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Introduction
This paper has two goals: On the technical side, it presents a general integration of polyadic quantifi-
cation in Lexical Resource Semantics (LRS) with categorematic (polymorphic) quantifiers in a func-
tional type theory; on the analytic side, it puts these quantifiers to use in an explicit syntax-semantics
interface that connects a simple HPSG-style syntax for sentences with the adjectives different and
same to a semantics that interprets their semantic contribution as pieces of an unreducible polyadic
quantifier.

Coverage
It has been observed that some readings that arise with the adjectives different and same exhibit
properties that cannot be captured easily by assuming that the nominal phrase resulting from the
combination of different/same + noun receives the expected noun phrase interpretation as generalized
quantifier (as customary for NPs like most donkeys or all aces). The readings of (1a) and (2a) that
we are interested in are (1biii) and (2bii), respectively (more on the other readings in the full paper).

(1) a. Two agencies in my country spy on different citizens.
b. (i) Two agencies in my country spy on different citizens from the ones we know.

(ii) Two agencies in my country spy on various/many citizens.
(iii) The citizens that one of the agencies spies on are different from the citizens that the

other agency spies on.

(2) a. Two agencies targeted the same citizens.
b. (i) Two agencies targeted the citizens we are targeting.

(ii) Whichever citizens one of the two agencies targeted were also targeted by the second
agency.

The second quantifier in each sentence beside different or same may of course be any numeral quan-
tifier, a universal or existential quantifier, or a generalized quantifier such as many or most, without
affecting the fundamental peculiarity of the construction, i.e. the fact that the interpretation of the
different/same+noun NP is intrinsically dependent on the interpretation of the second NP in the
sentence, as will become clear in the next section.1 In the remainder of this abstract, we will focus
on different.

Semantics of Quantifiers with different
In order to spell out a semantics for different, we introduce a few conventions that will help to keep
our notation compact. Given a set E and a binary relation R, R ⊆ E2, for each x ∈ E, we write Rx
for the set of objects x bears R to: Rx = {y|(x, y) ∈ R}. For the set of citizens agency a spies on, we
may thus write spy a = {c|(a, c) ∈ spy}.
With the classification of quantifiers by Lindström (1966), most can be regarded a quantifier of type
〈1, 1〉, taking two unary relations as arguments, while most agencies is of type 〈1〉, taking a unary
relation as argument. The binary quantifier (most agencies, every citizen) is of type 〈2〉, because its
argument is a binary relation. Given a domain E, subsets A1 to An of E, and a quantifier Q of type
〈1n, n〉, we write QA1,...,An for Q(A1, . . . , An). With A a set of agencies and the quantifier 2, we write
2A for the type 〈1〉 quantifier two agencies, and (2,∀)A,C for the type 〈2〉 quantifier (two agencies,
every citizen).
Definition (n-ary quantifiers as n-ary relation reducers)
Assume a universe E, and for each integer m,n (with n ≥ 1) a relation R ⊆ Em+n and an 〈n〉-ary
quantifier Q. Q(R) := {(x1, . . . , xm) ∈ Em|Q({(y1, . . . , yn) ∈ En|(x1, . . . , xm, y1, . . . , yn) ∈ R}) = 1}.
∗Goethe Universität Frankfurt, Germany. Email: f.richter@em.uni-frankfurt.de
1Barker (2007) mentions related interesting adjectives which could be covered by a similar semantic theory, such as

distinct, separate, similar, identical, unrelated, mutually incompatible or opposite.
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To see how n-ary relation reduction by a quantifier works, assume a binary relation spy and a world in
which two agencies, nsa and cia, spy on every citizen ck. Let Q be the binary quantifier (two agencies,
every citizen). We obtain Q(spy) = {() ∈ E0|Q({(y1, y2) ∈ E2|(y1, y2) ∈ spy}) = 1}. Since for all
citizens ck, (nsa, ck) ∈ spy and (cia, ck) ∈ spy, Q(spy) = {()} = 1. With the notion of quantifiers as
n-ary relation reducers at hand, we are ready for a semantics for different :
Definition (Semantics of a quantifier containing different (∆))
For Q a polyadic quantifier of type

〈
12, 2

〉
containing ∆, A,B ⊆ E, R ⊆ E2, and Q2 a quantifier of

type 〈1, 1〉, the interpretation of Q is as follows:
QA,B(R) = 1 iff there is an A′, A′ ⊆ A such that (1) QA

2 (A′) = 1, and (2) for all x, y ∈ A′:
x 6= y ⇒ B ∩Rx 6= B ∩Ry.

Applying this definition to Two agencies spy on different citizens, we get the following condition:
(2,∆)A,C(spy) = 1 iff there is a subset A′ of the set of agencies A such that (1) 2A(A′) = 1, and (2) for
all a1, a2 ∈ A′: a1 6= a2 ⇒ C ∩ spy a1 6= C ∩ spy a2. In a world in which C is the set of citizens of the
USA and GB, and agency GHCQ spies on all US citizens, agency NSA spies on all GB citizens, we
obtain (2,∆)A,C(spy) = 1. Note that, according to our semantics of different, the two sets of people
being spied on by the two agencies do not have to be disjoint as in the given example.
Some polyadic quantifiers (such as combinations of existential and universal quantifiers) can be re-
duced to a systematic combination of individual monadic constituent quantifiers, while others cannot.
This is made precise in the following definition:
Definition: (Reducibility, Dekker (2003))
A type 〈2〉 quantifier Q is 〈2〉-reducible iff there are two type 〈1〉 quantifiers Q1 and Q2 with Q =
Q1 ◦Q2.

In the context of our discussion of different (and same), a theorem by Keenan (1992) can be exploited
to show that the polyadic quantifiers in (1a) and (2b) are not reducible (readings (1biii) and (2bii)):
Theorem: (Reducibility Equivalence, Keenan 1992)
For every domain E and Q1 and Q2 reducible quantifiers of type 〈2〉:
Q1 = Q2 iff for all A,B ⊆ E: Q1(A×B) = Q2(A×B)

A simple proof based on Keenan’s theorem shows that there is no way to have an independent
semantics of the quantifiers two agencies and different citizens and still obtain the semantics (1biii)
for sentence (1a) that we are aiming for. Either the semantic analysis must be changed, or the
syntactic structure that feeds semantics must be modified so the two seemingly independent nominal
phrases form an appropriate syntactic unit at the relevant level of syntax (LF movement). In this
paper, however, we want to maintain Keenan’s semantics, and we do not envision syntactic structure
beyond how HPSG treats NPs and PPs in situ: [S [NP Two agencies] [V P [V spy] [PP on [NP different
citizens]]]]. In order to achieve this, we need a technique to build representations of unreducible
polyadic quantifiers systematically. LRS provides exactly the right tools to do so.

Integration in LRS
Traditionally, LRS employs a syncategorematic syntax for (generalized) quantifiers (Richter and
Kallmeyer (2009), Iordăchioaia and Richter (2015)). To achieve maximal generality of a theory
of polyadic quantification in LRS, it is advantageous to switch to a categorematic representation
instead. In AVM notation, our new LRS representations of two and two agencies look as follows:

(3) a.


phon

〈
two
〉

ss loc cont
[
index dr x
main two′

]
lrs

[
exc me
inc 1 two′(λx.α, λx.β)

parts
〈
1 , 1a x, 1b two′, 1c (λx.α), 1d (λx.β), 1e two′(λx.α)

〉
]
& x / α & x / β
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b.


phon

〈
two, agencies

〉
ss loc cont index dr x

lrs

[
exc 1 two′(λx.α, λx.β)
inc 2 agency′( 1a x)

parts
〈
1 , 1a x, 1b two′, 1c (λx.α), 1d (λx.β), 1e two′(λx.α), 2 , 2a agency′

〉
]


& 2 / α & x / α & x / β

In the monadic case depicted above, two′ is a constant of type 〈〈e, t〉 , 〈〈e, t〉 , t〉〉, and receives its
usual interpretation. For reasons of space and perspicuity, we will from now on employ the linear
LRS notation defined in CLLRS by Penn and Richter (2005). The LRS representation of (3a) becomes
ˆ [{two′(λx.α[x], λx.β[x])}], and (3b) ˆtwo′(λx.[{agency′(x)}], λx.β[x]) (with the caret indicating ex-
cont, curly braces indicating incont, and square brackets indicating a subterm relationship).
We generalize the specification of monadic generalized quantifiers like two′ to underspecified poly-
morphic polyadic quantifiers of any type 〈〈e, t〉 , . . . 〈〈e, t〉 , 〈〈e, . . . 〈e, t〉 . . .〉 , t〉〉 . . .〉 (Lindström type
〈1n, n〉). Furthermore, we assume that their standard interpretation will be in the form of iterated or
resumptive monadic quantifiers, and that their syntactic form keeps track of which restrictor belongs
to which monadic quantifier. For English two, we obtain ˆ [{(. . . , two′

n, . . .)(. . . , (λx.α[x])n, . . . , . . . λx.β[x])}],
where the subscript n indicates the position of two′ in the representation of an n + m-ary polyadic
quantifier and of its corresponding restrictor in the sequence of arguments. The representation of two
agencies straightforwardly becomes ˆ(. . . , two′

n, . . .)(. . . , (λx.[{agency′(x)}])n, . . . , . . . λx.β[x]) with-
out any modification to the combinatory apparatus of LRS.
The special properties of polyadic different are twofold: It may not be monadic, and the interpretation
of polyadic quantifiers containing ∆ proceeds as before. Rephrasing the earlier definition for our type-
theoretic language yields:
Definition (Restated semantics of a quantifier containing different (∆))
For Q = (Q2,∆) a polyadic quantifier of type

〈
12, 2

〉
containing ∆, x, y variables of type e, α, β

expressions of type t, Q2 a monadic generalized quantifier, and rel a relation of type 〈e, 〈e, t〉〉, the
interpretation of Q is as follows:
VM,g((Q2,∆)(λx.α, λy.β, rel)) = 1 iff there is anA′, A′ ⊆ VM,g(λx.α) such that (1) VM,g(Q2(λx.α))(A′) =
1, and (2) for all e1, e2 ∈ A′: e1 6= e2 ⇒ VM,g(λy.β) ∩ (VM,g(rel))e1 6= VM,g(λy.β) ∩ (VM,g(rel))e2.

It remains to be shown how the combinatorics of LRS determines the appropriate semantic represen-
tation for (1a) in our type theoretic language, (two′,∆)(λx.agency′(x), λy.citizen′(y), λxλy.spy′(x, y)).
First of all, the representation of different is lexically provided as ˆ[{(γ,∆)(σ, λy.β[y], . . . λy.[y])}].
When it combines with a nominal head such as citizens, the standard clause of the Semantics
Principle for determiner-noun combinations applies and ensures (together with ordering restrictions
for restrictors in polyadic quantifiers) that the incont of citizens ends up in β in the NP different
citizens: ˆ(γ,∆)(σ, λy.[{citizen′(y)}], . . . λy.[y]). If we further assume that case marking prepositions
like on do not make any semantic contribution of their own, the semantic restrictions on the PP on
different citizens are the same as on the embedded NP. The NP two agencies could in principle be
constructed as a monadic quantifier. However, unless it constructs as a binary quantifier compatible
with the restrictions that we have seen in on different citizens, the type system of the logical language
ultimately prevents a coherent semantic integration of the contributions of the NP and the PP in the
sentence. The only specification that will be compatible is ˆ(two′, ζ)(λx.[{agency′(x)}], ψ, λx.[x]).
For the VP spy on different citizens, the quantifier of on different citizens combines with the contribu-
tion of spy, ˆ [{spy( x , y )}] in the usual manner, yielding ˆ(γ,∆)(σ, λy.[citizen′(y)], [λy.{spy′( x , y)}]).
In the last step, we see that the incont of the VP must be in the scope of the binary polyadic quanti-
fier two agencies, and a coherent well-typed expression can only result from assuming that the polyadic
quantifier originating from on different citizens is identical with the binary quantifier originating from
two agencies.

Conclusion
The present analysis of polyadic quantifiers subsumes the analysis of polyadic negative quantifiers
introduced for a theory of negative concord in Iordăchioaia and Richter (2015), which is specialized
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to the case of a negative quantifier being the only source of (resumptive) polyadic quantification.
Most importantly, the present study of different showed that LRS provides the means to integrate
unreducible polyadic quantifiers in a systematic syntax-semantics interface in HPSG, which, to the
best of our knowledge, has not been done in any other syntactic framework before. The full paper
will contain all details of the extended combinatory system in LRS that could only be sketched above.
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