cy
of
in
di
vi
du
al
de
pe
nd
en
cy
ty
pe
s
as
si
gn
ed
by
th
e
M
at
e
pa
rs
er
tr
ai
ne
d
on
la
be
lle
d
de
pe
nd
en
cy

st
ru
ct
ur
es
(l
ab
el
le
d)
,
an
d
on
la
be
lle
d
an
d
m
od
ifi
ed
de
pe
nd
en
cy
st
ru
ct
ur
es
(m
od
ifi
ed
).
V
al
id
at
io
n
te
st
se
ts
:
M
an
ua
lT
es
t
–
th
e
se
t
of
82
2
co
nv
er
si
on
-

ba
se
d
de
pe
nd
en
cy
st
ru
ct
ur
es
w
it
h
m
an
ua
l
m
or
ph
os
yn
ta
ct
ic
an
no
ta
ti
on
s
of
to
ke
ns
;
A
ut
om
at
ic
T
es
t
–
th
e
se
t
of
82
2
co
nv
er
si
on
-b
as
ed
de
pe
nd
en
cy

st
ru
ct
ur
es
w
it
h
au
to
m
at
ic
m
or
ph
os
yn
ta
ct
ic
an
no
ta
ti
on
s
of
to
ke
ns
;a
ve
ra
ge
–
w
ei
gh
te
d
ar
it
hm
et
ic
m
ea
n.

144 Chapter 5. Projection-based Dependency Bank

We start with an analysis of dependency types whose precision, recall and F-scores are
equal to 0, i.e., app, coord punct and pre coord. Apposition relations are not explicitly
encoded in English dependency structures. Since most of them are labelled with the En-
glish grammatical function adjunct, its equivalent Polish function adjunct often labels
apposition relations in induced trees instead of the desirable function app. Furthermore,
there are multiple examples where the apposition relation is annotated reversely as
shown in Figure 5.26. Hence, additional correction rules are required to cover reversely
annotated apposition relations.

root Premier Izraela Ariel Szaron og≥osi≥ wojnÍ
Prime Minister Israelsg.gen Arielsg.nom Sharon declarepraet.sg.ter warsg.acc

app

ne
obj

pred

adjunct

subj

adjunct subj

Figure 5.26: Discrepancies in annotating apposition relations in the gold standard
tree (marked with solid lines) and the induced dependency tree (marked with dotted
lines) of the Polish sentence Premier Izraela Ariel Szaron og≥osi≥ wojnÍ. (Eng. ‘Israel
Prime Minister, Ariel Sharon declared the war.’). In the gold standard tree, the token
Premier governs the token Ariel and the relation is labelled with the app function.
In the induced dependency tree, in turn, the relation is reversed and the token Ariel

governs the token Premier.

Several coord punct relations connect the root node and a punctuation mark (comma)
coordinating two sentences in the test dependency structures. In all these cases,
the induction-based parsers annotate the sentence predicate of one of coordinated clauses
as the governor of the entire sentence. Moreover, these parsers assign the coord punct
function to only one relation in the entire set of test trees and this assignment is wrong.
We suppose that constructions with two sentences coordinated with a punctuation mark
may be too sparsely represented or incorrectly annotated in training data induced with
the weighted method. Therefore, the parsers cannot learn to annotate them properly.
Since there is only one pre coord relation in the test corpus, the evaluation of this de-
pendency type is not reliable.

There are two dependency types – coord and ne – for which F-scores slightly decrease
after application of correction rules. In the case of these functions, precision increases
(or slightly decreases), but recall significantly decreases. It means that labels coord and
ne assigned by the parser are relevant to some extent, but the number of relevant labels
coord and ne assigned by the parser is rather low. For example, the labelled parser
assigns the ne function to 79 relations, but only 53 of these assignments are correct
(hence, precision of 0.67%). The modified parser, in turn, assigns the ne function to
67 relations and 48 of these assignments are correct (hence, precision of 0.72%). In

5.6. Annotation Projection: Related Work 145

the conversion-based test trees, there are 120 relations labelled with the ne function.
Since the number of correct ne labels assigned by the modified parser is lower then
the number of ne labels assigned by the labelled parser, i.e., 48 vs. 53, recall is lower as
well. The ne function is mostly replaced by the adjunct function in the test parse trees.

We also consider the default function dep which labels dependency relations that could
not be labelled or modified with rules. The dep function is assigned by the labelled
parser to 510 relations (more than 6% of all 8289 relations) in the test trees predicted
for manually annotated sentences and to 496 relations (almost 6% of all relations) in
the test trees predicted for automatically annotated sentences. The number of depen-
dency relations labelled with the dep function significantly decreases when sentences are
parsed with the modified parser, i.e., the dep function is assigned to 141 relations (1.7%
of all relations) in the test trees predicted for manually annotated sentences and to 175
relations (2.1% of all relations) in the test trees predicted for automatically annotated
sentences. This indicates that the correction rules reduce the number of unrecognised
dependency relations.

5.6 Annotation Projection: Related Work

The cross-lingual projection method has been successfully applied to various levels of
linguistic analysis and corresponding NLP tasks. It was first applied by Yarowsky and his
colleagues (Yarowsky et al., 2001; Yarowsky and Ngai, 2001) to induce part of speech
taggers, noun phrase chunkers, named entity recognisers and morphological analysers
for French, Chinese, Czech, Spanish and possibly for other less researched languages.
Even if projected annotations are noisy and incomplete, the employed training methods
overcome the weakness of noisy projections and allow for bootstrapping robust NLP
tools. For example, the French part of speech tagger trained on noisy data achieves
the tag accuracy of 98%.

Several studies that followed the work by Yarowsky et al. (2001) improve the method of
projecting part of speech tags and widen the scope of relating languages, e.g., Cucerzan
and Yarowsky (2002), Ozdowska (2006), Das and Petrov (2011). The annotation projec-
tion method has also been applied to other NLP tasks, such as word sense disambiguation
(Diab and Resnik, 2002), verb classification (Merlo et al., 2002), argument identification
(Bouma et al., 2008), acquisition of idiomatic expressions (Villeda Moirón and Tiede-
mann, 2006), acquisition of synonyms (van der Plas and Tiedemann, 2006), temporal
analysis (Spreyer and Frank, 2008), semantic role labelling (Padó and Lapata, 2005,
2009), or relation extraction (Kim et al., 2010).

An important area of applying annotation projection is dependency tree projection and
parser induction. Experiments with dependency projection were pioneered by Hwa et al.

146 Chapter 5. Projection-based Dependency Bank

(2002, 2005). Based on the Direct Correspondence Assumption (DCA),26 Hwa and her
colleagues assume that dependencies in one language directly map to dependencies in
another language. They project dependency trees from English to Spanish and Chinese
and train dependency parsers on projected trees. However, the Direct Correspondence
Assumption, which underlies the annotation projection approach by Hwa et al. (2005),
is an idealisation. First, since a translation may be non-literal, lexical items in a source
sentence and its non-literal translation do not correspond to each other (see Figure 5.27).

root He kicked the bucket.

subj

pred

obj

det

root On umar≥.

subj
pred

Figure 5.27: Translational divergences between the English sentence He kicked
the bucket. and its Polish translation On umar≥. (Eng. ‘He died.’).

Second, lexical items in a source sentence and its literal translation may not correspond
to each other because of cross-lingual variability, e.g., in using function words (see Fig-
ure 5.28).

root I am afraid.

xcomp-pred

pred

subj

root

BojÍ siÍ.

reflpred

Figure 5.28: Cross-lingual variability between the English sentence I am afraid. and
its Polish translation BojÍ siÍ.

Third, even if lexical items of a source sentence and its target translation perfectly corre-
spond with each other, the projection process may be disturbed by erroneous automatic
word alignment and errors in automatically annotated source dependency structures.
The disturbed projection results in dependency structures which do not meet properties
of a correct dependency tree. For example, a projected dependency structure may be
disturbed in terms of the spanning property or the connectedness property by imperfect
or incomplete automatic word alignment.

Translational divergences and true mismatches of dependency structures between lan-
guages may radically impair the quality of induced dependency structures. In order to
improve the quality of projection-based dependency structures, Hwa et al. (2005) apply
some hand-crafted correction rules that locally transform projected structures. The cor-
rection rules increase accuracy of unlabelled structures projected via automatic word
alignment from 33.9 to 65.7 of unlabelled dependency F-score27 for Spanish and from
26The definition of Direct Correspondence Assumption (DCA) given by Hwa et al. (2002, 2005):

Direct Correspondence Assumption: Given a pair of sentences E and F that are (literal) transla-
tions of each other with syntactic structures Tree

E

and Tree
F

, if nodes x
E

and y
E

of Tree
E

are aligned
with nodes x

F

and y
F

of Tree
F

respectively, and if syntactic relationship R(x
E

, y
E

) holds in Tree
E

,
then R(x

F

, y
F

) holds in Tree
F

.
27The unlabelled dependency F-score is not defined in the article by Hwa et al. (2005).

5.6. Annotation Projection: Related Work 147

26.3 to 52.4 of unlabelled dependency F-score for Chinese. Moreover, Hwa et al. (2005)
identify unreliable target structures based on the number of unaligned and over-aligned
words and they filter them out. The filtering procedure reduces the number of projected
trees but increases performance of a parser trained on filtered data. In English-Spanish
scenario, if the number of sentences is reduced from 98,000 to 20,000 sentences, pars-
ing performance increases from 67.3 to 72.1 of unlabelled F-score. In English-Chinese
scenario, a radical loss of data, from 240,000 to 50,000 sentences, causes an increase in
parsing performance from 44.3 to 53.9 of unlabelled F-score.

To cope with the limitations of DCA, various methods of dependency projection have
been proposed. Some of them apply aggressive filtering (Mareček, 2011; Jiang and Liu,
2009). Other use projection-based smoothing techniques in learning target parsing mod-
els (Ganchev et al., 2009). Training with smoothing (i.e., constraint driven learning)
prevents a model from overfitting that could occur if the model was trained on noisy
data. Some experiments were also conducted on projecting only reliable relations and
training a dependency parser on partial dependency structures (Jiang and Liu, 2010;
Spreyer, 2011; Täckström, 2013).

Mareček (2011) proposes a dependency projection approach based on combinations of
diÄerent sets of word alignment links. As some of alignment link types may be more pre-
ferred in projection than others, Mareček (2011) uses them to sort target words aligned
with a particular source token. Lists of preferences are used to project dependency re-
lations. This approach does not apply language-specific post-correction rules, but as
a result of radical filtering more than 87% of sentences are filtered out. This article
inspired us to use a combination of diÄerent word alignments. In contrast to Mareček
(2011), diÄerently consolidated alignment links are used in our approach to weight pro-
jected dependencies, and not to designate the priority of target tokens corresponding to
a source token.

Jiang and Liu (2009) propose a dynamic programming procedure for searching for pro-
jected Chinese trees that are most consistent with source English dependency trees, i.e.,
Chinese trees that have the highest confidence score estimated as a product of their edge
scores. However, only induced trees with the confidence score greater then or equal to
0.35 and the number of words per sentence greater than 6 and less than 100 are included
in the set of training trees. Since only 500,000 Chinese trees out of 5.6 million projected
trees28 fulfil these constraints, the filtering procedure leads to an enormous data loss.
The MST parser (McDonald et al., 2005a) trained on selected dependency trees achieves
performance of 53.28%29 when evaluated against a part of the Penn Chinese Treebank
(CTB). After adaptation to the CTB annotation schema, parsing performance increases
to 87.34%.
28Projection was conducted on the set of 5.6 million LDC Chinese-English sentence pairs. According to
this, the supposed output seems to contain 5.6 million projected graphs. However, only 500.000 Chinese
dependency trees met predefined criteria (e.g., ‘projecting confidence’) and were selected.
29Authors do not mention how performance of the parser is measured.

148 Chapter 5. Projection-based Dependency Bank

Ganchev et al. (2009) present a posterior regularisation approach to learn generative and
discriminative models for dependency parsing. In this approach, arcs generated by a su-
pervised English parser and projected via aligned parallel corpus are used as constraints
to regularise training of a target language parser. In order to avoid training models on
target trees containing errors caused by partial or incorrect word alignment or inaccurate
source language parses, training is conducted on a constrained group of arcs rather than
entire projected target trees. The basic constraint ensures the expected proportion of
conserved edges30 in a sentence pair. In the performed experiment, training is conducted
on these target trees for which the expected proportion of conserved edges in a sentence
pair is at least 90%. In order to deal with structural divergences between languages and
diÄerences in annotation schemes used in treebanks, Ganchev et al. (2009) also introduce
some language-specific constraints. Conserved edge-proportion constraint and language-
specific constraints provide weak supervision for learning parsing models for the target
language. These constraints are diÖcult to put into the model structure or to use as pri-
ors on the model parameters. Hence, models are estimated by constraining the posterior
distribution over possible target trees in terms of projected arcs and language-specific
rules. Experiments outlined in Ganchev et al. (2009) consist in projecting annotations
from English to Bulgarian and Spanish. Results show that the approach outperforms not
only unsupervised methods but also supervised parsers trained on a small amount of data
if some language-specific constraints are applied. A discriminative transfer model trained
for Bulgarian without additional language-specific rules achieves the attachment accu-
racy of 66.9%, while introducing 2 or 7 rules increases the accuracy to 77.5% or 78.3%
respectively. This constraint-driven learning, which aims to project posterior constraints
in order to improve estimation of parsing model parameters, significantly diverges from
our approach to inducing well-formed target trees. However, we mention it to maintain
a comprehensive overview of all dominating annotation projection approaches.

Smith and Eisner (2009) propose an approach to estimate a joint generative model for
annotation projection based on quasi-synchronous grammar (QG, Smith and Eisner,
2006). Employing a bitext, the model is induced based on the source and target side
syntactic structures, wherein the source structures are treated as fixed and observed.
Conditioned on QG features,31 the model learns syntactic relations that may occur in
both languages and correspondences between them in order to predict target language
sentences. In experiments with projecting English dependency structures into German
and Spanish, the highest quality trees in terms of dependency accuracy are achieved with
the presented projection procedure based on QG features and conditional EM training
30According to the definition given by Ganchev (2010, pp. 87Ä.), an English edge p! c is conserved
if word p aligns to word p0 in the second language, c aligns to c0 in the second language and p0 is
the governor of c0.
31The QG model applies both monolingual QG features of words (e.g., part of speech tags of related
tokens) and dependencies (similar as features of an arc-factored dependency parsing, e.g., arc direction),
and bilingual QG features (i.e., alignment features that consider diÄerent alignment scenarios, e.g., two
target tokens are aligned with one source token, two target tokens are aligned with two source tokens
which are in grandparent–grandchild relation, a target token is aligned with the null token)

5.6. Annotation Projection: Related Work 149

– 68.5% for German and 64.8% for Spanish. Other projection procedures presented for
comparison purposes perform slightly worse.

Apart from approaches employing aggressive filtering or smoothing techniques, there are
also some proposals for training dependency parsers on partial dependency projections
(Jiang and Liu, 2010; Spreyer, 2011). Training supervised parsing models on partial
dependency projections is one of topics explored in the PhD thesis by Spreyer (2011).
According to her results, a parsing model may be trained on dependency tree fragments
projected with the highest probability. Parsers trained on incomplete trees may achieve
performance as high as parsers trained on entire trees. These methods diÄer from our
approach since we aim to induce well-formed dependency trees and not dependency
tree fragments. On the other hand, we focus on induction of data that could be used
repeatedly for training dependency parsers, similarly as Spreyer (2011).

There is also research on the direct transfer of delexicalised parsers between languages
(Zeman and Resnik, 2008; McDonald et al., 2011; Søgaard, 2011). A source parser is
trained on delexicalised structures in which dependency relations connect part of speech
tags instead of tokens. Since the parser predicts dependency structures based solely on
part of speech tags of input tokens, it may parse target sentences represented as strings
of part of speech tags. Results by McDonald et al. (2011) indicate that the directly
transferred delexicalised parser outperforms state-of-the-art unsupervised models. Fur-
thermore, part of speech tags provide enough information for unlabelled dependency
parsing and the knowledge of lexical items is redundant. In the experiment reported by
McDonald et al. (2011), the delexicalised English MaltParser obtains 82.5% UAS, in
comparison to the English MaltParser with all features that achieves 89.3% UAS.

Besides, McDonald et al. (2011) propose an approach to adapting directly transferred
parsers to a target language using constraint driven learning algorithm. The procedure
starts with training a lexicalised parser on target structures which are predicted by a di-
rectly transferred delexicalised parser. Then, any English tree predicted with the English
lexicalised parser is compared with k -best parse trees predicted by the target lexicalised
parser, and the parse whose dependencies are related most closely to English dependen-
cies (in terms of word alignment links) is selected. Selected parses contribute to update
the parameter vector of the new target parser, so that it could predict parses that align
with corresponding English trees as well as possible. There is one aspect in which our
approach is similar to the approach by McDonald et al. (2011) – the idea of employing
k -best trees. McDonald et al. (2011) use a list of k -best trees to select a tree that best
corresponds to an English tree in terms of alignment constraints. We use sets of k -best
trees to recalculate weights on arcs in projected multi-digraphs. In this context, it is also
worth mentioning the work by Hall (2007) who employs the k -best MST algorithm in
dependency parsing.

150 Chapter 5. Projection-based Dependency Bank

Several studies have also been conducted on multi-source cross-lingual transfer. In these
approaches, the cross-lingual transfer of dependency parsing models is improved by
connecting model parameters from multiple source languages (McDonald et al., 2011;
Søgaard, 2011) or by selective sharing parameters based on topological features of each
language (Naseem et al., 2012; Täckström et al., 2013).

As our work concerns the dependency projection from English to Polish, it is worth
noting that some experiments with this language pair have already been conducted,
e.g., Ozdowska (2006) or Wróblewska and Frank (2009). In experiments presented by
Ozdowska (2006), dependencies are directly projected from English or French to Polish
using intersection of unidirectional word alignments. The dependency projection via
intersection links seems to increase precision and decrease recall. Ozdowska reports on
precision of projected labelled/unlabelled dependencies32 but not on recall. The results
are not significantly aÄected by the choice of the source language or divergences between
involved pair of languages.

Wróblewska and Frank (2009) adapt annotation projection to the framework of Lexical
Functional Grammar (Bresnan, 2001; Dalrymple, 2001) and induce a bank of Polish f-
structures projected from English. Their framework refers to Hwa et al. (2005) since they
combine direct projection with language-specific post-correction rules that significantly
improve the quality of induced f-structures. Since no additional NLP tools are applied,
induced f-structures encode predicate-argument structures of annotated sentences and
do not encode morphological features (e.g., case, gender, number) which may not directly
result from equivalent English f-structures. Therefore, the induced f-structures may be
referred to as pred-only f-structures since they only contain pred attributes with their
semantic form values and arguments of these predicates with their lower level f-structure
values. The directly projected labelled f-structures when evaluated against a set of man-
ually annotated Polish f-structures achieve F-score of 0.50, and 0.63 if corrected with
hand-crafted rules.

5.7 Partial Conclusions

This chapter presented a novel weighted induction method of obtaining Polish depen-
dency structures. The weighted induction procedure consists of two main steps: projec-
tion of dependency relations and induction of well-formed dependency trees. The projec-
tion step resembles cross-lingual dependency projection pioneered by Hwa et al. (2005).
However, it is not required in our approach that projection results in dependency trees
as in Hwa et al. (2005) or partial dependency structures as in Jiang and Liu (2010) or
32Ozdowska achieves precision of 83%/62% when projecting French unlabelled/labelled dependency
relations to Polish, and 82%/67% when unlabelled/labelled dependencies are projected from English to
Polish.

5.7. Partial Conclusions 151

Spreyer (2011). Instead, all possible dependency relations are projected and they con-
stitute initially weighted multi-digraphs. Previous approaches do not need any further
steps after projection of dependency relations since projected trees (or tree fragments)
are considered to be the final data for parser training. In our approach, the projected
multi-digraphs may contain noisy arcs that should not be used in parser training. We thus
proposed a method of recalculating initial weights of arcs in the projected multi-digraphs.
The final maximum spanning dependency trees were selected from the projected multi-
digraphs with recalculated arc weights. The induced MSDTs are thereby well-formed
and presumably more appropriate than directly projected trees. The induced maximum
spanning dependency trees were employed to train a dependency parser for Polish.

Similarly as in the evaluation of the conversion-based Polish dependency treebank de-
scribed in the previous chapter, we performed an extrinsic evaluation and trained depen-
dency parsers on the MSDTs acquired with the weighted induction method. The results
showed that weighted induction performs significantly better than baseline induction.
Furthermore, performance of an induction-based parser may even be slightly higher
than performance of the conversion-based dependency parsers when evaluated against
the complex test trees. While our experiment considered the Polish-English language
pair, the weighted induction method may be applied to obtain dependency structures
for other resource-poor languages which do not have any annotated data but have a rea-
sonable number of sentences which are parallel with their translations in a resource-rich
language. The weighted induction method was tested on the task of obtaining depen-
dency structures, but it may also apply to other projection tasks, e.g., semantic role
labelling or word sense disambiguation.

Our goal was to create a bank of high quality dependency trees that could be used several
times to train dependency parsers. Therefore, our approach diÄers from constraint-driven
learning approaches (Ganchev et al., 2009; Smith and Eisner, 2009) which apply pro-
jected information to constrain estimation of dependency parsing models. Our method
also diÄers from approaches to transferring delexicalised parsers between languages (Ze-
man and Resnik, 2008; McDonald et al., 2011; Søgaard, 2011; Naseem et al., 2012;
Täckström et al., 2013).

Chapter 6

Conclusion

The rapid progress in dependency parsing has brought about the creation of eÖcient
and very accurate data-driven systems. These multilingual systems developed mainly
in shared tasks on multilingual dependency parsing are language-independent and can
be employed for almost every natural language. Since most of these systems apply su-
pervised machine learning techniques, they require high-quality training data. Shared
tasks on multilingual dependency parsing have also brought about the dissemination of
treebanks of participating languages. These treebanks constitute excellent resources for
further development and improvement of data-driven parsing systems.

However, there were only 19 languages participating in the CoNLL shared tasks1 while
there are currently more than 7000 languages spoken worldwide (Lewis et al., 2013).
Since dependency parsers are very useful tools for many sophisticated NLP tasks, it
should be possible to train dependency parsers for every language. As manually anno-
tated dependency treebanks exist for only a few languages, the availability of training
data is still the main bottleneck for supervised approaches. In this dissertation, we have
therefore explored two methods of annotating data automatically.

6.1 Summary

Chapter 1 introduced the topic and main assumptions of the dissertation.

Chapter 2 presented concepts of a dependency structure and data-driven dependency
parsing. The notion of a dependency structure that originates from dependency for-
malisms has been adopted for the purpose of dependency parsing. A dependency struc-
ture that satisfies all well-formedness properties mentioned in this chapter constitutes a
1The following languages participated in the shared task at CoNLL 2006: Arabic, Bulgarian, Chinese,

Czech, Danish, Dutch, German, Japanese, Portuguese, Slovene, Spain, Swedish and Turkish. The follow-
ing languages participated in the shared task at CoNLL 2007: Arabic, Basque, Catalan, Chinese, Czech,
English, Greek, Hungarian, Italian and Turkish.

153

154 Chapter 6. Conclusion

basis for dependency parsing. Dependency parsing is understood as a process of auto-
matic allocation of a dependency structure to an input sentence by a dependency parser.
Two main parsing methods based on supervised statistical machine learning were pre-
sented in detail in this chapter: transition-based dependency parsing and graph-based
dependency parsing.

The main contributions of this dissertation are included in chapters 3–5. In chapter 3, we
described a dependency annotation schema which was designed for annotation of Polish
sentences with dependency structures. The content of this chapter is based to a large
extent on Wróblewska (2012). The annotation schema is adjusted to the linguistic char-
acteristics of Polish and covers primary syntactic phenomena in this language. We tried
to maintain a reasonable number of individual dependency relation types. There are
thus 28 dependency relation types defined for Polish including arguments, syntactically,
morphologically or semantically motivated non-arguments, and relations used to anno-
tate coordinating constructions. Individual dependency relations were characterised and
illustrated by examples.

Chapter 4 explored the method of constituency-to-dependency conversion and its adap-
tation for acquiring a treebank of valid Polish dependency structures. To a large extent
the content of this chapter is based on Wróblewska and WoliÒski (2012) and Wróblewska
(2012). A publicly available Polish treebank – Sk≥adnica – with manually disambiguated
constituent trees enabled the adaptation of the conversion method to Polish. The main
idea behind the conversion was to cover all language-specific syntactic phenomena en-
coded in Polish constituent trees and to annotate them with correctly chosen depen-
dencies. Explicitly marked heads of constituents made it relatively straightforward to
convert phrase structure trees into unlabelled dependency structures. Despite this, there
were some phrase structures in which not only one but several elements were marked
as syntactic heads. For these multi-headed constituents, some head-selection heuristics
were designed in order to find an unequivocal governor for any token.

Even if the conversion was a relatively straightforward process, some rearrangements
of dependency structures were necessary so that converted trees could meet annotation
principles defined by the dependency annotation schema in Chapter 3 Polish Dependency
Annotation Schema. Rearrangement rules were designed for some particular linguistic
constructions (discontinuous constituents, passive constructions, subordinate clauses,
incorporated conjunctions and clauses with correlative pronouns). Except for rearrange-
ment rules, we also designed a set of complex labelling rules that assign appropriate
labels to converted dependency relations.

The entirely automatic conversion process resulted in a bank of 8227 labelled dependency
trees. These trees were used in empirical experiments on training and evaluation of Polish
dependency parsers. In order to check whether it is possible to train a dependency
parser for Polish on a part of the treebank (7405 trees), we applied two dependency

6.1. Summary 155

parsing systems: the transition-based MaltParser and the graph-based Mate parser.
Parsing performance was evaluated against the set of 822 converted dependency trees
with manually or automatically annotated tokens, and the additional test set of 100
complex trees. The MaltParser achieved 90.5% UAS and 85.4% LAS when evaluated
against the test trees with manually annotated tokens, and 85.3% UAS and 78.4% LAS in
the more realistic evaluation scenario where tokens were automatically annotated with
the Pantera tagger. The Mate parser outperformed MaltParser and achieved 92.7%
UAS and 87.2% LAS when evaluated against the manually annotated test trees, and
88.4% UAS and 81% LAS in the automatic evaluation scenario. Although we did not
investigate the impact of automatic tokenisation and part of speech tagging explicitly,
the results suggest that improvements in underlying language processing should enhance
the quality of dependency parsing.

As the evaluation experiments showed, it is possible to train a Polish dependency parser
on a relatively small set of constituency-to-dependency converted trees. The best Polish
parser trained with the Mate parsing system obtained quite high results: 92.7% UAS
and 87.2% LAS. However, there was a precondition that the Mate parser was trained
and evaluated on trees with manually annotated tokens. If the parser was evaluated
against trees with automatically annotated tokens, its performance decreased even by 6
percentage points. On the other hand, if the Mate parser was trained on the converted
trees with automatically annotated tokens, it parsed almost equally well sentences with
manually and automatically annotated tokens.

It is important to note that diÄerent parts of the conversion-based treebank were em-
ployed in training and in evaluation of the parsers. Apart from the fact that training and
test data come from the same source, the converted trees have relatively simple struc-
tures. Therefore, the presented parsing models were also evaluated against an additional
validation set of 100 complex dependency structures. In this realistic scenario of parsing
complex sentences, the Mate parser trained on the converted trees with automatic mor-
phosyntactic annotations of tokens beat other dependency models reaching 76.6% UAS
and 70.1% LAS. However, these results are significantly lower than the results reported
above.

In chapter 5, we proposed a diÄerent way of obtaining dependency structures which
is based on a novel weighted induction method. A preliminary version of this method
was presented in Wróblewska and Przepiórkowski (2012). The novelty of the method
consists in involving a weighting factor in two successive processes of projecting English
dependency relations and acquiring unlabelled dependency trees from projected multi-
digraphs.

Weighted projection was inspired by cross-lingual dependency projection pioneered by
Hwa et al. (2005). Using a parallel English-Polish corpus, the English side was automat-
ically annotated with a parser underpinned by the English LFG grammar and resulting

156 Chapter 6. Conclusion

annotations were transferred to equivalent Polish sentences via an extended set of word
alignment links. Instead of projecting relations via links of a single automatic word
alignment, dependency relations were projected via bipartite alignment graphs combin-
ing links from diÄerent automatic word alignments with some additional edges. Projected
arcs were then initially weighted based on the certainty of bipartite edges.

Weighted induction consists in extracting maximum spanning dependency trees from
multi-digraphs containing all projected arcs with recalculated weights. Arc weights were
recalculated based on the probability distribution over reliable arcs. The set of reliable
arcs consisted of arcs from k -best MSDTs selected from initially weighted projected
multi-digraphs. The probability distribution was estimated with the EM-inspired selec-
tion algorithm.

The empirical part of this chapter outlined experiments on training dependency parsers
on dependency structures induced from EM-scored multi-digraphs and labelled using
a set of predefined labelling rules. The Mate dependency parser trained on dependency
structures acquired with the weighted induction method achieved 85.1% UAS and 79.2%
LAS when tested against the set of 822 conversion-based test trees with manually an-
notated tokens, and 84% UAS and 77.3% LAS when tested against the same set of test
trees with automatically annotated tokens. If additional correction rules were applied,
parsing performance increased up to 85.1% UAS and 79.2% LAS. The Mate parser
trained on corrected and filtered induced trees achieved 86% UAS and 80.5% LAS when
tested against the test trees with manually annotated tokens. In the realistic parsing
scenario, when the Mate parser with the filtered model was evaluated against the set
of 100 complex trees, the parser achieved significantly lower results – 76.1% UAS and
70.3% LAS – than the results reported above. Nevertheless, these results were close to
the results achieved by the conversion-based dependency parser when evaluated agains
the complex test trees.

6.2 Comparison of Conversion-based and Projection-
based Approaches

In the course of this dissertation, we have tried to answer two research questions posed
in Introduction:

1. Is it possible to gather dependency trees automatically (or with a minimal human
involvement)?

2. Is it possible to train a good quality supervised dependency parser on automatically
or semi-automatically induced training data?

6.2. Comparison of Conversion-based and Projection-based Approaches 157

We can provide aÖrmative answers to both questions since we succeeded in gathering
dependency structures automatically with conversion-based or induction-based methods,
and in training dependency parsing models on these structures. Now, we make a com-
parative analysis of conversion-based and induction-based approaches. To compare these
approaches, we take into account the following criteria: performance of parsers trained
on gathered data, the amount of manual work necessary in a particular method and
applicability of presented methods for other languages.

Acquired dependency trees were evaluated extrinsically, i.e., a dependency parser was
trained on automatically acquired trees and evaluated against test trees. The quality
of parsing indirectly determines the quality of the acquired trees. Dependency parsers,
especially those trained on converted Polish dependency structures, achieved parsing per-
formance comparable to dependency parsers trained for other Slavic languages. When
tested against 822 converted test trees with manually annotated tokens, the parser
trained on 7405 converted dependency structures outperformed the parser trained on
more than 2 million automatically induced and filtered trees by about 7 percentage points
(both, in terms of LAS and UAS scores). The conversion-based parser also outperformed
the parser trained on automatically induced trees when tested against the converted test
trees with automatically assigned morphosyntactic annotations. However, in this case,
the diÄerence is much smaller – 2.7 pp in terms of LAS and 3.7 pp in terms of UAS.
When tested against the additional test set with longer and more complex sentences,
both parsers performed significantly worse, but the induction-based parser reached (or
even slightly exceeded) performance of the conversion-based parser. There may be sev-
eral reasons for the decrease in parsing performance, e.g., the complexity of trees in
the additional test set, discrepancies in tokenisation and in part of speech tagging of
sentences which the converted trees and the additional test trees are structured on.

Considering the complexity of trees, the conversion-based test trees and the additional
test trees diÄer in terms of the average length of sentences – 10.08 tokens per sentence vs.
16.6 tokens per sentence respectively. Trees in these two test sets also diÄer in the number
of non-projective arcs. There is only 0.46% of non-projective arcs in the conversion-
based test trees and 2.8% of non-projective arcs in the additional test trees. Parsers
evaluated against more complex trees perform worse, but the results are more realistic
and constitute the lower bound for performance of Polish parsers.

Morphosyntactic analysis is an important factor that influences parsing quality, next to
correctness of training trees. Since manual tagging of tokens in the converted trees is not
consistent with tagging performed by a state-of-the-art Polish tagger, the conversion-
based parser does not handle automatically annotated input sentences with possible noise
as well as it handles correctly annotated sentences. Dependency structures automatically
acquired with the weighted induction method are based on automatic part of speech
tagging that may be noisy. Hence, the induction-based parser trained on noisy data

158 Chapter 6. Conclusion

performs slightly better than the conversion-based parser when tested against additional
test trees with automatically tagged tokens.

Another problem arises from tokenisation discrepancies. The converted dependency trees
adapted the manual tokenisation lying at the core of the source constituent trees. Most
of additional test sentences, in turn, were automatically tokenised. This tokanisation
was not manually modified and may diÄer from the tokenisation of the converted trees.
Tokenisation discrepancies might result in poorer performance of the conversion-based
parser when tested against the additional test trees. The tokenisation underlying de-
pendency trees obtained with the weighted induction method was performed automati-
cally and is similar to the tokenisation of additional test trees (provided that the same
tokeniser was used). Therefore, the Mate parser with the induction-based model (fil-
tered) performed slightly better than the Mate parser with the conversion-based model.
The induction-based Mate parser may be thus more appropriate for a realistic and fully
automatic parsing scenario.

Both approaches require manual work that consists in the construction of rules. In
the conversion-based approach, we manually designed conversion rules (labelling rules,
head selection rules and rearrangement rules). These rules cover all linguistic phenomena
available in the source constituent trees. In the induction-based approach, we manually
designed labelling and correction rules. Labelling rules were defined to assign labels to
projected dependency relations. Correction rules were designed to amend errors and
divergences, which frequently occur in induced dependency trees. Both labelling and
correction rules are very general and cover only the most frequent Polish linguistic
phenomena or errors.

Since constituency-to-dependency conversion rules should cover all linguistic phenomena
existing in source trees, it might take a lot of manual work to design them. However, in
our case, the number of diÄerent linguistic phenomena was limited to these available in
8227 relatively simple sentences of the Polish constituent treebank. Hence, a reasonable
amount of manual work was required. Similarly, the amount of manual work required to
design correction rules modifying automatically induced dependency trees was moderate
since rules only cover some particularly frequent errors. Even though manual work was
essential in both approaches, conversion-based and induction-based dependency struc-
tures were achieved with less manual work than in annotation of thousands of sentences
of a complete dependency treebank.

Applicability of presented methods to other languages is the last comparison issue.
The conversion-based method is only applicable to languages for which a constituent
treebank exists. However, since there are many languages for which neither dependency
nor constituency treebanks exist, this method is useless for them. Moreover, even if there
is a constituent treebank for a language, the conversion method may not apply directly.

6.3. Final Remark 159

To adopt this method, head-selection rules, language-specific and formalism-specific con-
version rules need to be defined anew.

For languages without any treebank, neither dependency nor constituency based,
the weighted induction method of acquiring well-formed dependency trees may be an ad-
vantageous solution. Since unlabelled dependency trees are induced fully automatically,
the weighted induction method may be employed for any language for which a suÖcient
amount of bitexts (in this language and in a resource-rich language) and a dependency
parser for the resource-rich language are available. Manual work is only necessary to
design labelling and correction rules modifying automatically induced dependency trees.

Performance of the parser trained on dependency trees acquired with the weighted induc-
tion method is mostly slightly below performance of the parser trained on the converted
trees when tested on a homogeneous set of rather short sentences from the conversion-
based treebank. A test against a small set of long and complex trees showed that
the induction-based parser may exceed the conversion-based upper bound. Hence, we
may conclude that the induction-based approach to acquiring dependency trees may
compete with the conversion-based approach. Furthermore, if more manual work is in-
vested into defining language-specific correction rules or filtering heuristics, the induction
approach will provide more appropriate trees and a parser trained on them will thus per-
form better. Both methods of acquiring training data require an amount of manual work,
but only the weighted induction approach is language-independent and may apply to
other resource-poor languages.

6.3 Final Remark

In the introduction of this dissertation it was mentioned that Polish did not participate
in any of shared tasks on multilingual dependency parsing. However, our doctoral work
has contributed to change this state of aÄairs. There was a shared task on multilingual
parsing recently organised at the Workshop on Statistical Parsing of Morphologically
Rich Languages in which Polish was represented (Seddah et al., 2013). The Polish de-
pendency data used in this shared task was taken from the conversion-based Polish
dependency treebank which was created as part of our work and is described in Chap-
ter 4 Conversion-based Dependency Bank of this dissertation.

Appendix A

Labelling Rules Based on
Morphosyntactic Properties

Rule 1. Complement of a comparative

Rule: If lemma
dep

1 2 [‘niø’, ‘aniøeli’, ‘od’] and word
gov

is marked for comparative degree
and id

gov

< id
dep

then gf

dep

:= comp

Example: jaúniejszy
adj.comp

comp���! niø s≥oÒce (Eng. ‘brighter than the sun’)

Rule 2. Complement of a number (1)

Rule: If pos
dep

2 [subst, depr, ign, conj] and pos
gov

= ign and lemma
gov

is an integer
and id

gov

< id
dep

and lemma
dep

/2 [‘tysiπc’, ‘milion’, ‘miliard’, ‘bilion’]
then gf

dep

:= comp

Example: 3
ign

comp���! drzewa
subst

(Eng. ‘3 trees’)

Rule 3. Complement of a number (2)

Rule: If lemma
dep

2 [‘tysiπc’, ‘milion’, ‘miliard’, ‘bilion’] and pos
gov

= ign and lemma
gov

is an integer and id
gov

< id
dep

then gf

dep

:= mwe

Example: 2
ign

mwe���! tysiπce
subst

drzew (Eng. ‘2 thousand trees’)

1Abbreviations used in labelling rules:
dep – the current node (dependent),
gf – grammatical function,
gov – governor of the current node,
id – position of a token (dep or gov) in a sentence,
lemma – lemma form of dep or gov,
case – the grammatical category case,
num – the grammatical category number,
pos – part of speech of dep or gov,
word – surface realisation of dep or gov.
Abbreviations of Polish parts of speech and grammatical functions are clarified in List of Abbreviations
and in Chapter 3 Polish Dependency Annotation Schema respectively.

161

162 Appendix A. Labelling Rules Based on Morphosyntactic Properties

Rule 4. Complement of a numeral (1)

Rule: If pos
dep

2 [subst, depr, ign, conj] and pos
gov

2 [num, numcol] and id
gov

< id
dep

and lemma
dep

/2 [‘tysiπc’, ‘milion’, ‘miliard’, ‘bilion’] then gf

dep

:= comp

Example: troje
num

comp���! dzieci
subst

(Eng. ‘three children’)

Rule 5. Complement of a numeral (2)

Rule: If lemma
dep

2 [‘tysiπc’, ‘milion’, ‘miliard’, ‘bilion’] and pos
gov

2 [num, numcol]
and id

gov

< id
dep

then gf

dep

:= mwe

Example: dwa
num

mwe���! tysiπce
subst

(Eng. ‘two thousand’)

Rule 6. Complement of a numeral (fractions)

Rule: If lemma
dep

2 [‘pierwszy’, ‘drugi’, ‘trzeci’, ‘czwarty’, ‘piπty’, ‘szósty’, ‘siódmy’,
‘ósmy’, ‘dziewiπty’, ‘dziesiπty’, ‘setny’, ‘tysiÍczny’] and lemma

gov

2 [‘jeden’, ‘dwa’,
‘trzy’, ‘cztery’, ‘piÍÊ’, ‘szeúÊ’, ‘siedem’, ‘osiem’, ‘dziewiÍÊ’, ‘sto’] then gf

dep

:= mwe

Example: dwie
num

mwe���! trzecie
adj

(Eng. ‘two-thirds’)

Rule 7. Complement of a preposition (1)

Rule: If lemma
gov

2 [‘niø’, ‘aniøeli’] gf
gov

2 [obj, obl-compar, adjunct, comp]
and id

gov

< id
dep

then gf

dep

:= comp

Example: jaúniejszy
adj.comp

niø
comp���! s≥oÒce (Eng. ‘brighter than the sun’)

Rule 8. Complement of a preposition(2)

Rule: If pos
dep

2 [subst, depr, ppron12, ppron3, ger] and gf
dep

= obj and
lemma

gov

2 [‘jak’, ‘jako’] and id
gov

< id
dep

then gf

dep

:= comp

Example: mπdry jak
comp���! on

ppron3 (Eng. ‘wise as he’)

Rule 9. Complement of a preposition (3)

Rule: If pos
gov

= prep and id
gov

< id
dep

and gov doesn’t have a complement and
dep is the best complement then gf

dep

:= comp

Example: w
comp���! domu

subst

(Eng. ‘at home’)

Rule 10. Complement of a preposition (abbreviated third-person pronoun)

Rule: If pos
gov

= prep and pos
dep

= ppron3 and word
dep

= ‘Ò’ and id
gov

< id
dep

then gf

dep

:= comp

Example: przeze
comp���! Ò

ppron3 (⇡ przez niego, Eng. ‘by him’)

163

Rule 11. Complement of a preposition (post-prepositional adjective)

Rule: If pos
dep

= adjp and pos
gov

= prep and id
gov

< id
dep

then gf

dep

:= mwe

Example: po mwe���! prostu
adjp

(Eng. ‘simply’)

Rule 12. Complement of a subordinator

Rule: If pos
gov

= comp and id
gov

< id
dep

If pos
dep

2 [bedzie, fin, imps, ppas, praet, pred, winien] then gf

dep

:= comp fin
Elif pos

dep

= inf then gf

dep

:= comp inf
Elif pos

dep

= conj and coordinated conjuncts 2 [bedzie, fin, imps, ppas, praet,
pred, winien] then gf

dep

:= comp fin
Elif pos

dep

= conj and coordinated conjuncts 2 [inf] then gf

dep

:= comp inf
Else gf

dep

:= dep

Example: P≥acze, choÊ
comp

comp fin������! wygra≥
praet

(Eng. ‘He is crying although he won’)

Rule 13. Modifier of an adverb/adjective

Rule: If pos
dep

= adv and pos
gov

2 [adj, adv] and id
dep

< id
gov

then gf

dep

:= adjunct

Examples: duøo
adv

adjunct ����� bardziej
adv

(Eng. ‘much more’)

bardzo
adv

adjunct ����� z≥y
adj

(Eng. ‘very bad’)

Rule 14. Modifier of a substantive (1)

Rule: If pos
dep

2 [adj, pact, pcon, ppron12, ppron3] and pos
gov

2 [subst, depr, num,
numcol, ign, ger] then gf

dep

:= adjunct

Example: dobry
adj

adjunct ����� ojciec
subst

(Eng. ‘a good father’)

Rule 15. Modifier of a substantive (2)

Rule: If pos
dep

= ppas and pos
gov

2 [subst, depr, num, numcol, ger] and dep doesn’t
have any auxiliary dependent then gf

dep

:= adjunct

Example: przestÍpstwo
subst

adjunct�����! pope≥nione
ppas

nocπ (Eng. ‘a crime committed
at night’)

Rule 16. Modifier of a substantive (3)

Rule: If pos
dep

= prep and pos
gov

2 [subst, depr] and id
gov

< id
dep

then gf
dep

:= adjunct

Example: plama
subst

adjunct�����! na
prep

úcianie (Eng. ‘a spot on the wall’)

Rule 17. Modifier of a substantive (4)

Rule: If pos
dep

= ign and pos
gov

2 [subst, depr] then gf

dep

:= adjunct

Example: emisja
subst

adjunct�����! CO2
ign

(Eng. ‘emissions of CO2 (carbon dioxide)’)

164 Appendix A. Labelling Rules Based on Morphosyntactic Properties

Rule 18. Modifier of a substantive (5)

Rule: If pos
gov

2 [subst, depr, ger, ppron12, ppron3] and id
gov

< id
dep

If pos
dep

2 [subst, depr, ger, ppron12, ppron3] and case
dep

= ‘gen’
then gf

dep

:= adjunct
Elif pos

dep

= conj and parts of speech of conjuncts 2 [subst, depr, ger, ppron12,
ppron3] and their case = ‘gen’ then gf

dep

:= adjunct

Example: ksiÍga
subst

adjunct�����! mπdroúci
subst

(Eng. ‘a book of wisdom’)

Rule 19. Modifier of unknown tokens (ign)

Rule: If pos
dep

2 [subst, depr, ger, ppron12, ppron3, ign, burk, conj] and pos
gov

= ign
then gf

dep

:= adjunct

Example: Ispra
ign

adjunct�����! W≥ochy
subst

(Eng. ‘Ispra Italy’)

Rule 20. Punctuation mark

Rule: If pos
dep

= interp and it is not a coordinating element
If pos

gov

= brev and lemma
dep

= ‘.’ then gf

dep

:= abbrev punct
Elif word

dep

2 [‘-’, ‘Ê’] and id
dep

= 1 and if
gov

6= 0 then gf

dep

:= item
Else gf

dep

:= punct

Example: Stój
impt

punct���! !
interp

(Eng. ‘Stop!’)

Rule 21. Verb dependent – auxiliary verb

Rule: If pos
dep

2 [bedzie, fin, impt, inf, pact, pcon, praet] and lemma
dep

2 [‘byÊ’, ‘zostaÊ,
‘zostawaÊ’] and gf

dep

/2 [comp, xcomp] and pos
gov

2 [inf, ppas, praet, pred, conj]
then gf

dep

:= aux

Examples: bÍdÍ
bedzie

aux �� p≥akaÊ
inf

(Eng. ‘I will cry’)

zosta≥o
praet

aux �� zrobione
ppas

(Eng. ‘it was done’)

Rule 22. Verb dependent – complementiser

Rule: If pos
dep

= comp and lemma
dep

2 [‘aby’, ‘aøeby’, ‘by’, ‘iø’, ‘iøby’, ‘øe’, ‘øeby’]
and id

dep

< id
gov

If pos
gov

2 [bedzie, fin, imps, impt, inf, ppas, pcon, pant, praet, pred, winien]
then gf

dep

:= complm
Elif pos

gov

2 [conj, interp, adj] and gf
dep

= comp-form then gf

dep

:= complm
Else gf

dep

:= dep

Example: Powiedzia≥, øe
comp

complm ����� przyjdzie
fin

(Eng. ‘He said that he would come’)

165

Rule 23. Verb dependent – conditional clitic

Rule: If pos
dep

6= comp and lemma
dep

= ‘by’
If pos

gov

2 [praet, imps, winien] then gf

dep

:= cond
Elif pos

gov

= inf and gov built complex future form then gf

dep

:= cond
Elif pos

gov

= inf and gf
gov

2 [comp inf, xcomp] and id
dep

< id
gov

then gf

dep

:= comp
Else gf

dep

:= dep

Example: móg≥
praet

cond���! by
qub

(Eng. ‘he could’)

Rule 24. Verb dependent – imperative marker

Rule: If lemma
dep

2 [‘niech’, ‘niechaj’, ‘niechøe’, ‘niechajøe’] and pos
gov

2 [bedzie, fin]
then gf

dep

:= imp

Example: Niech
qub

imp �� idzie
fin

(Eng. ‘Let him go’)

Rule 25. Verb dependent – mobile inflection

Rule: If pos
dep

= aglt and lemma
dep

= ‘byÊ’
If pos

gov

2 [praet, winien] and num
dep

= num
gov

then gf

dep

:= aglt
Elif pos

gov

6= comp and lemma
gov

= ‘by’ then gf

dep

:= aglt
Else gf

dep

:= dep

Example: zrobili
praet

aglt��! úmy
aglt

(Eng. ‘we have done’)

Rule 26. Verb dependent – negation marker (1)

Rule: If pos
dep

= qub and lemma
dep

= ‘nie’ and pos
gov

2 [bedzie, fin, imps, impt, inf,
pact, pant, pcon, ppas, praet, winien] and id

dep

< id
gov

then gf

dep

:= neg

Example: nie
qub

neg �� powinni
winien

(Eng. ‘they should not’)

Rule 27. Verb dependent – negation marker (2)

Rule: If pos
dep

= qub and lemma
dep

= ‘nie’ and pos
gov

= pred then gf

dep

:= neg

Example: to
pred

neg��! nie
qub

prawda (Eng. ‘this is not true’)

Rule 28. Verb dependent – question marker

Rule: If pos
dep

= qub and lemma
dep

= ‘czy’ and pos
gov

2 [bedzie, fin, imps, inf, ppas,
praet, pred, winien] and id

dep

< id
gov

and dep doesn’t have dependents labelled
with conjunct then gf

dep

:= adjunct

Example: czy
qub

adjunct ����� p≥acze
praet

(Eng. ‘is he/she crying’)

166 Appendix A. Labelling Rules Based on Morphosyntactic Properties

Rule 29. Verb dependent – reflexive marker

Rule: If pos
dep

= qub and lemma
dep

= ‘siÍ’ and pos
gov

2 [fin, ger, imps, impt, inf, pact,
pant, pcon, praet] then gf

dep

:= refl

Example: bojπc
pcon

refl��! siÍ
qub

(Eng. ‘fearing’)

Rule 30. Verb adjunct

Rule: If pos
dep

2 [adv, prep, qub] and pos
gov

2 [fin, impt, praet, winien, pred, inf, imps,
ppas, conj, adj] then gf

dep

:= adjunct

Example: mówi≥
praet

adjunct�����! g≥oúno
adv

(Eng. ‘he spoke loudly’)

Rule 31. Subordinated clause

Rule: If gf
dep

2 [comp, xcomp, xcomp-pred, obj, obj-th, obl, obl-ag, pform,
subj] and pos

gov

2 [fin, impt, praet, pred, bedzie, inf, ger, imps, pcon, pant, pact,
ppas, ign] and id

gov

< id
dep

and dep governs a complementiser
If pos

dep

= inf and gov doesn’t have a dependent labelled with comp inf
then gf

dep

:= comp inf
Elif pos

dep

2 [fin, impt, praet, pred, bedzie, inf, winien, imps, ppas] and
gov doesn’t have a dependent labelled with comp fin then gf

dep

:= comp fin
Else gf

dep

:= dep

Example: ChcÍ
fin

comp inf������! pomóc
inf

(Eng. ‘I want to help.’)

Appendix B

Labelling Rules Based on English
Grammatical Functions

Argument Types

Rule 1. COMP, XCOMP

Rule: If gf
dep

2 [comp, xcomp]
If pos

gov

2 [subst, depr, ppron12, ppron3]
If pos

dep

2 [bedzie, fin, imps, ppas, praet, pred, winien, conj] and gov doesn’t
have a dependent labelled with comp fin and dep governs a complementiser
then gf

dep

:= comp fin
Elif pos

dep

= inf and gov doesn’t have a dependent labelled with comp inf
then gf

dep

:= comp inf
Else gf

dep

:= dep
Elif pos

gov

2 [adv, adj, qub] and pos
dep

= inf and gov doesn’t have a dependent
labelled with comp inf then gf

dep

:= comp inf
Else gf

dep

:= dep

Example: fakt
subst

comp fin������! øe warunki klimatyczne zmieniajπ siÍ
(Eng. ‘the fact that climatic conditions change’. Note: the underlined token
zmieniajπ constitutes the head of the subordinated clause and is a direct
dependent of fakt.)

167

168 Appendix B. Labelling Rules Based on English Grammatical Functions

Rule 2. OBJ, OBJ-TH

Rule: If gf
dep

2 [obj, obj-th]
If pos

gov

2 [fin, imps, impt, praet, pred, winien, ger, pact, pant, pcon, inf]
and pos

dep

2 [subst, depr, ppron12, ppron3, ger, num, numcol, siebie, conj]
or dep is an integer
If gov doesn’t have a dependent labelled with obj then gf

dep

:= obj,
Else gf

dep

:= obj th
Elif pos

gov

2 [fin, imps, impt, praet, pred, winien, ger, pact, pant, pcon, inf]
and pos

dep

2 [adv, prep] then gf

dep

:= comp
Elif pos

gov

2 [num, numcol] and pos
dep

2 [subst, depr, ppron12, ppron3, ger,
num, siebie, siebie, brev] then gf

dep

:= comp
Elif pos

gov

2 [prep, comp] and gov doesn’t have a dependent labelled with
comp and id

gov

< id
dep

then gf

dep

:= comp
Elif lemma

gov

2 [‘gdy’, ‘kiedy’, ‘jak’] and id
gov

< id
dep

If pos
dep

2 [bedzie, fin, imps, praet, pred, winien, ppas] then gf

dep

:=
comp fin,
Else gf

dep

:= comp
Else gf

dep

:= dep

Example: skutecznie intensyfikowaÊ
pcon

obj��! aktywnoúÊ
subst

wirusa (Eng. ‘to eÄectively
intensify the activity of the virus’)

Rule 3. OBL

Rule: If gf
dep

= obl
If pos

gov

2 [fin, imps, impt, praet, pred, winien, ger, pact, pant, pcon, inf] and
pos

dep

2 [subst, depr, ppron12, ppron3, ger, num, numcol, siebie, conj]
then gf

dep

:= obj th
Elif pos

gov

2 [fin, imps, impt, praet, pred, winien, ger, pact, pant, pcon, inf]
and pos

dep

2 [adv, prep] then gf

dep

:= comp
Elif pos

gov

= prep and pos
dep

2 [subst, depr, ppron12, ppron3, ger, num,
numcol, siebie, brev] then gf

dep

:= comp
Elif pos

gov

= adj and pos
dep

= prep and id
gov

< id
dep

then gf

dep

:= comp
Else gf

dep

:= dep

Example: podatny
adj

comp���! na
prep

wymarcie (Eng. ‘vulnerable to extinction’)

169

Rule 4. OBL-AG

Rule: If gf
dep

= obl-ag
If pos

gov

2 [ppas, ger, pact, pant, pcon] and pos
dep

= prep
If lemma

dep

= ‘przez’ and gov doesn’t have a dependent labelled with
comp ag then gf

dep

:= comp ag
Else gf

dep

:= comp
Elif pos

gov

2 [fin, imps, impt, praet, pred, winien, ger, inf, adj] and
pos

dep

= prep then gf

dep

:= comp
Else gf

dep

:= dep

Example: wdychane
ppas

comp ag�����! przez
prep

konsumentów (Eng. ‘inhaled by consumers’)

Rule 5. OBL-COMPAR

Rule: If gf
dep

= obl-compar and pos
gov

2 [adj, adv] and pos
dep

2 [prep, conj]
then gf

dep

:= comp

Example: starsza
adj

comp���! od
praet

ska≥y intruzywnej (Eng. ‘older than the intrusive
rock’)

Rule 6. OBL-PART

Rule: If gf
dep

2 [obl-part]
If lemma

dep

= ‘z’ and lemma
gov

2 [‘jeden’, ‘dwa’, ‘kaødy’, ‘niektóry’, ‘kilka’,
‘niewiele’, ‘wiÍkszoúÊ’] and id

gov

< id
dep

then gf

dep

:= mwe
Elif pos

gov

2 [fin, imps, inf, ppas, praet, pred, ger, pcon, pant, pact, num, adj]
and pos

dep

= prep and id
gov

< id
dep

then gf

dep

:= comp
Else gf

dep

:= dep

Example: jedno
adj

comp���! z
prep

dzieci (Eng. ‘one of the children’)

170 Appendix B. Labelling Rules Based on English Grammatical Functions

Rule 7. SUBJ

Rule: If gf
dep

= subj
If pos

gov

2 [fin, impt, praet, winien,ppas] or (pos
gov

= inf and gov is part of
a complex future form) and gov doesn’t have a dependent labelled with subj
If pos

dep

2 [subst, depr, ppron12, ppron3, ger, num, numcol] and
num

dep

= num
gov

then gf

dep

:= subj
Elif pos

dep

= ign then gf

dep

:= subj
Elif pos

dep

= adj and case
dep

= ‘nom’ then gf

dep

:= subj
Elif dep is a NE then gf

dep

= subj then gf

dep

:= subj
Elif pos

dep

2 [adv, prep] then gf

dep

:= adjunct
Else gf

dep

:= dep
Elif gov has a dependent labelled with subj and pos

gov

2 [fin, impt, praet,
winien, ppas, inf, ger, imps, pcon, pant, pact]
If pos

dep

2 [subst, depr, ppron12, ppron3, ger, num, numcol, conj] or dep is
an integer
If gov doesn’t have a dependent labelled with obj then gf

dep

:= obj,
Else gf

dep

:= obj th
Elif pos

dep

2 [adv, prep] then gf

dep

:= comp
Else gf

dep

:= dep
Else gf

dep

:= dep

Example: mózg
subst

subj �� przetwarza
fin

informacje (Eng. ‘the brain processes
information’)

Rule 8. XCOMP-PRED

Rule: If gf
dep

= xcomp-pred
If pos

gov

2 [prep, comp] and pos
dep

2 [subst, depr, ppron12, ppron3, ger, brev,
num, numcol, siebie, conj, ign] and id

gov

< id
dep

then gf

dep

:= comp
Elif pos

gov

2 [fin, imps, impt, praet, pred, winien, ger, inf, ppas, pact, pcon]
If pos

dep

2 [prep, adv] then gf

dep

:= comp
Elif pos

dep

2 [subst, depr, ppron12, ppron3, ger, num, numcol, siebie, ign]
If case

dep

2 [‘nom’, ‘acc’, ‘gen’] and gov doesn’t have a dependent
labelled with subj then gf

dep

:= subj
Else gf

dep

:= dep
Else gf

dep

:= dep
Else gf

dep

:= dep

Example: przy
prep

comp���! niedoborach
subst

øywnoúci (Eng. ‘with food shortages’)

171

Other Grammatical Functions

Rule 9. ADJUNCT

Rule: If gf
dep

= adjunct then gf

dep

:= adjunct

Example: europejska
adj

adjunct ����� konferencja
subst

(Eng. ‘European conference’)

Rule 10. ADJUNCT-QT

Rule: If gf
dep

= adjunct-qt
If pos

dep

2 [fin, imps, inf, ppas, praet] then gf

dep

:= adjunct qt
Elif word

dep

2 [‘Zdaniem’, ‘zdaniem’] then gf

dep

:= adjunct qt
Else gf

dep

:= dep

Example: Skacz
impt

adjunct qt������! krzyknπ≥
praet

(Eng. ‘Jump he shouted.’)

Rule 11. MOD

Rule: If gf
dep

= mod then gf

dep

:= adjunct

Example: dobór
subst

adjunct ����� zbóø
subst

(Eng. ‘selection of cereals’)

Rule 12. NAME-MOD

Rule: If gf
dep

= name-mod
If dep is NE and gov is NE then gf

dep

:= ne
Elif pos

dep

2 [ign, subst] and gov is NE then gf

dep

:= app
Elif pos

gov

= ign and dep is NE then gf

dep

:= ne
Elif pos

gov

= ign and pos
dep

= ign and id
dep

< id
gov

then gf

dep

:= app
Elif pos

gov

= ign and pos
dep

= ign and id
dep

> id
gov

then gf

dep

:= ne
Elif pos

gov

= ign and pos
dep

= subst and id
dep

> id
gov

then gf

dep

:= app
Elif pos

gov

= interj and lemma
gov

= ‘et’ then gf

dep

:= ne
Elif pos

gov

= subst and pos
dep

2 [‘subst’, ‘ign’] then gf

dep

:= adjunct
Else gf

dep

:= dep

Example: profesor
subst

app �� Sackett
ign

(Eng. ‘Professor Sackett’)

172 Appendix B. Labelling Rules Based on English Grammatical Functions

Rule 13. PRECOORD

Rule: If gf
dep

= precoord
If pos

dep

= conj and pos
gov

= conj and id
dep

< id
gov

�1 then gf
dep

:= pre coord
Elif lemma

dep

= ‘jak’ and pos
gov

= conj and id
gov

= id
dep

+ 1

then gf

dep

:= mwe
Else gf

dep

:= dep

Example: zarówno wytrzyma≥e jak i løejsze (Eng. ‘both durable and lighter’)
zarówno

conj

pre coord ������ i
conj

jak
adv

mwe ��� i
conj

Rule 14. TOPIC-CLEFT

Rule: If gf
dep

= topic-cleft
If pos

dep

2 [fin, imps, ppas, praet, pred, winien, conj] and pos
gov

2 [subst, depr,
ppron12, ppron3, ger, num] and dep governs a complementiser
then gf

dep

:= adjunct
Elif pos

dep

= inf and pos
gov

2 [subst, depr, ppron12, ppron3, ger, num]
then gf

dep

:= adjunct
Else gf

dep

:= dep

Example: zachowanie
subst

adjunct�����! które nam siÍ nie podoba (Eng. ‘behaviour that we
do not like’ Note: the underlined token podoba constitutes the head
of the relative clause and is a direct dependent of zachowanie.)

Appendix C

Correction Rules

Polish-Specific Linguistic Phenomena

Rule 1. Conditional clitic

Rule: If the conditional particle ‘by’ is not governed by a verb form and it is not tagged
as a subordinating conjunction (comp) and a token adjacent to the conditional particle
on the left side or one of dependents of the conditional particle is realised as a verb form,
then the verb form is changed into the governor of the conditional particle. Furthermore,
dependents of the conditional particle are annotated as dependents of the verb form (see
Figure C.11).

root

Rany nie wygoi≥y by siÍ same

pred

xcomp

subj

neg

adjunct

obj

pred
subj

neg cond

adjunct

dep

Figure C.1: An induced tree (top tree) and a modified tree (bottom tree) of the sen-
tence Rany nie wygoi≥yby siÍ same (Eng. ‘Wounds would not heal by themselves’).

1The example sentence is annotated with two dependency structures: the tree above the sentence is
automatically induced, the bottom tree is modified with correction rules. The same presentation schema
is used in the following examples.

173

174 Appendix C. Correction Rules

Rule 2. Imperative marker

Rule: If an imperative marker (‘niech’, ‘niechaj’, ‘niechøe’ or ‘niechajøe’) is not gov-
erned by a verb form and it immediately precedes a verb form, then it is annotated as
the dependent of the verb form.

Rule 3. Mobile inflection

Rule: If a mobile inflection (lemma: ‘byÊ’, part of speech: aglt) is adjacent to a verb
form or a conditional clitic ‘by’ on the left side, then the left token is annotated as
the governor of the mobile inflection. Otherwise, if there is a verb form immediately
following the mobile inflection, it is its governor.

Rule 4. Reflexive marker

Rule: If a reflexive marker (lemma: siÍ, part of speech: qub) is not governed by a verb form
and a verb form is close to the reflexive marker on its left side (or possibly on its right
side), then the verb form governs the reflexive marker. Furthermore, all dependents of
the reflexive marker are rearranged into dependents of the governing verb form.

Divergent Annotation Conventions

Rule 5. Numeral complement

Rule: If a numeral (or a number) does not already govern a noun phrase and it is governed
by a noun phrase (NP) and the numeral precedes the governing NP, then the numeral
changes into the governor of the NP only if the numeral and the NP morphologically
agree. The same applies to a number.

Rule 6. Negation marker

Rule: If the negation marker ‘nie’ is not already governed by a verb form or it is preceded
by its governor, and the negation marker is followed by a verb form, then this verb form
is rearranged into the governor of the negation marker. Furthermore, all dependents of
the negation marker are annotated as dependents of the governing verb form.

Other Errors

Rule 7. Abbreviation marker

Rule: If an abbreviation marker (a full stop) is immediately preceded by an abbreviation
(part of speech: brev) and this abbreviation does not already govern the abbreviation
marker, then this abbreviation changes into the governor of the abbreviation marker.
Furthermore, all dependents of the abbreviation marker are rearranged into dependents
of the abbreviation.

175

Rule 8. Active adjectival participle

Rule: If an active adjectival participle (part of speech: pact) is immediately preceded by
a substantive and the substantive and the participle have the same governor and they
morphologically agree, then the participle is annotated as the dependent of the preceding
substantive (see Figure C.2).

root

Aminokwasy majπ tylko jeden kodon kodujπcy

pred

spec num

subj

obj

adjunct

obj

pred

subj

obj th

adjunct
adjunct

adjunct

Figure C.2: An induced tree (top tree) and a modified tree (bottom tree) of the sen-
tence Aminokwasy majπ tylko jeden kodon kodujπcy (Eng. ‘Amino acids have only one

encoding codon’).

Rule 9. Ad-adjectival adjective phrase

Rule: If an ad-adjectival adjective (part of speech: adja) is followed by a hyphen and
then an adjective (part of speech: adj), then the hyphen is the dependent of the ad-
adjectival adjective and the adjective is the dependent of the hyphen. A governor of
the ad-adjectival phrase is looked for among these governors of participating tokens
(the ad-adjectival adjective, the hyphen and the adjective) which do not coincide with
considered tokens. If one of them is a substantive or a gerund that morphologically
agrees with the adjective, it is selected as the governor of the ad-adjectival adjective (see
Figure C.3).

root

profil spo≥eczno - demograficzny

pred

adjunct

interp

mod

pred adjunct mwe mwe

Figure C.3: An induced tree (top tree) and a modified tree (bottom tree) of the noun
phrase profil spo≥eczno-demograficzny (Eng. ‘socio-demographic profile’).

176 Appendix C. Correction Rules

Rule 10. Apposition

Rule: If a token is not recognised by the tagger (part of speech: ign) and it is labelled
with SUBJ (or OBJ) and it is immediately preceded by a substantive labelled with
the same grammatical function, i.e., SUBJ (or OBJ), and the token and the substantive
have the same governor, then the unrecognised token is annotated as the dependent of
the preceding substantive and the relation is labelled with app (see Figure C.4).

root

Preparat Abilify jest lekiem zawierajπcym arypiprazol

pred

subj

subj

xcomp-pred

adjunct

obj

subj

pred

subj

app pd
adjunct obj

app

Figure C.4: An induced tree (top tree) and a modified tree (bottom tree) of the sen-
tence Preparat Abilify jest lekiem zawierajπcym arypiprazol. (Eng. ‘Abilify is a medicine

containing apripiprazole.’)

Rule 11. Auxiliary verb in complex future constructions

Rule: If a token is recognised as a verb form (parts of speech: inf or praet) and it is gov-
erned by an auxiliary verb form (lemma: ‘byÊ’, part of speech: bedzie), then the verb form
governs the auxiliary. Furthermore, possible dependents of the auxiliary are governed by
the verb form.

Rule 12. Auxiliary verb in passive constructions

Rule: If a passive adjective participle (part of speech: ppas) marked for the nominative
case is governed by an auxiliary verb form (possible lemmata: ‘byÊ’, ‘zostaÊ’, ‘zostawaÊ’)
which does not function as a predicative verb, then the participle changes into the gover-
nor of the auxiliary verb. Furthermore, possible dependents of the auxiliary are governed
by the participle.

Rule 13. Comparative phrase (1)

Rule: If the token ‘jak’2 is immediately preceded by a declined form of the adjective
‘taki’ and both tokens have the same governor, then the token ‘jak’ is governed by
the adjective. Furthermore, all dependents of the adjective with indices greater than
the index of ‘jak’ are rearranged into dependents of ‘jak’.

2The token ‘jak’ may be recognised as a preposition by the tagger. Since it is not always the case,
the part of speech is not considered by the correction rule.

177

Rule 14. Comparative phrase (2)

Rule: If the token ‘niø’ is immediately preceded by a token marked for the comparative
degree, then the preceding token governs the preposition ‘niø’.

Rule 15. Complementiser

Rule: If a verb form indirectly follows its verbal governor and the relation between them
is labelled with COMP, XCOMP, XCOMP-PRED, OBJ or OBL, and the verb form does
not already govern a complementiser and a subordinating conjunction (part of speech:
comp) is found between the verb form and the verbal governor, then the subordinating
conjunction is governed by the verb form, if it is realised as ‘aby’, ‘by’, ‘øeby’, ‘øe’,
‘iø’, ‘aøeby’ or ‘iøby. Furthermore, all dependents of the complementiser are governed
by the verb form. Otherwise, the subordinating conjunction is governed by the verbal
governor and the verb form depends on the subordinating conjunction.

Rule 16. Conjunct dependent (1)

Rule: If a conjunct governed by a coordinating element (parts of speech: conj, interp)
precedes this coordinating element, then the dependents of the conjunct with indices
greater than the index of the coordinating element are annotated as dependents of
the coordinating element.

Rule 17. Conjunct dependent (2)

Rule: If a conjunct governed by a coordinating element (parts of speech: conj, interp)
follows this coordinating element, then the dependents of the conjunct with indices lower
than the index of the coordinating element are annotated as dependents of the coordi-
nating element (see Figure C.5).

root Dane by≥y rozpowszechniane na taúmie magnetycznej i wprowadzane rÍcznie

pred

auxconjunct

conj

adjunct

obj

adjunct

adjunct

subj

pred

aux

conjunct

conjadjunct
comp

adjunct adjunct

subj

Figure C.5: An induced tree (top tree) and a modified tree (bottom tree) of the sen-
tence Dane by≥y rozpowszechniane na taúmie magnetycznej i wprowadzane rÍcznie.
(Eng. ‘The data was distributed on a magnetic tape and inserted manually.’).

178 Appendix C. Correction Rules

Rule 18. Complement of MieÊ

Rule: If a verb form of ‘mieÊ’ (Eng. ‘to have’) does not have any dependents and it is
governed by a substantive, then the verb form is governed by the original governor of
the substantive and the substantive, in turn, is governed by the verb form.

Rule 19. Modifier (adverbial) of an adjective/adverb

Rule: If an adverb (lemmata: ‘tak’, ‘bardzo’, ‘ma≥o’, ‘duøo’, ‘coraz’) is immediately fol-
lowed by an adjective or an adverb, and the adverb and the following token have the same
governor, then the following token governs the current adverb.

Rule 20. Modifier (adjectival) of a substantive (1)

Rule: If a substantive is governed by an adjective and the substantive and the adjective
morphologically agree (in terms of number and case) and the adjective is not already gov-
erned by another substantive and the distance between the substantive and the adjective
is smaller than three tokens, then the substantive governs the adjective, if the adjective
is not governed by a predicative verb form (lemma: ‘byÊ’, ‘zostaÊ’ or ‘zostawaÊ’). Other-
wise, it may be a predicative construction in which the substantive governs the adjective
only if the substantive and the adjective either precede or follow the predicative verb
form and the substantive is adjacent to the adjective.
Furthermore, if the adjective precedes the substantive, then the dependents of the adjec-
tive with indices greater then the index of the substantive are governed by the substan-
tive. Otherwise, if the adjective follows the substantive, then the dependents of the adjec-
tive with indices lower than the index of the substantive are governed by the substantive
(see Figure C.6).

root

Pe≥ny wykaz wszystkich dzia≥aÒ niepoøπdanych

adjunct

pred

adjunct

obj

adjunct

adjunct

pred
adjunct

adjunct
adjunct

Figure C.6: An induced tree (top tree) and a modified tree (bottom tree) of the noun
phrase Pe≥ny wykaz wszystkich dzia≥aÒ niepoøπdanych (Eng. ‘A complete list of all side

eÄects’).

Rule 21. Modifier (adjectival) of a substantive (2)

Rule: If an adjective is adjacent to a substantive and the adjective and the substantive
have the same governor and they morphologically agree, then the substantive governs

179

the adjective. Furthermore, if the adjective precedes the substantive, then the dependents
of the adjective with indices greater than the index of the substantive are governed by
the substantive. Otherwise, if the adjective follows the substantive, then the dependents
of the adjective with indices lower than the index of the substantive be governed by
the substantive.

Rule 22. Modifier (nominal) of a substantive (1)

Rule: If a substantive is governed by a substantive marked for the genitive case (hence-
forth, the genitive substantive) and the substantive precedes the genitive substantive
and the distance between these substantives is smaller than four tokens, then the sub-
stantive governs the genitive substantive, if the governor of the genitive substantive is
not represented as a predicative verb form (lemma: ‘byÊ’, ‘zostaÊ’ or ‘zostawaÊ’). Other-
wise, it may be a predicative construction in which the substantive governs the genitive
substantive only if both substantives either precede or follow the predicative verb form
and the substantive is adjacent to the genitive substantive. Furthermore, if the genitive
substantive governs some dependents and indices of these dependents are lower than
the the index of the substantive, then these dependents are governed by the substantive.

Rule 23. Modifier (nominal) of a substantive (2)

Rule: If a substantive marked for the genitive case (henceforth, the genitive substantive)
and both substantives are adjacent and they have the same governor, then the substan-
tive governs the genitive substantive. Furthermore, if the genitive substantive precedes
the substantive, then the dependents of the genitive substantive with indices greater
than the index of the substantive are governed by the substantive. Otherwise, if the gen-
itive substantive follows the substantive, then the dependents of the genitive substantive
with indices lower than the index of the substantive are governed by the substantive.

Rule 24. Partitive phrase

Rule: If a preposition annotated with PART precedes a token labelled with OBL-PART,
and both the preposition and the other token have the same governor, then the other
token is annotated as a dependent of the preposition (see Figure C.7).

root w jednym z tych badaÒ

pred

obj

spec det

part

obl-part

pred comp adjunctcomp
comp

Figure C.7: An induced tree (top tree) and a modified tree (bottom tree) of the prepo-
sition phrase w jednym z tych badaÒ (Eng. ‘in one of these studies’).

180 Appendix C. Correction Rules

Rule 25. Post-prepositional adjective

Rule: If a post-prepositional adjective (part of speech: adjp) is not governed by a preposi-
tion, then the closest preposition on the left side is changed into the governor of the post-
prepositional adjective.

Rule 26. Predicative construction

Rule: If a verb form of ‘byÊ’ is governed by an adjective following the verb form or by
a noun phrase marked for the instrumental case, then the governing token changes into
the dependent of the verb form.

Rule 27. Prepositional complement

Rule: If a preposition does not have any dependent:

• If the preposition and the immediately following token are labelled with the func-
tion PART and they have the same governor and the preposition precedes its
governor, then the preposition depends on the governor of its original governor,
the subsequent token is governed by the preposition and the original governor of
the preposition is governed by the following token (see Figure C.8).

• Elif the preposition is labelled with the function PFORM and its governor also gov-
erns a token labelled with OBL-AG or OBJ, then the preposition governs the other
token (see Figure C.9).

• Elif the preposition is governed by a following noun phrase marked for the case
required by the preposition, then the preposition is governed by the governor of
the noun phrase and the noun phrase depends on the preposition.

• Else, if the token adjacent to the preposition on the right side fulfils properties of
a preposition complement (i.e., it is a noun phrase marked for the case required
by the preposition), it is annotated as the preposition complement.

Else, if a preposition complement precedes a preposition, then another complement of
the preposition is searched for : if a token adjacent to the preposition on the right fulfils
properties of a preposition complement (i.e., it is a noun phrase marked for the case
required by the preposition), it is annotated as the preposition complement.
Otherwise, if a preposition has more than one dependent, then the best of them3 is
selected as the preposition complement. Otherwise, a token adjacent to the right side of
the preposition is taken into account as the preposition’s complement.

3The complement of the preposition should be adjacent to the preposition on its right side and should
fulfil the case requirement imposed by the preposition.

181

root

inicjatywa majπca na celu opracowanie szczepionki

adjunct

adjunct

pred

part

part

obj

adjunct

dep

mwe comppred obj

Figure C.8: An induced tree (top tree) and a modified tree (bottom tree) of the noun
phrase inicjatywa majπca na celu opracowanie szczepionki (Eng. ‘initiative aimed at

developing a vaccine’).

root

zwiπzki organiczne wytwarzane przez drzewa

pred

adjunct

adjunct

pform

obl-ag

pred adjunct

adjunct

comp ag comp

Figure C.9: An induced tree (top tree) and a modified tree (bottom tree) of the noun
phrase zwiπzki organiczne wytwarzane przez drzewa (Eng. ‘organic compounds produced

by trees’).

Rule 28. Punctuation dependent

Rule: If a punctuation mark not functioning as a coordinating element governs some
dependents, these dependents are annotated as dependents of the governor of the punc-
tuation mark.

Rule 29. Root dependent (1)

Rule: If a token (parts of speech: adv, adjp, qub, ign or interp) is governed by the root
node and the token does not function as a coordinating element and it governs a verb
or quasi-verb form (but not a ‘byÊ’-form), then this verb form or quasi-verb form is
annotated as the head of the token and all other dependents of the token are rearranged
into dependents of the verb form (see Figure C.10).

182 Appendix C. Correction Rules

root Dzia≥ania niepoøπdane by≥y zg≥aszane bardzo rzadko.

aux

adjunct

subj

aux

aux

pred

adjunct aux

adjunct

adjunct

subj
pred

Figure C.10: An induced tree (top tree) and a modified tree (bottom tree) of the sen-
tence Dzia≥ania niepoøπdane by≥y zg≥aszane bardzo rzadko (Eng. ‘Adverse reactions have

been reported very rarely.’).

Rule 30. Root dependent (2)

Rule: If a token (parts of speech: adj, depr, ger, num, ppron12, ppron3, prep or subst)
is governed by the root node and the token governs a verb form (parts of speech: fin
or praet but not ‘byÊ’-form), then this verb form changes into the governor of the to-
ken. Furthermore, if the index of the verb form is lower than the index of the token,
the dependents of the token with indices lower than the index of the verb form are
rearranged into dependents of the verb form. If the verb index, in turn, is greater than
the index of the token, dependents of the token with indices greater than the verb index
are rearranged into verb dependents.

Rule 31. Simple question

Rule: If a verb form of ‘byÊ’ governs two tokens ‘co’ and ‘to’, and ‘co’ precedes ‘to’, then
the token ‘to’ is annotated as the governor of both the verb form and the token ‘co’,
and the dependents of the verb form and the token ‘co’ are rearranged into dependents
of the token ‘to’ (see Figure C.11).

root Co to jest Abilify ?

pred

subj

subj

xcomp-pred

interp

pred

pd aux

subj
punct

Figure C.11: An induced tree (top tree) and a modified tree (bottom tree) of the in-
terrogative question Co to jest Abilify? (Eng. ‘What is Abilify?’).

Appendix D

K -best MST Algorithm

D.1 Pseudocode

best(G, Y, Z) # 1-best MST algorithm
G = (V

G

, E
G

)
E

G

:= (E
G

[Y)� Z
�
G

and ⌧
G

are the incidence functions, and !
G

is the weighting function of G
B := ;
� := ;
C := (VC , EC), where VC = V

G

and EC = ;

While there exists an unvisited vertex v 2 V
G

, for v 6= v0 # collapsing phase
Find the best incoming edge b for v, so that ⌧

G

(b) = v and !
G

(b) is maximal
B := B [{b}
�(v) := b
If B contains a cycle C

G := G
C

Colapse C into a new vertex u in G
C

Add the new vertex u to C
For each vertex w in the cycle C, add an edge from u to w to EC

B := B � C

While C contains non-isolated vertices # expanding phase
Identify in C a path with vertices u0, u1, ..., u

k

, where u0 is any non-isolated root
of C and u

k

= ⌧(�(u0))
For h 2 {0, ..., k � 1}

�(u
h+1) := �(u

h

)
Remove from C the vertex u

h

and all edges directed out of u
h

Return A = {�(v)|v is a vertex of G but not the root}

183

184 Appendix D. K-best MST Algorithm

next(G,A, Y, Z) # next best MST algorithm
G = (V

G

, E
G

)
E

G

:= (E
G

[Y)� Z
B := ;
d := +1
�
G

and ⌧
G

are the incidence functions, and !
G

is the weighting function of G

While there exists an unvisited vertex v 2 V
G

, for v 6= v0
Find the best incoming edge b for v, so that ⌧

G

(b) = v and !
G

(b) is maximal
B := B [{b}
If b 2 A� Y
If there is an edge f 0 which is second best to b

f := f 0

Else f := dummy edge (!
G

(f) = �1)
If !

G

(b)� !
G

(f) < d
e := b
d := !

G

(b)� !
G

(f)
If B contains a cycle C of G, resolve it as in the best algorithm

Return the edge e and the diÄerence score d

rank(G, k) # k-best MSDTs selection
G = (V

G

, E
G

)
k is a number of the best dependency trees to select
P := ; # a list to represent MSTs
B := ; # a priority queue to store k-best MSTs
A1 := best(G, ;, ;)

If A1 is a proper dependency tree
Add A1 to B
e, d := next(G,A1, ;, ;)
Add a tuple (!(A1)� d, e, A1, ;, ;) to P
While the number of trees in B is less than k
Remove from P the tuple (w, e,A, Y, Z) for which w is maximal
If w = �1; return “all spanning trees of G have been output”
Y 0 := Y [{e}; Z 0 := Z [{e}
A

j

:= best(G, Y, Z 0)
If A

j

is a proper dependency tree
Add A

j

to B
e0, d0 := next(G,A, Y 0, Z)
Add a tuple (!(A)� d0, e0, A, Y 0, Z) to P
e00, d00 := next (G,A

j

, Y, Z 0)
Add a tuple (!(A

j

)� d00, e00, A
j

, Y, Z 0) to P
Else e0, d0 := next(G,A, Y, Z 0)

Return B
Else return None

D.2. Explanation 185

D.2 Explanation

The k -best MST algorithm by Camerini et al. (1980) finds k-best MSTs in a weighted
directed graph G = (V

G

, E
G

) with the set of vertices V
G

= {v0, ..., vn}, where v0 is
the root node, and the set of edges E

G

= {e1, ..., em}. All found k-best MSTs are
rooted at the same vertex v0. The algorithm has the linearithmic time complexity of
O(km log n).

First, the algorithm finds the maximum spanning tree A in the weighted directed graph
G using the function best(G, Y, Z). The parameter Y denotes a set of arcs from G which
are required to be in the solution and are not directed to v0. Z corresponds to a set of
arcs which cannot be part of the solution. The algorithm requires a weighting function
! : E

G

! R and two incidence functions, � and ⌧ . The � function returns a vertex
(governor) out of which a particular edge is directed. The ⌧ function returns a vertex
(dependent) into which a particular edge is directed. For example, if we have an edge e
between two vertices u and v, the edge direction from u to v is determined by �(e) = u

and ⌧(e) = v.

The function best is divided into two phases – the collapsing phase and the expanding
phase. In the collapsing phase, the current graphG is iteratively collapsed and the current
best graph B is updated until there is only one unvisited vertex v0 in V

G

. The best
incoming edge b found for each unvisited vertex v is added to the current best graph B
and is stored as the value of v in the mapping �, which is used to store the best incoming
edges for each visited vertex.

It is then checked if there is a cycle in the current best graph B after inserting the edge
b into B. If the cycle C is found in B, all nodes of C are collapsed into a new vertex u
of the graph G

C

. The collapsing procedure is as follows. For each vertex w in the cycle
C and for each vertex v in G� C being a parent of w, an edge from v to u is added to
G

C

. The weight of the new edge is !
G

(v, w)�!
G

(w0, w) where w0 immediately precedes
w in C. For each vertex w in C and for each vertex v in G�C being w’s child, an edge
from u to v is added to G

C

. The weight of the new edge is !
G

(u, v). Then, vertices from
C are removed from G

C

.

The new vertex u corresponding to C is added to the forest C . The forest C = (VC , EC),
with VC = V

G

and EC = ;, is used for keeping track of iterative collapsing of G (i.e.,
it stores a history of cycle collapses). Vertices of the cycle C are attached as children of
the new vertex u in C . Arcs of the cycle C are removed from B.

If all vertices of V
G

and all newly created vertices are visited, the algorithm proceeds to
the expanding phase, in which cycles stored in the forest C are resolved (or expanded),
� and C are updated and the maximum spanning tree A of G is recovered from B.

186 Appendix D. K-best MST Algorithm

The expanding procedure is as follows. While the forest C contains non-isolated vertices,1

a path u0, u1, ..., u
k

of vertices not present in the original graph G is identified in C .
The path starts with u0 which is a non-isolated root of C , i.e., it does not have any
parents, but it has some children. The vertex u

k

is a direct or indirect dependent of
u0, i.e., u

k

= ⌧(�(u0)). There are two prerequisites on considered vertices. First, their
number may not exceed l� 1, for l being the number of leaves in C . Second, they must
have at least two children. For each vertex in this path, assuming that the vertex is not
a leaf (i.e., it was not originally in V

G

), the mapping � for storing best incoming edges
and the forest C for storing a history of cycle collapses are updated. For u0, �(u1) is
assigned the best edge stored in � coming into the node u0 (i.e., �(u1) = �(u0)) and u0
and all edges directed out of v0 are removed from C . For u

h�1, in turn, �(uh) is assigned
�(u

h�1) and u
h

and all edges directed out of u
h

are removed from C . Hence, �(u
h�1)

stores the edge resolving the cycle C. The algorithm outputs the maximum spanning
tree A containing vertices from G and the best incoming edges for these vertices stored
in �.

The function next(G,A, Y, Z) outputs an arc e such that replacing e with the next best
arc in the maximum spanning tree A will result in the next best MST. The next function
is similar to best. However, since the maximum spanning tree A is already known, there
is no need for updating the forest C and the mapping � nor for the expanding phase.
Instead, it is searched for the arc f which is second best to the current best arc b. If there
is no second best arc, a dummy edge with the weight !(f) = �1 is returned. Taking
into account the next best edges, the function next outputs the edge e (corresponding
to the edge b in A that should be replaced by f) with the smallest diÄerence score
d = !

G

(b)� !
G

(f).

A list of k-best maximum spanning trees of the graph G is computed with the ranking
algorithm rank. This function is slightly modified in relation to the original function
rank (see Camerini et al., 1980, p. 107). There are some additional conditions that
force adding only well-formed maximum spanning trees to the priority queue B. Apart
from the priority queue B for storing k-best maximum spanning dependency trees in
the descending order of their weights, the algorithm uses a list P to store partitions
of next best MSDTs of the graph G. A partition of a next best MSDT added to P is
represented as a tuple of the form (w, e,A, Y, Z), where w is the weight of the next best
MSDT, e is the edge of A used to identify the next best MSDT, A is the current best
MSDT, Y is the set of edges required to be in the solution, and Z is a set of edges which
cannot be part of the solution.

The rank function starts with selecting the maximum spanning tree. If the selected MST
is not a well-formed dependency tree, next best trees are not selected any more from
the graph G. If the MST is a well-formed dependency tree, it is added as the first tree
1An isolated vertex has no outgoing or incoming edges. Hence, a non-isolated vertex has parents

or/and children.

D.2. Explanation 187

to the priority queue B. Subsequently, the algorithm searches for k � 1 best maximum
spanning dependency trees. After identifying the edge e with the function next, the next
best MST A

j

is identified with the function best(G, Y, Z [{e}). If A
j

is a well-formed
dependency tree, it is added to the priority queue B of k-best MSDTs. Subsequently,
the algorithm searches for two candidate edges to be replaced in the next best MSDT.
The first one e0 is found with the function next(G,A, Y [{e}, Z) and the tuple (!(A)�
d0, e0, A, Y [{e}, Z) is added toP. Another edge e00 is found with next(G,A

j

, Y, Z[{e})
and the tuple (!(A

j

)�d0, e0, A
j

, Y, Z[{e}) is added toP. The tuple with the highest w
is selected from P and the algorithm continues selecting next best trees until there are
k-best trees in B or a next tree cannot be found. If A

j

is not a well-formed dependency
tree, it is not inserted into the priority queue B. Instead, it is searched for another
candidate edge e0 to be replaced in the next best MSDT. The algorithm returns a list
B with k-best maximum spanning dependency trees.

List of Abbreviations

abbrev punct Abbreviation marker
acc Accusative case
adja Ad-adjectival adjective (part of speech)
adj Adjective (part of speech)
adjc Predicative adjective (part of speech)
adjp Post-prepositional adjective (part of speech)
adjunct qt Quotation adjunct
adv Adverb (part of speech)
AER Alignment Error Rate
aglt Mobile inflection
aglt Agglutinative byÊ (part of speech)
AP Adjective phrase
app Apposition
Atr Attribute in noun phrases in PDT
AtvV Verbal attribute / complement
aux Auxiliary verb
BC Before Christ
bedzie Future byÊ (part of speech)
brev Abbreviation (part of speech)
CDT Copenhagen Dependency Treebank
com Comparative degree
comp Complement
comp ag Agentive complement in passive
comp Subordinating conjunction (part of speech)
comp fin Clausal complement
comp inf Infinitival clausal complement
complm Complementizer
cond Conditional clitic
conj Coordinating conjunction (part of speech)
conjunct Coordinated conjunct
CoNLL Conference on Computational Natural Language Learning
coord Coordinating conjunction

189

190 List of Abbreviations

coord punct Punctuation conjunction
CP Subordinate clause
CTB Penn Chinese Treebank
dat Dative case
DCA Direct Correspondence Assumption
DDT Danish Dependency Treebank
depbank PARC 700 Dependency Bank
EM Expectation-Maximisation algorithm
f Feminine gender
fin Non-past form (part of speech)
gdfa Grow-diag-final-and symmetrisation heuristic
GEN Grammatical gender
gen Genitive case
ger Gerund (part of speech)
GFJP Gramatyka formalna jÍzyka polskiego
HMM Hidden Markov model
HPSG Head-driven Phrase Structure Grammar
IBM International Business Machines Corporation
imp Imperative marker
imps Impersonal (part of speech)
impt Imperative (part of speech)
inf Infinitive (part of speech)
inst Instrumental case
interp Punctuation (part of speech)
IP Finite clause
item Enumeration marker
LAS Labelled attachment score
LFG Lexical Functional Grammar
loc Locative case
m Masculine gender
MST Maximum/minimum spanning tree
MTT Meaning-Text Theory
mwe Multiword expression
ne Named entity
neg Negation marker
NLP Natural language processing
NLTK Natural Language Toolkit
n Neuter gender
nom Nominative case
NP Noun phrase
NUM Grammatical number

List of Abbreviations 191

num Numeral (part of speech)
obj Direct object
Obj Object in PDT
obj th Thematically restricted object
pact Active adjectival participle (part of speech)
pant Anterior adverbial participle (part of speech)
pcon Contemporary adverbial participle (part of speech)
pd Predicative complement
PDT Prague Dependency Treebank
PERS Person
pl Plural number
POS Part of speech
pos Positive degree
ppas Passive adjectival participle (part of speech)
pp Percentage point
ppron12 Non-third person pronoun (part of speech)
ppron3 Third person pronoun (part of speech)
praet L-participle (part of speech)
pre coord Pre-conjunction
pred Sentence predicate or nominal predicate
pred Predicative (part of speech)
prep Preposition (part of speech)
pri First person
punct Punctuation mark
QG Quasi-synchronous grammar
qub Particle-adverb (part of speech)
refl Reflexive marker
Sb Subject in PDT
sec Second person
sg Singular number
siebie Pronoun siebie (part of speech)
subj Subject
subst Substantive/Noun (part of speech)
sup Superlative degree
ter Third person
UAS Unlabelled attachment score
voc Vocative case
VP Verb phrase
XLE Xerox Linguistic Environment

Bibliography

Abeillé, A. and Rambow, O., editors (2000). Tree Adjoining Grammars. Formalisms,
Linguistic Analysis and Processing. CSLI Lecture Notes Series. CSLI Publications,
Stanford, CA.

AcedaÒski, S. (2010). A Morphosyntactic Brill Tagger for Inflectional Languages. In
Advances in Natural Language Processing, volume 6233 of Lecture Notes in Computer
Science, pages 3–14. Springer-Verlag.

Ágel, V. and Fischer, K. (2010). Dependency Grammar and Valency Theory. In Heine,
B. and Narrog, H., editors, The Oxford Handbook of Linguistic Analysis, pages 223–
255. Oxford University Press, Oxford.

Attardi, G. (2006). Experiments with a Multilanguage Non-Projective Dependency
Parser. In Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL-X), pages 166–170. Association for Computational Linguistics.

Attardi, G. and Ciaramita, M. (2007). Tree Revision Learning for Dependency Pars-
ing. In Sidner, C. L., Schultz, T., Stone, M., and Zhai, C. X., editors, Proceedings of
the Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, pages 388–395. The Association for Com-
putational Linguistics.

Bang-Jensen, J. and Gutin, G. Z. (2009). Digraphs. Theory, Algorithms and Applica-
tions. Springer Monographs in Mathematics. Springer-Verlag, London.

Berovic, D., Agic, Z., and TadiÊ, M. (2012). Croatian Dependency Treebank: Recent
Development and Initial Experiments. In Calzolari, N., Choukri, K., Declerck, T.,
Doğan, M. U., Maegaard, B., Mariani, J., Odijk, J., and Piperidis, S., editors, Pro-
ceedings of the Eight International Conference on Language Resources and Evaluation,
LREC’12. European Language Resources Association (ELRA).

BieÒ, J. S. (1997). Komputerowa weryfikacja formalnej gramatyki åwidziÒskiego. Bi-
uletyn Polskiego Towarzystwa JÍzykoznawczego, LII:147–164.

BieÒ, J. S. (2007). Innovative use of parameters in DCG-like logic grammars. In Vetulani,
Z., editor, Proceedings of the 3th Language & Technology Conference, pages 285–289.

193

194 Bibliography

BieÒ, J. S., Szafran, K., and WoliÒski, M. (2001). Experimental Parsers of Polish. In
Zybatow, G., Junghanns, U., Mehlhorn, G., and Szucsich, L., editors, Current Issues
in Formal Slavic Linguistics, volume 5 of Linguistik International, pages 185–190,
Frankfurt am Main. Peter Lang.

Bies, A., Ferguson, M., Katz, K., and MacIntyre, R. (1995). Bracketing Guidelines for
Treebank II Style Penn Treebank Project.

Bird, S., Loper, E., and Klein, E. (2009). Natural Language Processing with Python.
O’Reilly Media Inc.

Boguslavsky, I., Chardin, I., Grigorieva, S., Grigoriev, N., Iomdin, L., Kreidlin, L., and
Frid, N. (2002). Development of a Dependency Treebank for Russian and its possible
Applications in NLP. In Proceedings of the 3rd International Conference on Language
Resources and Evaluation, Las Palmas, Gran Canaria, pages 852–856.

Böhmová, A., Hajič, J., Jakočová, E., and Hladká, B. (2003). The Prague Dependency
Treebank: A Three-Level Annotation Scenario. In Abeillé, A., editor, Treebanks. Build-
ing and Using Parsed Corpora, volume 20 of Text, Speech and Language Technology,
pages 103–128. Kluwer Academic Publishers, Dordrecht/Boston/London.

Bohnet, B. (2003). Mapping Phrase Structures to Dependency Structures in the Case
of Free Word Order Languages. In Proceedings of the First International Conference
on Meaning-Text Theory, MTT 2003, pages 239–249.

Bohnet, B. (2009). EÖcient Parsing of Syntactic and Semantic Dependency Structures.
In Proceedings of the 13rd Conference on Computational Natural Language Learning
(CoNLL 2009): Shared Task, pages 67–72.

Bohnet, B. (2010). Very High Accuracy and Fast Dependency Parsing is not a Con-
tradiction. In Proceedings of the 23rd International Conference on Computational
Linguistics, COLING 2010, pages 89–97.

Bojar, O. and Hajič, J. (2008). Phrase-Based and Deep Syntactic English-to-Czech Sta-
tistical Machine Translation. In The Third Workshop on Statistical Machine Trans-
lation, pages 143–146.

Bouma, G., Kuhn, J., Schrader, B., and Spreyer, K. (2008). Parallel LFG Grammars
on Parallel Corpora: A Base for Practical Triangulation. In Proceedings of the LFG08
Conference, pages 169–189.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER
treebank. In Proceedings of the Workshop on Treebanks and Linguistic Theories,
pages 24–41.

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell, Oxford.

Bibliography 195

Brown, P. F., Della Pietra, V. J., Della Pietra, S. A., and Mercer, R. L. (1993). The
Mathematics of Statistical Machine Translation: Parameter Estimation. Computa-
tional Linguistics, 19(2):263–311.

Buch-Kromann, M. (2006). Discontinuous Grammar. A model of human parsing and
language acquisition. Dr.ling.merc. dissertation, Copenhagen Business School (Hand-
slshøjskolen), København.

Buch-Kromann, M., Gylling-Jørgensen, Morten andJelsbech Knudsen, L., Korzen, I.,
and Høeg Müller, H. (2010). The inventory of linguistic relations used in the Copen-
hagen Dependency Treebanks. The CDT manual, Center for Research and Innovation
in Translation and Translation Technology, Copenhagen Business School.

Buch-Kromann, M. and Korzen, I. (2010). The unified annotation of syntax and dis-
course in the Copenhagen Dependency Treebanks. In Proceedings of the Fourth Lin-
guistic Annotation Workshop, LAW IV ’10, pages 127–131. Association for Computa-
tional Linguistics.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on Multilingual Dependency
Parsing. In Proceedings of the Tenth Conference on Computational Natural Language
Learning, pages 149–164.

Butt, M., Dyvik, H., King, T. H., Masuichi, H., and Christian, R. (2002). The Paral-
lel Grammar Project. In Proceedings of the COLING 2002 Workshop on Grammar
Engineering and Evaluation, pages 1–7.

Camerini, P. M., Fratta, L., and MaÖoli, F. (1980). The K Best Spanning Arborescences
of a Network. Networks, 10:91–110.

Carreras, X. (2007). Experiments with a Higher-Order Projective Dependency Parser.
In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages
957–961.

Chanev, A., Simov, K., Osenova, P., and Marinov, S. (2006). Dependency conversion
and parsing of the BulTreeBank. In Proceedings of the LREC workshop Merging and
Layering Linguistic Information, pages 16–23.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Chen, S. F. (1993). Aligning Sentence in Bilingual Corpora Using Lexical Informa-
tion. In Proceedings of the 31st Annual Meeting of the Association for Computational
Linguistics, pages 9–16.

Choi, J. D. and Palmer, M. (2010). Robust Constituency-to-Dependency Conversion for
English. In Proceedings of the 9th International Workshop on Treebanks and Linguis-
tic Theories, volume 9 of Nealt Proceedings Series, pages 55–66. Northern European
Association for Language Technology (NEALT).

196 Bibliography

Chu, Y. J. and Liu, T. H. (1965). On the Shortest Arborescence of a Directed Graph.
Science Sinica, 14:1396–1400.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania.

Collins, M. (2003). Head-Driven Statistical Models for Natural Language Parsing. Com-
putational Linguistics, 29(4):589–637.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online
Passive-Aggressive Algorithms. Journal of Machine Learning Research, 7:551–585.

Crouch, D., Dalrymple, M., Kaplan, R., King, T., Maxwell, J., and Newman, P. (2011).
XLE Documentation. Palo Alto Research Center (PARC), Palo Alto, CA.

Cucerzan, S. and Yarowsky, D. (2002). Bootstrapping a Multilingual Part-of-speech
Tagger in One Person-day. In Proceedings of the 6th Conference on Natural Language
Learning, COLING’02, pages 1–7.

Dalrymple, M. (2001). Lexical-Functional Grammar. Syntax and Semantics, volume 34.
Academic Press.

Das, D. and Petrov, S. (2011). Unsupervised Part-of-Speech Tagging with Bilingual
Graph-Based Projections. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies, volume 1 of
HTL’11, pages 600–609.

de MarneÄe, M.-C., MacCartney, B., and Manning, C. D. (2006). Generating Typed
Dependency Parses from Phrase Structure Parses. In Proceedings of the Fifth Inter-
national Conference of Language Resources and Evaluation, LREC’06, pages 449–454.

de MarneÄe, M.-C. and Manning, C. D. (2008a). Stanford typed dependencies manual.
Stanford University.

de MarneÄe, M.-C. and Manning, C. D. (2008b). The Stanford typed dependencies rep-
resentation. In Proceedings of the Workshop on Cross-framework and Cross-domain
Parser Evaluation, COLING 2008, pages 1–8. Association for Computational Linguis-
tics.

Debusmann, R., Duchier, D., and KruijÄ, G.-J. M. (2004). Extensible Dependency
Grammar: A New Methodology. In Proceedings of the COLING Workshop on Recent
Advances in Dependency Grammar, pages 78–85.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38.

Bibliography 197

Derwojedowa, M. (2011). Sk≥adnia liczebników we wspó≥czesnym jÍzyku polskim. Zarys
opisu zaleønoúciowego. Wydawnictwo Wydzia≥u Polonistyki UW, Warszawa.

Diab, M. and Resnik, P. (2002). An Unsupervised Method for Word Sense Tagging
using Parallel Corpora. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL’02, pages 255–262.

Diestel, R. (2000). Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, New York, electronic edition edition.

DÍbowski, £. (2009). Valence extraction using EM selection and co-occurrence matrices.
Language Resources and Evaluation, 43(4):301–327.

Duan, X., Zhao, J., and Xu, B. (2007). Probabilistic Parsing Action Models for Multi-
Lingual Dependency Parsing. In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 940–946.

Duchier, D. and Debusmann, R. (2001). Topological Dependency Trees: A Constraint-
Based Account of Linear Precedence. In Proceedings of the 39th Annual Meeting on
Association for Computational Linguistics and the 10th European Chapter of the ACL,
pages 180–187. Association for Computational Linguistics.

Džeroski, S., Erjavec, T., Ledinek, N., Pajas, P., Žabokrtsky, Z., and Žele, A. (2006).
Towards a Slovene dependency treebank. In Proceedings of the 5th International
Conference on Language Resources and Evaluation, LREC’06, pages 1388–1391.

Edmonds, J. (1967). Optimum Branchings. Journal of Research of the National Bureau
of Standards, 71B(4):233–240.

Eisner, J. M. (1996). Three New Probabilistic Models for Dependency Parsing: An
Exploration. In Proceedings of the 16th International Conference on Computational
Linguistics, COLING 1996, pages 340–345.

Eisner, J. M. (2000). Bilexical Grammars and their Cubic-Time Parsing Algorithms. In
Bund, H. and Nijholt, A., editors, New Developments in Natural Language Parsing,
volume 16 of Text, Speech and Language Technology, pages 29–62. Springer-Verlag.

Falk, Y. (2001). Lexical-Functional Grammar: An Introduction to Parallel Constraint-
Based Syntax. CSLI Publications, Standford, CA.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLIN-
EAR: A Library for Large Linear Classification. Journal of Machine Learning Re-
search, 9:1871–1874.

Finkel, J., Dingare, S., Manning, C. D., Nissim, M., Alex, B., and Grover, C. (2005).
Exploring the Boundaries: Gene and Protein Identification in Biomedical Text. BMC
Bioinformatics, 6.

198 Bibliography

Finkel, J. R., Grenager, T., and Manning, C. D. (2007). The Infinite Tree. In Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics, pages
272–279. Association for Computational Linguistics.

Forst, M., Bertomeu, N., Crysmann, B., Fouvry, F., Hansen-Schirra, S., and Kordoni, V.
(2004). Towards a Dependency-based Gold Standard for German Parsers - The TiGer
Dependency Bank. In Proceedings of the 5th International Workshop on Linguistically
Interpreted Corpora (LINC-04) at COLING, pages 31–38.

Fraser, A. and Marcu, D. (2005). ISI’s Participation in the Romanian-English Alignment
Task. In The ACL 2005 Workshop on Building and Using Parallel Texts, pages 91–94.

Fraser, A. and Marcu, D. (2007). Measuring Word Alignment Quality for Statistical
Machine Translation. Computational Linguistics, 33:293–303.

Gale, W. A. and Church, K. W. (1991). A Program for Aligning Sentences in Bilingual
Corpora. In Proceedings of the 29th Annual Meeting of the Association for Computa-
tional Linguistics, pages 177–184.

Ganchev, K. (2010). Posterior Regularization for Learning with Side Information and
Weak Supervision. PhD thesis, University of Pennsylvania.

Ganchev, K., Gillenwater, J., and Taskar, B. (2009). Dependency Grammar Induction
via Bitext Projection Constraints. In Proceedings of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, volume 1, pages 369–377.

Gelbukh, A., Torres, S., and Calvo, H. (2005). Transforming a Constituency Treebank
into a Dependency Treebank. Procesamiento del Lenguaje Natural, 35:145–152.

Gillenwater, J., Ganchev, K., Graça, J., Pereira, F., and Taskar, B. (2010). Sparsity in
Dependency Grammar Induction. In Proceedings of the ACL 2010 Conference Short
Papers, pages 194–199.

Gómez-Rodŕıguez, C. and Nivre, J. (2010). A transition-based parser for 2-planar de-
pendency structures. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, ACL ’10, pages 1492–1501. Association for Computational
Linguistics.

GraliÒski, F. (2002). WstÍpujπcy parser jÍzyka polskiego na potrzeby systemu POLENG.
Speech and Language Technology. Technologia Mowy i JÍzyka, 6(III):263–276.

GraliÒski, F. (2007). Formalizacja nieciπg≥oúci zdaÒ przy zastosowaniu rozszerzonej gra-
matyki bezkontekstowej. PhD thesis, Adam Mickiewicz University, PoznaÒ.

GraliÒski, F., Jassem, K., and Junczys-Dowmunt, M. (2012). PSI-Toolkit: Natural Lan-
guage Processing Pipeline. Computational Linguistics – Applications, 458:27–39.

Bibliography 199

Hajič, J. (1998). Building a Syntactically Annotated Corpus: The Prague Dependency
Treebank. In Hajičová, E., editor, Issues of Valency and Meaning. Studies in Honour
of Jarmila Panevová, pages 106–132. Karolinum, Charles University Press, Prague,
Czech Republic.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Mart’ı, M. A., Màrquez, L.,
Meyers, A., Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M., Xue, N.,
and Zhang, Y. (2009). The CoNLL-2009 Shared Task: Syntactic and Semantic De-
pendencies in Multiple Languages. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning: Shared Task, CoNLL ’09, pages 1–18. As-
sociation for Computational Linguistics.

Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Bojar, O., Cinková, S., Fuč́iková, E.,
Mikulová, M., Pajas, P., Popelka, J., Semecký, J., Šindlerová, J., Štěpánek, J., Toman,
J., Urešová, Z., and Žabokrtský, Z. (2012). Announcing Prague Czech-English De-
pendency Treebank 2.0. In Calzolari, N., Choukri, K., Declerck, T., Doğan, M. U.,
Maegaard, B., Mariani, J., Odijk, J., and Piperidis, S., editors, Proceedings of the Eight
International Conference on Language Resources and Evaluation, LREC’12. European
Language Resources Association (ELRA).

Hajič, J., Smerž, O., Zemánek, P., and Beška, E. (2004). Prague Arabic Dependency
Treebank: Development in Data and Tools. In NEM-LAR International Conference
on Arabic Language Resources and Tools, pages 110–117. ELDA.

Hall, K. (2007). k-best Spanning Tree Parsing. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages 392–399.

Harper, M. P. and Helzerman, R. A. (1995). Extensions to Constraint Dependency
Parsing for Spoken Language Processing. Computer Speech and Language, 9:187–234.

Haverinen, K., Viljanen, T., Laippala, V., Kohonen, S., Ginter, F., and Salakoski, T.
(2010). Treebanking Finnish. In Dickinson, M., Müüisep, K., and Passarotti, M.,
editors, Proceedings of the Ninth International Workshop on Treebanks and Linguis-
tic Theories, volume 9 of Nealt Proceedings Series, pages 79–90. Northern European
Association for Language Technology (NEALT).

Headden, III, W. P., Johnson, M., and McClosky, D. (2009). Improving Unsupervised
Dependency Parsing with Richer Contexts and Smoothing. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics, NAACL 2009, pages 101–109.
Association for Computational Linguistics.

Hellwig, P. (1986). Dependency Unification Grammar. In Proceedings of the 11th Inter-
national Conference on Computational Linguistics, COLING 1986, pages 195–198.

200 Bibliography

Hellwig, P. (2003). Dependency Unification Grammar. In Ágel, V., Eichinger, L. M.,
Eroms, H. W., Hellwig, P., Herringer, H. J., and Lobin, H., editors, Dependenz und
Valenz / Dependency and Valency. Ein internationales Handbuch der zeitgenössischen
Forschung / An international Handbook of Contemporary Research (1. Halbband /
Volume 1), volume 25.1 of Handbücher zur Sprach- und Kommunikationswissenschaft
/ Handbooks of Linguistics and Communication Science (HSK), pages 593–635. De
Gruyter Mouton, Berlin, Boston.

Hudson, R. (1990). English Word Grammar. Basil Blackwell, Oxford.

Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., and Kolak, O. (2005). Bootstrapping
Parsers via Syntactic Projection across Parallel Texts. Natural Language Engineering,
11(3):311–325.

Hwa, R., Resnik, P., Weinberg, A., and Kolak, O. (2002). Evaluating Translational Cor-
respondence using Annotation Projection. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, ACL’02, pages 392–399.

Järvinen, T. and Tapanainen, P. (1998). Towards an implementable dependency gram-
mar. In Proceedings of the Workshop on Processing of Dependency-Based Grammars
(ACL-COLING), pages 1–10.

Jassem, K. (2006). Przetwarzanie tekstów polskich w systemie t≥umaczenia automaty-
cznego POLENG. Wydawnictwo Naukowe UAM, PoznaÒ.

Jiang, W. and Liu, Q. (2009). Automatic Adaptation of Annotation Standards for
Dependency Parsing – Using Projected Treebank as Source Corpus. In Proceedings of
the 11th International Conference on Parsing Technologies, IWPT’09, pages 25–28.

Jiang, W. and Liu, Q. (2010). Dependency Parsing and Projection Based on Word-
Pair Classification. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 12–20.

Johansson, R. and Nugues, P. (2007). Extended Constituent-to-Dependency Conversion
for English. In Nivre, J., Kaalep, H.-J., Muischnek, K., and Koit, M., editors, Proceed-
ings of the 16th Nordic Conference of Computational Linguistics, NODALIDA-2007,
pages 105–112.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. In Rozenberg, G.
and Salomaa, A., editors, Handbook of Formal Languages, volume 3, pages 69–124.
Springer, Berlin, New York.

Kahane, S. (2003). The Meaning-Text Theory. In Ágel, V., Eichinger, L. M.,
Eroms, H. W., Hellwig, P., Herringer, H. J., and Lobin, H., editors, Dependenz und
Valenz / Dependency and Valency. Ein internationales Handbuch der zeitgenössischen
Forschung / An International Handbook of Contemporary Research (1. Halbband /

Bibliography 201

Volume 1), volume 25.1 of Handbücher zur Sprach- und Kommunikationswissenschaft
/ Handbooks of Linguistics and Communication Science (HSK), pages 546–570. De
Gruyter Mouton, Berlin, Boston.

Kaplan, R. M. and Bresnan, J. (1995). Lexical-Functional Grammar: A Formal System
for Grammatical Representation. In Dalrymple, M., Kaplan, R. M., Maxwell III, J. T.,
and Zaenen, A., editors, Formal Issues in Lexical-Functional Grammar, volume 47 of
CSLI Lecture Notes Series, pages 29–130. CSLI Publications, Stanford.

Kaplan, R. M., Riezler, S., King, T. H., Maxwell III, J. T., Vasserman, A., and Crouch, R.
(2004). Speed and Accuracy in Shallow and Deep Stochastic Parsing. In Proceedings of
the Human Language Technology Conference and the 4th Annual Meeting of the North
American Chapter of the Association for Computational Linguistics, HLT-NAACL’04,
pages 97–104.

Kim, S., Jeong, M., Lee, J., and Lee, G. G. (2010). A Cross-lingual Annotation Projection
Approach for Relation Detection. In Proceedings of the 23rd International Conference
on Computational Linguistics, COLING 2010, pages 564–571.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M., and Kaplan, R. M. (2003). The
PARC 700 Dependency Bank. In Proceedings of the 4th International Workshop on
Linguistically Interpreted Corpora, LINC-03, pages 1–8.

Kiss, T. and Strunk, J. (2006). Unsupervised Multilingual Sentence Boundary Detection.
Computational Linguistics, 32:485–525.

Klein, D. and Manning, C. D. (2004). Corpus-Based Induction of Syntactic Structure:
Models of Dependency and Constituency. In Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics, pages 478–485.

Klemensiewicz, Z. (1968). Zarys sk≥adni polskiej. PWN, Warszawa.

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. In
Proceedings of the 10th Machine Translation Summit Conference, pages 79–86.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,
B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E.
(2007). Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, ACL’07,
pages 177–180.

Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007). Structured Prediction
Models via the Matrix-Tree Theorem. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 141–150.

202 Bibliography

Kromann, M. T. (2003). The Danish Dependency Treebank and the DTAG treebank
tool. In Proceedings of the Second Workshop on Treebanks and Linguistic Theories,
TLT 2003, pages 217–220.

KruijÄ, G.-J. M. (2002). Formal and Computational Aspects of Dependency Gram-
mar. Historical development of DG. http://www.univ-orleans.fr/lifo/membres/
duchier/teaching/ESSLLI-2002/esslli-history.pdf. Notes for the ESSLLI 2002
course on Formal and Computational Aspects of Dependency Grammar.

Kübler, S., Maier, W., Rehbein, I., and Versley, Y. (2008). How to Compare Treebanks.
In Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odjik, J., Piperidis, S., and
Tapias, D., editors, Proceedings of the Sixth International Conference on Language
Resources and Evaluation, LREC’08, pages 2322–2329. European Language Resources
Association (ELRA).

Kübler, S., McDonald, R. T., and Nivre, J. (2009). Dependency Parsing. Synthesis
Lectures on Human Language Technologies. Morgan & Claypool Publishers.

Levy, R. and Andrew, G. (2006). Tregex and Tsurgeon: tools for querying and manip-
ulating tree data structures. In Proceedings of the Fifth International Conference of
Language Resources and Evaluation, LREC’06, pages 2231–2234.

Lewis, M. P., Simons, G. F., and Fenning, C. D., editors (2013). Ethnologue: Languages
of the World. SIL International, Dallas, Texas, 17th edition.

Maamouri, M., Bies, A., Krouna, S., Tabessi, D., and Gaddeche, F. (2011). Penn Arabic
Treebank Guidelines. Technical report, Linguistic Data Consortium, University of
Pennsylvania.

Magerman, D. M. (1994). Natural Language Parsing as Statistical Pattern Recognition.
PhD thesis, Stanford University.

Magerman, D. M. (1995). Statistical Decision-Tree Models for Parsing. In Proceedings
of the 33rd Annual Meeting of the Association for Computational Linguistics, pages
276–283.

Marciniak, M., Mykowiecka, A., KupúÊ, A., and WÍgiel, M. (2000). Klasyfikacja zjawisk
syntaktycznych na potrzeby testowego zbioru wyraøeÒ jÍzyka polskiego. Technical
Report 908, Institute of Computer Science, Polish Academy of Sciences, Warszawa.

Marcus, M., Kim, G., Marcinkiewicz, M. A., Macintyre, R., Bies, A., Ferguson, M., Katz,
K., and Schasberger, B. (1994). The Penn Treebank: Annotating Predicate Argument
Structure. In ARPA Human Language Technology Workshop, pages 114–119.

Mareček, D. (2011). Combining Diverse Word-Alignment Symmetrizations Improves
Dependency Tree Projection. In Computational Linguistics and Intelligent Text Pro-
cessing: 12th International Conference, volume 6608 of Lecture Notes in Computer
Science, pages 144–154. Springer-Verlag.

http://www.univ-orleans.fr/lifo/membres/duchier/teaching/ESSLLI-2002/esslli-history.pdf
http://www.univ-orleans.fr/lifo/membres/duchier/teaching/ESSLLI-2002/esslli-history.pdf

Bibliography 203

Marinov, S. (2009). Dependency-Based Syntactic Analysis of Bulgarian. PhD thesis,
University of Gothenburg.

Maxwell III, J. T. and Kaplan, R. M. (1993). The Interface between Phrasal and Func-
tional Constraints. Computational Linguistics, 19(4):571–590.

McDonald, R., Crammer, K., and Pereira, F. (2005a). Online Large-Margin Training of
Dependency Parsers. In Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics, ACL 2005, pages 91–98.

McDonald, R., Lerman, K., and Pereira, F. (2006). Multilingual Dependency Analysis
with a Two-Stage Discriminative Parser. In Proceedings of the 10th Conference on
Computational Natural Lanugage Learning (CoNLL-X), pages 216–220.

McDonald, R. and Pereira, F. (2006). Online Learning of Approximate Dependency
Parsing Algorithms. In Proceedings of the 11th Conference of the European Chapter
of the Association for Computational Linguistics, EACL 2006, pages 81–88.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005b). Non-projective Depen-
dency Parsing using Spanning Tree Algorithms. In Proceedings of the Conference on
Human Language Technology and Empirical Methods in Natural Language Processing,
HTL’05, pages 523–530.

McDonald, R., Petrov, S., and Hall, K. B. (2011). Multi-Source Transfer of Delexical-
ized Dependency Parsers. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP’11, pages 63–72.

Mel’čuk, I. A. (1988). Dependency Syntax : Theory and Practice. SUNY Press, Albany.

Mel’čuk, I. A. and Pertsov, N. V. (1987). Surface syntax of English. A formal model
within the meaning-text framework, volume 13 of Linguistic and Literary Studies in
Eastern Europe. John Benjamins Publishing Company, Amsterdam.

Menzel, W. and Schröder, I. (1998). Decision Procedures for Dependency Parsing Using
Graded Constraints. In Proceedings of the Workshop on Processing of Dependency-
Based Grammars (ACL-COLING), pages 78–87.

Merlo, P., Stevenson, S., Tsang, V., and Allaria, G. (2002). A Multilingual Paradigm
for Automatic Verb Classification. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL’02, pages 207–214.

Milewska, B. (2003). Przyimki wtórne we wspó≥czesnej polszczyünie. Wydawnictwo
Uniwersytetu GdaÒskiego, GdaÒsk.

Moore, R. C. (2002). Fast and Accurate Sentence Alignment of Bilingual Corpora. In
Machine Translation: From Research to Real Users, volume 2499 of Lecture Notes in
Computer Science, pages 135–244. Springer-Verlag.

204 Bibliography

Nakagawa, T. (2007). Multilingual Dependency Parsing using Global Features. In Pro-
ceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 952–956.

Naseem, T., Barzilay, R., and Globerson, A. (2012). Selective Sharing for Multilingual
Dependency Parsing. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers - Volume 1, pages 629–637.

Newman, M. E. (2010). Networks. Oxford University Press, New York.

Nivre, J. (2006). Inductive Dependency Parsing, volume 34 of Text, Speech and Language
Technology. Springer-Verlag, Dordrecht.

Nivre, J. (2008). Algorithms for Deterministic Incremental Dependency Parsing. Com-
putational Linguistics, 34:513–553.

Nivre, J. (2009). Non-Projective Dependency Parsing in Expected Linear Time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP,
volume 1, pages 351–359.

Nivre, J., Boguslavsky, I. M., and Iomdin, L. L. (2008). Parsing the SynTagRus treebank
of Russian. In Proceedings of the 22nd International Conference on Computational
Linguistics - Volume 1, COLING ’08, pages 641–648.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D. (2007).
The CoNLL 2007 Shared Task on Dependency Parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages 915–932.

Nivre, J., Hall, J., and Nilsson, J. (2006a). MaltParser: A Data-Driven Parser-Generator
for Dependency Parsing. In Proceedings of the Fifth International Conference on
Language Resources and Evaluation, LREC’06, pages 2216–2219.

Nivre, J., Kuhlmann, M., and Hall, J. (2009). An improved oracle for dependency parsing
with online reordering. In Proceedings of the 11th International Conference on Parsing
Technologies, IWPT ’09, pages 73–76. Association for Computational Linguistics.

Nivre, J. and Nilsson, J. (2005). Pseudo-Projective Dependency Parsing. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics, ACL
’05, pages 99–106. Association for Computational Linguistics.

Nivre, J., Nilsson, J., and Hall, J. (2006b). Talbanken05: A Swedish Treebank with
Phrase Structure and Dependency Annotation. In Proceedings of the Fifth Interna-
tional Conference of Language Resources and Evaluation, LREC’06, pages 1392–1395.

ObrÍbski, T. (2002). Automatyczna analiza sk≥adniowa jÍzyka polskiego z wykorzys-
taniem gramatyki zaleønoúciowej. PhD thesis, Institute of Computer Science, Polish
Academy of Sciences, Warsaw.

Bibliography 205

ObrÍbski, T. (2003). MTT-compatible computationally eÄective surface-syntactic
parser. In Proceedings of First International Conference on Meaning-Text Theory,
pages 259–268.

Och, F. J. and Ney, H. (2003). A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51.

Øvrelid, L., Kuhn, J., and Spreyer, K. (2009). Improving Data-Driven Dependency Pars-
ing Using Large-Scale LFG Grammars. In Proceedings of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP (Conference Short Papers), pages 37–40.

Ozdowska, S. (2006). Projecting POS tags and syntactic dependencies from English
and French to Polish in aligned corpora. In Proceedings of the EACL Workshop on
Cross-Language Knowledge Induction, pages 53–60.

Padó, S. and Lapata, M. (2005). Cross-linguistic Projection of Role-semantic Informa-
tion. In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pages 859–866.

Padó, S. and Lapata, M. (2009). Cross-lingual Annotation Projection for Semantic
Roles. Journal of Artificial Intelligence Research, 36:307–340.

Patejuk, A. and Przepiórkowski, A. (2012). Towards an LFG parser for Polish: An
exercise in parasitic grammar development. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evaluation, LREC’12, pages 3849–3852.
ELRA.

PÍzik, P., Ogrodniczuk, M., and Przepiórkowski, A. (2011). Parallel and spoken corpora
in an open repository of Polish language resources. In Proceedings of the 5th Language
& Technology Conference: Human Language Technologies as a Challenge for Computer
Science and Linguistics, pages 511–515.

Polguére, A. and Mel’čuk, I. A., editors (2009). Dependency in Linguistic Description,
volume 111 of Studies in Language Companion Series (SLCS). John Benjamins Pub-
lishing Company, Amsterdam.

Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. The Uni-
versity of Chicago Press, Chicago.

Popel, M., Mareček, D., Štěpánek, J., Zeman, D., and Žabokrtský, Z. (2013). Coordina-
tion Structures in Dependency Treebanks. In Proceedings of the 51st Annual Meeting
of the Association for Computer Linguistics, pages 517–527.

Przepiórkowski, A. (2008). Powierzchowne przetwarzanie jÍzyka polskiego. Problemy
Wspó≥czesnej Nauki. Teoria i Zastosowania: Inøynieria lingwistyczna. Akademicka Ofi-
cyna Wydawnicza Exit, Warszawa.

206 Bibliography

Przepiórkowski, A., BaÒko, M., Górski, R. L., and Lewandowska-Tomaszczyk, B., editors
(2012). Narodowy Korpus JÍzyka Polskiego. Wydawnictwo Naukowe PWN, Warsaw.

Przepiórkowski, A., KupúÊ, A., Marciniak, M., and Mykowiecka, A. (2002). Formalny
opis jÍzyka polskiego: Teoria i implementacja. Problemy Wspó≥czesnej Nauki. Teo-
ria i Zastosowania: Inøynieria lingwistyczna. Akademicka Oficyna Wydawnicza Exit,
Warszawa.

Przepiórkowski, A., Skwarski, F., Hajnicz, E., Patejuk, A., åwidziÒski, M., and WoliÒski,
M. (2013). Modelowanie w≥asnoúci sk≥adniowych czasowników w nowym s≥own-
iku walencyjnym jÍzyka polskiego. http://clip.ipipan.waw.pl/Walenty?action=
AttachFile&do=view&target=walenty.20130929.1114.pdf. A draft version of
the article submitted for Polonica.

Ramasamy, L. and Žabokrtský, Z. (2011). Tamil Dependency Parsing: Results Using
Rule Based and Corpus Based Approaches. In Proceedings of the 12th International
Conference on Intelligent Text Processing and Computational Linguistics, volume Part
I of CICLing’11, pages 82–95, Berlin, Heidelberg. Springer-Verlag.

Saloni, Z. (2010). Czasownik polski. Wiedza Powszechna, Warszawa.

Saloni, Z. and åwidziÒski, M. (1989). Sk≥adnia wspó≥czesnego jÍzyka polskiego.
Wydawnictwo Naukowe PWN, Warszawa.

Saloni, Z. and åwidziÒski, M. (2011). Sk≥adnia wspó≥czesnego jÍzyka polskiego.
Wydawnictwo Naukowe PWN, Warszawa.

Savary, A., Chojnacka-Kuraú, M., Weso≥ek, A., SkowroÒska, D., and åliwiÒski, P. (2012).
Anotacja jednostek nazewniczych. In Przepiórkowski et al. (2012), pages 129–167.

Savary, A. and Waszczuk, J. (2012). NarzÍdzia do anotacji jednostek nazewniczych. In
Przepiórkowski et al. (2012), pages 225–252.

Seddah, D., Tsarfaty, R., Kübler, S., Candito, M., Choi, J. D., Farkas, R., Foster, J., Goe-
naga, I., Gojenola, K., Goldberg, Y., Green, S., Habash, N., Kuhlmann, M., Maier, W.,
Nivre, J., Przepiórkowski, A., Roth, R., Seeker, W., Versley, Y., Vincze, V., WoliÒski,
M., Wróblewska, A., and de la Clérgerie, E. V. (2013). Overview of the SPMRL
2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich
Languages. In Proceedings of the Fourth Workshop on Statistical Parsing of Morpho-
logically Rich Languages, pages 146–182.

Sgall, P., Hajičová, E., and Panevová, J. (1986). The Meaning of the Sentence in Its
Semantic and Pragmatic Aspects. Dordrecht: Reidel Publishing Company and Prague:
Academia.

Sleator, D. D. and Temperley, D. (1993). Parsing English with a Link Grammar. In
Proceedings of the Third International Workshop on Parsing Technologies, pages 277–
292.

http://clip.ipipan.waw.pl/Walenty?action=AttachFile&do=view&target=walenty.20130929.1114.pdf
http://clip.ipipan.waw.pl/Walenty?action=AttachFile&do=view&target=walenty.20130929.1114.pdf

Bibliography 207

Smith, D. A. and Eisner, J. (2006). Quasi-Synchronous Grammars: Alignment by Soft
Projection of Syntactic Dependencies. In Proceedings of the HLT-NAACL Workshop
on Statistical Machine Translation, pages 23–30.

Smith, D. A. and Eisner, J. (2009). Parser Adaptation and Projection with Quasi-
Synchronous Grammar Features. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 822–831.

Smith, D. A. and Smith, N. A. (2007). Probabilistic Models of Nonprojective Depen-
dency Trees. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages
132–140.

Søgaard, A. (2011). Data point selection for cross-language adaptation of dependency
parsers. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT ’11,
pages 682–686.

Spitkovsky, V. I., Alshawi, H., Jurafsky, D., and Manning, C. D. (2010). Viterbi Train-
ing Improves Unsupervised Dependency Parsing. In Proceedings of the Fourteenth
Conference on Computational Natural Language Learning, pages 9–17.

Spreyer, K. (2011). Does It Have To Be Trees? Data-Driven Dependency parsing with
Incomplete and Noisy Training Data. PhD thesis, Universität Potsdam.

Spreyer, K. and Frank, A. (2008). Projection-based Acquisition of a Temporal Labeller.
In Proceedings of the 3rd International Joint Conference on Natural Language Pro-
cessing, IJCNLP 2008, pages 489–496.

Steinberger, R., Eisele, A., Klocek, S., Pilos, S., and Schlüter, P. (2012). DGT-TM:
A freely Available Translation Memory in 22 Languages. In Proceedings of the 8th
International Conference on Language Resources and Evaluation, pages 454–459.

åwidziÒski, M. (1989). A dependency syntax of Polish. In Maxwell, D. and Schubert,
K., editors, Metataxis in practice. Dependency syntax for multilingual machine trans-
lation, pages 69–88. Foris Publications, Dordrecht, Providence.

åwidziÒski, M. (1992). Gramatyka formalna jÍzyka polskiego, volume 349 of Rozprawy
Uniwersytetu Warszawskiego. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa.

åwidziÒski, M. and WoliÒski, M. (2010). Towards a Bank of Constituent Parse Trees for
Polish. In Sojka, P., Horák, A., Kopeček, I., and Pala, K., editors, Text, Speech and
Dialogue, 13th International Conference, TSD 2010, Brno, Czech Republic, volume
6231 of LNAI, pages 197–204, Heidelberg. Springer-Verlag.

Szpakowicz, S. (1978). Automatyczna analiza sk≥adniowa zdaÒ pisanych. Ph.D. disser-
tation, Uniwersytet Warszawski, Warszawa.

208 Bibliography

Szpakowicz, S., editor (1986). Formalny opis sk≥adniowy zdaÒ polskich. Wydawnictwa
Uniwersytetu Warszawskiego, Warszawa.

Szpakowicz, S. and åwidziÒski, M. (1990). Formalna definicja równorzÍdnej grupy nom-
inalnej we wspólczesnej polszczyünie pisanej. Studia Gramatyczne, IX:9–54.

Täckström, O. (2013). Predicting Linguistic Structure with Incomplete and Cross-
Lingual Supervision. PhD thesis, Uppsala Universitet.

Täckström, O., McDonald, R., and Nivre, J. (2013). Target Language Adaptation of Dis-
criminative Transfer Parsers. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2013, pages 1061–1071.

Tapanainen, P. and Järvinen, T. (1997). A non-projective dependency parser. In Pro-
ceedings of the 5th Conference on Applied Natural Language Processing, pages 64–71.

Tesnière, L. (1959). Éléments de syntaxe structurale. Klincksieck, Paris.

Tiedemann, J. (2011). Bitext Alignment. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

Tiedemann, J. (2012). Parallel Data, Tools and Interfaces in OPUS. In Proceedings
of the 8th International Conference on Language Resources and Evaluation, pages
2214–2218.

Titov, I. and Henderson, J. (2007). Fast and Robust Multilingual Dependency Parsing
with a Generative Latent Variable Model. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 947–951.

Tu, K. (2012). Unsupervised learning of probabilistic grammars. PhD thesis, Iowa State
University, Ames, Iowa.

Tu, K. and Honavar, V. (2012). Unambiguity Regularization for Unsupervised Learning
of Probabilistic grammars. In Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL 2012), pages 1324–1334. Association for Computational
Linguistics.

van der Plas, L. and Tiedemann, J. (2006). Finding Synonyms Using Automatic Word
Alignment and Measures of Distributional Similarity. In Proceedings of the COL-
ING/ACL Main Conference Poster Sessions, COLING-ACL ’06, pages 866–873.

Varga, D., Haláscy, P., Kornai, A., Nagy, V., Németh, L., and Trón, V. (2005). Parallel
corpora for medium density languages. In Proceedings of the International Conference
on Recent Advances in Natural Language Processing, RANLP 2005, pages 590–596.

Bibliography 209

Vetulani, Z. (2004). Komunikacja cz≥owieka z maszynπ. Komputerowe modelowanie
kompetencji jÍzykowej. Problemy Wspó≥czesnej Nauki. Teoria i Zastosowania: In-
formatyka. Akademicka Oficyna Wydawnicza Exit, Warszawa.

Villeda Moirón, B. n. and Tiedemann, J. (2006). Identifying idiomatic expressions using
automatic word alignment. In Proceedings of the EACL 2006 Workshop on Multiword
Expressions in a Multilingual Context, pages 33–40.

Vogel, S., Ney, H., and Tillmann, C. (1996). HMM-Based Word Alignment in Statistical
Translation. In Proceedings of the 16th Conference on Computational Linguistics,
volume 2 of COLING’96, pages 836–841.

Wang, W. and Harper, M. P. (2004). A Statistical Constraint Dependency Grammar
(CDG) Parser. In Proceedings of the Workshop on Incremental Parsing: Bringing En-
gineering and Cognition Together, pages 42–49. Association for Computational Lin-
guistics.

WoliÒski, M. (2004). Komputerowa weryfikacja gramatyki åwidziÒskiego. Ph.D. disser-
tation, Institute of Computer Science, Polish Academy of Sciences, Warsaw.

WoliÒski, M. (2005a). An eÖcient implementation of a large grammar of Polish. In
Vetulani, Z., editor, Proceedings of the 2nd Language & Technology Conference, pages
303–347.

WoliÒski, M. (2005b). An eÖcient implementation of a large grammar of Polish. Archives
of Control Sciences, 15(3):251–258.

WoliÒski, M., G≥owiÒska, K., and åwidziÒski, M. (2011). A Preliminary Version of
Sk≥adnica – a Treebank of Polish. In Vetulani, Z., editor, Proceedings of the 5th
Language & Technology Conference: Human Language Technologies as a Challenge
for Computer Science and Linguistics, pages 299–303.

Wróblewska, A. (2012). Polish Dependency Bank. Linguistic Issues in Language Tech-
nology, 7(1):1–15.

Wróblewska, A. and Frank, A. (2009). Cross-Lingual Projection of LFG F-Structures:
Building an F-Structure Bank for Polish. In Proceedings of the Eighth International
Workshop on Treebanks and Linguistic Theories, TLT 8, pages 209–220.

Wróblewska, A. and Przepiórkowski, A. (2012). Induction of Dependency Structures
Based on Weighted Projection. In Proceedings of the 4th International Conference on
Computational Collective Intelligence Technologies and Applications, Part I, volume
7653 of Lecture Notes in Artificial Intelligence, pages 364–374, Berlin. Springer-Verlag.

Wróblewska, A. and WoliÒski, M. (2012). Preliminary Experiments in Polish Depen-
dency Parsing. In Security and Intelligent Information Systems: International Joint

210 Bibliography

Conference (SIIS 2011), Revised Selected Papers, volume 7053 of Lecture Notes in
Computer Science, pages 279–292. Springer-Verlag.

Xue, N., Xia, F., Chiou, F.-D., and Palmer, M. (2005). The Penn Chinese Tree-
Bank: Phrase structure annotation of a large corpus. Natural Language Engineering,
11(2):207–238.

Yamada, H. and Matsumoto, Y. (2003). Statistical Dependency Analysis with Support
Vector Machines. In Proceedings of 8th International Workshop on Parsing Technolo-
gies, pages 195–206.

Yarowsky, D. and Ngai, G. (2001). Inducing Multilingual POS Taggers and NP Brack-
eters via Robust Projection across Aligned Corpora. In Proceedings of the 2nd Annual
Meeting of the North American Chapter of the Association for Computational Lin-
guistics, pages 200–207.

Yarowsky, D., Ngai, G., and Wicentowski, R. (2001). Inducing Multilingual Text Anal-
ysis Tools via Robust Projection across Aligned Corpora. In Proceedings of the First
International Conference on Human Language Technology Research, pages 1–8.

Zeman, D. and Resnik, P. (2008). Cross-Language Parser Adaptation between Related
Languages. In Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged
Languages, pages 35–42.

	Streszczenie (Abstract in Polish)
	Acknowledgements
	Introduction
	Contributions
	Organisation of the Dissertation

	Preliminaries
	Pillars of the Dependency Theory
	Dependency in Poland
	Dependency Structure
	Data-driven Dependency Parsing
	Transition-based Dependency Parsing
	Graph-based Dependency Parsing

	Polish Dependency Annotation Schema
	Foundations
	Polish Dependency Relation Types
	Arguments (comp, comp_ag, comp_fin, comp_inf, obj, obj_th, pd, subj)
	Syntactically Motivated Non-arguments (abbrev_punct, adjunct, adjunct_qt, app, complm, imp, item, pred, punct, refl)
	Morphologically Motivated Non-arguments (aglt, aux, cond, neg)
	Semantically Motivated Non-arguments (mwe, ne)
	Functions Used in Coordination Structure (conjunct, coord, coord_punct, pre_coord)

	Syntactic Annotation Schemata: Related Work

	Conversion-based Dependency Bank
	Składnica – Polish Constituency Treebank
	Conversion Procedure
	Lexical Nodes
	Unlabelled Dependency Relations
	Labelling Dependency Relations
	Verb-Dependent Relations
	Other Relations

	Head Selection
	Rearrangement of Dependency Structures
	Discontinuous Constituents
	Passive Construction
	Subordinate Clauses
	Incorporated Conjunction
	Clauses with Correlative Pronouns

	Experimental Setup
	Data
	Dependency Parsing Systems
	Evaluation Methodology

	Experiments and Results
	Experiment 1 – MaltParser
	Experiment 2 – Mate Parser
	Evaluation against Automatic and Additional Test Sets
	Experiment 3 – Automatic Malt and Mate Models
	Evaluation of Individual Relation Labels

	Constituency-to-Dependency Conversion: Related Work
	Partial Conclusions

	Projection-based Dependency Bank
	Weighted Projection
	Bipartite Alignment Graph
	Projection of Dependency Relations
	Intuitive Weighting Method

	Weighted Induction
	Maximum Spanning Dependency Trees
	Feature Representations of Arcs
	Recalculation of Arc Weights in Projected Multi-Digraphs

	Rule-based Adaptation of Polish Dependency Structures
	Labelling Rules
	Correction Rules

	Experimental Setup
	Data
	Experiments on Word Alignment
	Conversion of English Dependency Structures

	Experiments and Results
	Preliminary Experiment
	Experiments on the Entire Set of Induced Trees
	Evaluation of Individual Relation Labels

	Annotation Projection: Related Work
	Partial Conclusions

	Conclusion
	Summary
	Comparison of Conversion-based and Projection-based Approaches
	Final Remark

	Appendices
	Labelling Rules Based on Morphosyntactic Properties
	Labelling Rules Based on English Grammatical Functions
	Correction Rules
	K-best MST Algorithm
	Pseudocode
	Explanation

	List of Abbreviations
	Bibliography

