
FLE Preliminary Results
Damir Cavar, Lwin Moe, Hai Hu
Indiana University

Headlex 2016, Warsaw, Poland

1

http://headlex16.ipipan.waw.pl/
http://headlex16.ipipan.waw.pl/

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Help

Graduate Students

● Hai Hu, Kenneth Steimel, Tim Gilmanov, Joshua Herring

Support

● Kenneth Beesley
● Lionel Clement
● Thomas Hanneforth
● Ronald Kaplan
● Gerald Penn
● Richard Sproat
● Annie Zaenen
● ...

2

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Support

Provided morphologies and grammars to test:

● Mary Dalrymple
● Helge Dyvik and Paul Meurer
● Agnieszka Patujek and Adam Przepiórkowski

Morally supported and brought up the idea of the Monotonicity
Calculus integrated in an LFG and/or CCG type of parser: Larry Moss

Local IU community: Sandra Kübler, Markus Dickinson

The BNFC-team fixed several compiler issues for our code generation.

3

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Motivation

● Need for a modern grammar engineering platform

● Platform independent (e.g. Linux, OSX, Windows, Chrome OS,

Android, iOS)

● Parallelizable and distributed architecture

● Interoperable

○ Tied to common scripting and web languages like Python, JavaScript.

○ Import and export standards/exchange formats using XML, JSON, etc.

● Open License (e.g. Apache License 2.0, MIT License)

4

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Motivation

Purpose

● Computational Language Documentation

● Research and Education

● Productive development of applications

● Platform for hybrid white- and black-box modeling:

○ Grammar engineering combined with machine learning algorithms for

probabilistic models or (grammar) induction.

5

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Infrastructure

● Two Bitbucket Git repositories:

○ Private repo for experimenting, tutorials, data, etc.

■ Access via email and contact (write me!)

○ Open repository

■ https://bitbucket.org/dcavar/fle/

■ Not much there yet

6

https://bitbucket.org/dcavar/fle/
https://bitbucket.org/dcavar/fle/

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Infrastructure

● Coding in C++11 and newer using

○ GCC/G++, Clang/LLVM, Xcode, Cygwin, MS VisualStudio.

○ CMake-based compiler configuration.

● BNFC-based grammar to code conversion (using flex and bison).

● Doxygen-based code documentation.

● Git-based code and version management (using Bitbucket).

● CLion IDE.

● OS: Linux, Mac, Windows

7

https://en.wikipedia.org/wiki/C/+/+11
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://cmake.org/
https://cmake.org/
http://bnfc.digitalgrammars.com/
https://en.wikipedia.org/wiki/Flex_/(lexical_analyser_generator/)
https://www.gnu.org/software/bison/
http://bnfc.digitalgrammars.com/
https://www.doxygen.org/
https://www.doxygen.org/
https://bitbucket.org/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Code and Dependencies

● Required libraries (so far):

○ C++ Standard Library

○ Boost Libraries

○ Foma

● In the final version also:

○ OpenFST

○ OpenGrm Thrax Grammar Development Tool

8

http://www.boost.org/
http://www.boost.org/
https://code.google.com/archive/p/foma/
https://code.google.com/archive/p/foma/
http://www.openfst.org/
http://www.openfst.org/
http://www.openfst.org/twiki/bin/view/GRM/Thrax
http://www.openfst.org/twiki/bin/view/GRM/Thrax

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Code and Interoperability

● The following libraries will be optionally linked:

○ Ucto – Unicode rule-based tokenizer

○ Alternative FST-libraries (e.g. HFST)

● Required and optional libraries are available and/or made available

on the main desktop operating systems (all are C or C++ based).

9

https://languagemachines.github.io/ucto/
https://languagemachines.github.io/ucto/

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Goals

● Library of services rather than monolithic parser or toolset:

○ Parsing CFG, PCFG, CCG and related formalisms

○ Parsing XLE compatible grammars

○ Utilizing XFST-compatible morphologies (using e.g. Foma)

■ Conversion of XFST-morphology outputs to various formats

○ Tokenizers using Foma-based FSTs, rule-based tokenizers for Ucto,

simple regular expression based tokenizers

○ Parsing-algorithms that use the different formalisms above

10

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Goals

● Library of services:

○ Relating to Dependency Grammars (mapping from c- and f-structures)

○ Integration of training and machine learning algorithms: probabilistic

grammar backbone, morphologies, c- and f-structure relations

○ Available for C++-code base and as modules to common scripting

languages

11

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Blackboard, Message Passing, etc.

Application

Classical pipeline architecture:

Parallel architecture with mapping constraints (Jackendoff, 1997,
2007):

12

Tokenizer Morphology Parser Semantics

Phonology Morphology Parser Semantics

Rep. Rep. Rep. Rep.

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Current implementation: Tokenization

● Simple space-based (regular expressions, Boost)

● Foma-based (e.g. for Burmese and related languages)

● Ucto-based possible, not tested yet

13

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Current implementation: Morphology

● Foma-based (e.g. for English, Croatian, Burmese, Mandarin)

○ Processing of approx. 200,000 ambiguous tokens per second within

the parser integration (using 3rd gen. Intel i7 laptop CPU on a single

thread/core)

● Potentially also:

○ Interface to simpler Part-of-Speech taggers.

14

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Current implementation: Syntactic Parsing

● Simple Earley-type of Parser using hash-tables for rules and edges

○ Prediction, Scanning, Completion

○ Edges as indexed dotted rules on a chart/stack

○ Unification over trees with root or goal symbol

● Weighted Finite State Transducer (WFST) as grammar
representation

15

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Toy Rules

TOY ENGLISH RULES (1.0)

 S --> e: (^ TENSE);
 (NP: (^ XCOMP* {OBJ|OBJ2})=!
 (^ TOPIC)=!)

 NP: (^ SUBJ)=!
 (! CASE)=NOM;

 { VP
 |VPaux}.

 VP --> V
 (NP: (^ OBJ)=!

 (! CASE)=ACC)
 PP*:! $ (^ ADJUNCT).

 VPaux --> AUX
 VP.

 NP --> (D)
 N
 PP*:! $ (^ ADJUNCT).

 PP --> P
 NP:(^ OBJ)=!
 (! CASE)=ACC.

16

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Grammar Backbone as a WFST

Ჴ as a 7-tuple (Ჱ, ᶋ, ᵻ, ᶁ, Ღ, ᶝ, ᶣ) with

● Ჱ a finite set of states
● ᶋ a finite set over the input alphabet
● ᵻ a finite set over the output alphabet
● ᶁ a subset of Ჱ of initial states (only one in our case)
● Ღ a subset of Ჱ of final states
● ᵽ ⊆ Ჱ × (ᶋ ∪ {ᶗ}) × (ᵻ ∪ {ᶗ}) × Ჱ × Ძ, a mapping of a state ∈ Ჱ and

an input symbol ∈ ᶋ ∪ {ᶗ} to an output symbol ∈ ᵻ ∪ {ᶗ} and a
new state ∈ Ჱ; and ᶝ : ᶁ → Ძ mapping initial states and ᶣ : Ღ → Ძ
final states to weights.

17

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Grammar Backbone as a WFST

18

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

WSFT Backbone

Similar to Earley algorithm:

19

Lexical Initialization Chart

WFST Grammar

edge

edge

edge

...

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

WSFT Backbone

Implementation:
● Edges are integer tuples, i.e. indexes over input token vectors and

states in the WFST.
● WFST own class with simple optimization.
● Slower than simple Earley-type of implementation.

Weights:
● Probabilities of rules as in PCFGs.
● Transitions of symbols as in Markov Chains
● Unification and AVMs
● A combination of all the above

20

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

WFST Extensions

● Export of DOT specification (and indirectly SVG, PDF, etc.).
● Binary dump of WFST for faster load cycles.

● Reimplementation of WFST based on OpenFST with the benefits of
the rich set of library functions.

● Extension with OpenGrm, i.e. an OpenFST-based implementation of
a single- and double-stack pushdown automaton.

21

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Restricted Backbone as WFST

Potentially:

● Limited recursion depth for center embeddings, and
● Mapping of CFG backbone to a WFST with all possible word order

regularities.
● Generation of a very efficient parser with certain limitations of the

backbone complexity.

22

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

WFST Backbone and Parser

Current grammar formalisms defined in LBNF and converted with BNFC
to C++ parsers:
● CFG
● PCFG
● XLE

○ CONFIG (complete)
○ FEATURES (incomplete)
○ LEXICON (incomplete)
○ MORPHOLOGY (incomplete)
○ TEMPLATES (missing)
○ RULES (no: edit rules, METARULEMACRO, …)

23

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

LBNF and Formalisms

comment "\"" "\"" ;
Grammar. GRAMMAR ::= [RULE] ;

RuleS. RULE ::= WORD [LEXDEF] ;
RuleSDisjunction. RULE ::= WORD "{" [DLEXDEF] "}" ;
RuleUnknown. RULE ::= "-unknown" [LEXDEF] ;
RuleToken. RULE ::= "-token" [LEXDEF] ;
RuleSEditEntry. RULE ::= WORD [EDITENTRY] ;
RuleUnknownEditEntry. RULE ::= "-unknown" [EDITENTRY] ;
RuleTokenEditEntry. RULE ::= "-token" [EDITENTRY] ;
terminator RULE "." ;
Definition. LEXDEF ::= CAT MORPHCODE [DSCHEMA] ;
DefinitionSimple. LEXDEF ::= Label ;
separator LEXDEF ";" ;
DefinitionDisjunct. DLEXDEF ::= LEXDEF ;
separator DLEXDEF "|" ;
...

24

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

BNFC Output

void Skeleton::visitGrammar(Grammar *grammar) {
 /* Code For Grammar Goes Here */
 grammar->listrule_->accept(this);
}

void Skeleton::visitRuleS(RuleS *rules) {
 /* Code For RuleS Goes Here */
 rules->word_->accept(this);
 rules->listlexdef_->accept(this);
}

void Skeleton::visitRuleSDisjunction(RuleSDisjunction *rulesdisjunction) {
 /* Code For RuleSDisjunction Goes Here */
 rulesdisjunction->word_->accept(this);
 rulesdisjunction->listdlexdef_->accept(this);
}

25

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

LBNF and Formalisms

BNFC

● Haskell-based BNF Converter to flex and bison code.

● Compilation using C++ compiler (if conversion to C++).

● Generates LaTeX documentation of parser definition.

● Generates test-binaries for testing formalism/language parser.

● Generates a parser class using the visitor-architecture.

26

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Current implementation: Unification

● Basic algorithm using Directed Acyclic Graphs (DAG)

● No advanced algorithms yet, e.g. Disjunction, Constraints, Negation

● No performance tests

● Considerations:

○ Optimization using mapping of AVMs to bit-vectors for unification

○ Caching of operations and results

○ Unification over resulting c-structures or during transitions using

WFSTs

27

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

TODOs

● Windows

○ So far using Cygwin, preparing to use native DLLs:

■ We need a setup to generate Boost, Foma, OpenFST, OpenGrm as DLLs

■ Adaptation of the CMake code

● Mac OS X

○ Similar library-requirements as Windows, but much easier to compile

native linking libraries (using Clang and the LLVM compiler

environment that comes with XCode)

28

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

TODOs

● Compiling libraries

○ Separation of an application specification and environment from core

functionalities that could be defined in libraries only.

○ Definition of a Python 3.x extension module, i.e. the Grammar

engineering environment could be written in Python and Qt or

JavaScript and NodeJS for example.

29

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

TODOs

XLE-formalism
● Finalize all grammar section parsers with coverage for all sample

grammars that we have.

Parser algorithm
● Finalize the two different parsing with unification during edge

formation or after parse tree generation for complete parse trees
only and evaluate behavior and performance.

And a lot more...

30

Cavar et al. (2016): Free Linguistic Environment Preliminary Results

Related activities as part of FLE

Morphologies:
● English
● Croatian (port of old CroMo with Ragel-based rule compiler)
● Burmese (and related languages)
● Mandarin
● and integration of other freely available morphologies

31

