
Preliminary Results from the Free Linguistic Environment Project

Abstract

We present ongoing work related to the
Free Linguistic Environment (FLE) project,
a grammar engineering platform for Lexical
Functional Grammar (LFG) and related frame-
works. In its present state, FLE is an envi-
ronment that contains basic elements of a lan-
guage processing pipeline, using morphologi-
cal analysis and syntactic parsing with feature
structures to generate parse-trees and other
representations from input sentences. It can
process CFGs and PCFGs fully, and targets
full coverage of the complete set of XLE-
grammar formalism by summer 2016.

1 Introduction

The Free Linguistic Environment (FLE) project aims at
the development of a grammar engineering platform for
Lexical Functional Grammar (LFG) (Bresnan, 2001;
Dalrymple, 2001) and related frameworks. The goal
is to create a platform-independent, open system that
facilitates testing of algorithms and formal extensions
of the current LFG-framework.

FLE currently contains a Probabilistic Context Free
Grammar (PCFG) backbone that uses grammars that
can be handcrafted or extracted and trained from com-
mon treebanks, independent lexical properties, fea-
ture specifications and related constraints. This is im-
plemented atop a Weighted Finite State Transducer
(WFST) (Mohri, 2004) that allows for extended prob-
abilistic models to be applied to the transitions via
weights, weight functions, or objects that encapsulate
weight functions. The weight functions can entail Uni-
fication, or even Monotonicity Calculus computations
(Icard III and Moss, 2014).

The project is motivated by a variety of concerns.
One is to experiment with new algorithms within the
LFG-framework that can facilitate probabilistic mod-
eling research by involving Probabilistic Context Free
Grammar (PCFG)s and using WFST models for the
parser, among other approaches suggested in Kaplan
(1996) and elsewhere. The use of such a flexible frame-
work has the potential to trigger subsequent develop-
ments that improve the grammar engineering interface,
or the debugging and tuning of grammars.

The environment is coded in standard C++11 and
C++14, utilizing exclusively open components, includ-
ing the C++ Boost framework (Schling, 2011) and ad-
ditional specialized libraries like Foma (Hulden, 2009),
OpenFST (Allauzen et al., 2007), and Ucto (Jain et al.,
2012). Code generation is handled by the Backus-Naur
Form Converter (BNFC) (Forsberg and Ranta, 2004)
and the freely available lexer and parser generators
flex and bison (Levine, 2009). The development envi-
ronment requires CMake1 and common working C++
compilers with at least C++11 support.

It is released under the Apache 2.0 license, as are
most of the components that it uses.2

The resulting code-base is tested to compile on com-
mon operating system platforms, e.g. Windows, Mac
OS X, and various Linux distributions. The binaries
will provide libraries and executables for the common
operating systems and linked modules for some pro-
gramming languages, e.g. Python.

Besides providing an environment to test different
algorithms and approaches to parsing natural language
sentences with LFG-grammars, one purpose of the en-
vironment is to create a grammar a engineering plat-
form or components that integrate better in common
operating systems and computing environments. This
includes not only Windows, Mac, and Linux platforms,
but also virtual machines and distributed environments.

For various language documentation projects, in par-
ticular work on under-resourced and endangered lan-
guages, we need a platform that is not only embed-
ded much better in current computing environments
(including tablets and mobile thin-computers), but also
one that is easy to use for grammar engineers. One of
the major issues working with large morphologies or
grammars is the identification of errors in failed parses.
A central goal of this project is to provide a simple in-
terface for grammar writers while allowing access to
deep properties of the parsing steps and internal opera-
tions.

While we see a need for a parser and grammar engi-

1See http://cmake.org/.
2See http://www.apache.org/licenses/

LICENSE-2.0. The Apache license appears to be more
adequate for collaborative academic and industry projects.
The one exception at the moment is the optional Ucto
unicode tokenizer library, which is released under GPL
version 3.0.

http://cmake.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0


neering environment that provides help to documentary
linguists and grammar writers, we also see a need for
efficient implementations that are scalable, parallelized
and distributed. By providing a library of atomic func-
tions, we hope to create an architecture that we and
others can subsequently optimize with respect to these
goals.

The environment should also enable us to experi-
ment with probabilistic models and extensions to the
classical LFG-framework. Probabilistic LFG models
would allow us to extend the spectrum of application in
NLP and HLT, to address new research questions, and
to boost grammar development and engineering using
machine learning strategies and treebanks.

Our ultimate goal is to be able to integrate semantic
components and processing in the parser to be able to
make use of various kinds of inferencing and process-
ing of other semantic properties.

2 General Architecture
Currently there is one experimental setting and imple-
mentation of FLE that uses a classical pipeline archi-
tecture for processing that consumes an input sentence,
tokenizes it, and syntactically parses it on the basis of
morphological analyses of the lexical items using dif-
ferent kinds of Chart parser implementations.

Input Sentence
↓

Tokenizer
↓

Morphological Analyzer
↓

Syntactic Parser
↓

c-structure & f-structure

Figure 1: Pipeline Architecture

Our goal is to provide the functionalities in this
pipeline as library functions that can be arranged in a
pipeline architecture (Figure 1) or in a parallel fashion
using, for example, a blackboard-architecture (Jack-
endoff, 2007).

In the following we will briefly describe the current
state of integration of necessary components in the pro-
cessing chain.

2.1 Tokenization
FLE can process tokenized input and it provides a set of
different tokenization approaches that can be integrated
in the processing chain in various ways:

• C++ Tokenizer subclass directly compiled into
FLE. The present system falls back to a simple
whitespace tokenizer should no other be provided.

• Foma-based Finite State Tokenizer. A tok-
enizer that makes use of the Foma library (Hulden,

2009).

• Ucto-based tokenizers. Tokenizers that use Ucto
(Jain et al., 2012)

At the time of writing we have developed a finite
state tokenizer for Burmese (mya) – a Tibeto-Burman
language written in abugida scripts with no spaces be-
tween words – using a wordlist and Foma regular ex-
pressions. We anticipate that other Foma-based tok-
enizers will be available within the codebase for En-
glish (eng), German (deu), Croatian (hrv), Mandarin
(cmn), Polish (pol) and other languages in the near fu-
ture.

2.2 Morphological Analysis
The currently-implemented pipeline makes use of
Foma-based Finite State Morphologies using Lexc and
Foma regular expressions that are also compatible with
the Xerox Finite State Toolkit (XFST) (Hulden, 2009;
Beesley and Karttunen, 2003).

The FLE codebase makes a partial implementation
of a Foma-based Burmese (mya) morphological ana-
lyzer available, as well as a larger, integrated open En-
glish (eng) morphology. From here, work is planned on
further morphologies for various under-resourced and
endangered languages. Additionally, we will extend
the support to other binary formats and formalisms, in-
cluding OpenFST and the Stuttgart Finite State Tool-
box (SFST) (Schmid, 2005).

2.3 Parsing
The architecture of the parser depends in part on the
particular grammar formalisms, and the parsing strat-
egy and the grammar properties determine the compu-
tational grammar representation. For example, in a left-
corner parser, it would be expedient to use a represen-
tation that made access to the left-peripheral symbol of
the right-hand CFG-rule efficient. Additionally, some
grammar formalisms have properties that lend them-
selves to particular computational representations, e.g.
using Finite State Machines. Our own implementations
of CFG-formalisms are a case in point, making use of
regular expression operators such as *, +, ?, |, and the
grouping brackets “(” and “)” to simplify the rule sets.

The different grammar formalisms are parsed and
mapped on one internal grammar representation using
WFSTs.

CFG

PCFG

LFG

...

grammar

parser morph.

Figure 2: Grammar processing and parsing

This internal representation is based on the OpenFST
library and can benefit from its extended capacities and



features. It provides the functionality to represent dif-
ferent grammar formalisms in similar data-structures,
rendering them compatible with a variety of parsing al-
gorithms. The mapped grammars can be stored as bi-
nary files and exported in the Graphviz DOT format.

Each of the currently-supported grammar for-
malisms is formally defined using the Labeled Backus-
Naur Form (Forsberg and Ranta, 2004), an extension of
the common BNF. The BNF Converter (BNF, 2016) is
used to generate the C++ code using intermediate Flex-
and Bison- based lexer and parser generation (Levine,
2009). This generated code is then extended with the
semantics to map grammars to internal WFST repre-
sentations.

At the time of writing, there are parsing implementa-
tions for CFGs and PCFGs. These are optimized vari-
ants of the Earley Parser (Earley, 1968, 1970) which
take into consideration several points discussed in (Ay-
cock and Horspool, 2002), among others.

The implementation of Unification and feature logic
handling currently under development uses weights in
OpenFST WSFT instances as objects and functions.
Our goal is to map the algorithm for uncertainty, the
unification algorithm and other proposals discussed in
Kaplan and Maxwell (1988); Maxwell III and Kaplan
(1996, 1991); Maxwell and Kaplan (1993) to a WFST
architecture in a systematic way.

3 Development Plan
Our current development plan includes these priorities:

1. full compatibility with the current XLE-
environment

2. integration of a graphical environment for interac-
tion

3. development of a Python-module interacting with
the library and FLE-components

4. integration of initial semantic components (e.g.
Monotonicity Calculus, Glue Semantics)

5. integration of a parallelized processing chain with
a blackboard architecture

6. extension of the morphologies and grammars or
grammar fragments to more languages

We expect to reach the first two goals in Spring 2016,
and the Python module and the implementation of algo-
rithms associated with the Monotonicity Calculus will
be available as earyly as Summer 2016.

4 Conclusion
The current code and architecture is experimental and
very much in flux. Nevertheless, we expect to have
more than a simple test-setting of the initial pipeline
ready for demonstration and testing by July 2016, in
time for the conference.

Many of the currently implemented components
might be useful to other projects. For example:

• The LBNF-specifications of grammar formalisms
and BNFC can be used to generate parsers for
the grammars in various other programming lan-
guages, including Java, Haskell, C#, and Python.

We have performed preliminary performance tests
using various Foma-morphologies and the first parser
implementation without Unification and feature logic.
Currently the morphology can process more than
100,000 tokens per second on an Intel Core i7 PC with
a bleeding edge Linux distribution and gcc/g++ 5.x.
This includes only covered vocabulary with lexical am-
biguities. The syntactic parser tested on a small gram-
mar with structural and lexical ambiguities parses ap-
prox. 3,000 sentences per second with an average sen-
tence length of 7 words. This suggests that an improved
version using a WFST-based CFG-backbone can be ex-
pected to perform even better, at least prior to the inclu-
sion of Unification and other weight functions.

Acknowledgments
We are grateful to many people for their help. For the
purpose of anonymous reviewing, we remove the de-
tails here.



References
The BNF Converter, Feb 2016. URL http://bnfc.
digitalgrammars.com/.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. OpenFst: A Gen-
eral and Efficient Weighted Finite-State Transducer
Library. In Proceedings of the Twelfth International
Conference on Implementation and Application of
Automata, (CIAA 2007), volume 4783 of Lecture
Notes in Computer Science, pages 11–23, Prague,
Czech Republic, 2007. Springer.

John Aycock and R. Nigel Horspool. Practical Earley
parsing. The Computer Journal, 45:620––630, 2002.
doi: doi:10.1093/comjnl/45.6.620.

Kenneth R. Beesley and Lauri Karttunen. Finite State
Morphology. CSLI Publications, 2003. URL http:
//www.fsmbook.com.

Joan Bresnan. Lexical-Functional Syntax. Blackwell,
2001. ISBN 0-631-20973-5.

Mary Dalrymple. Lexical Functional Grammar. Num-
ber 42 in Syntax and Semantics. Academic Press,
New York, 2001. ISBN 0-12-613534-7.

Jay Earley. An Efficient Context-Free Parsing Al-
gorithm. PhD thesis, Carnegie-Mellon University,
1968.

Jay Earley. An efficient context-free parsing al-
gorithm. Commun. ACM, 13(2):94–102, Febru-
ary 1970. ISSN 0001-0782. doi: 10.1145/
362007.362035. URL http://doi.acm.org/
10.1145/362007.362035.

Markus Forsberg and Aarne Ranta. BNF Converter.
In Proceedings of the 2004 ACM SIGPLAN Work-
shop on Haskell, Haskell ’04, pages 94–95, New
York, NY, USA, 2004. ACM. doi: 10.1145/1017472.
1017475.

Mans Hulden. Foma: a finite-state compiler and li-
brary. In Proceedings of the 12th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 29–32. Association for
Computational Linguistics, 2009.

Thomas Icard III and Lawrence Moss. Recent progress
in monotonicity. Perspectives on Semantic Repre-
sentations for Textual Inference, LiLT (Linguistic Is-
sues in Language Technology), 9, 2014.

Ray Jackendoff. A parallel architecture perspective on
language processing. Brain Research, pages 2–22,
2007.

Anil K. Jain, Lin Hong, and Sharath Pankanti.
Ucto: Unicode Tokenizer version 0.5.3 Reference
Guide. Technical Report ILK 12-05, Induction
of Linguistic Knowledge Research Group, Tilburg
Centre for Cognition and Communication, Tilburg
University, Tilburg, The Netherlands, November
2012. URL https://ilk.uvt.nl/ucto/
ucto_manual.pdf.

Ronald Kaplan. A probabilistic approach to lexical-
functional grammar, August 1996. Presentation at
the LFG Colloquium and Workshops, Rank Xerox
Research Centre.

Ronald M Kaplan and John T Maxwell. An algorithm
for functional uncertainty. In Proceedings of the 12th
conference on Computational linguistics-Volume 1,
pages 297–302, 1988.

John R. Levine. flex & bison. O’Reilly Media, Se-
bastopol, CA, 2009.

John T Maxwell and Ronald M Kaplan. The interface
between phrasal and functional constraints. Compu-
tational Linguistics, 19(4):571–590, 1993.

John T Maxwell III and Ronald M Kaplan. Current
Issues in Parsing Technology, chapter A Method for
Disjunctive Constraint Satisfaction, pages 173–190.
1991.

John T. Maxwell III and Ronald M. Kaplan. Unification
parser that automatically take advantage of context
freeness. In Proceedings of the first LFG Conference
(Grenoble), Stanford, 1996. CSLI Publications.

Mehryar Mohri. Weighted finite-state transducer algo-
rithms. an overview. In Formal Languages and Ap-
plications, pages 551–563. Springer, 2004.

Boris Schling. The Boost C++ Libraries. XML Press,
2011. ISBN 9780982219195.

Helmut Schmid. A programming language for finite
state transducers. In Proceedings of the 5th Inter-
national Workshop on Finite State Methods in Natu-
ral Language Processing (FSMNLP 2005), Helsinki,
Finland, 2005.

http://bnfc.digitalgrammars.com/
http://bnfc.digitalgrammars.com/
http://www.fsmbook.com
http://www.fsmbook.com
http://doi.acm.org/10.1145/362007.362035
http://doi.acm.org/10.1145/362007.362035
https://ilk.uvt.nl/ucto/ucto_manual.pdf
https://ilk.uvt.nl/ucto/ucto_manual.pdf

	Introduction
	General Architecture
	Tokenization
	Morphological Analysis
	Parsing

	Development Plan
	Conclusion

