Fully syntactic, fully lexical, or in-between?
Remarks on the architectures of generative grammars

Tibor Laczkó

Department of English Linguistics
University of Debrecen

laczkko.tibor@arts.unideb.hu
http://ieas.unideb.hu/laczkko
1.1. Introduction

aims of the presentation

- comparison of GASG (Generative Argument Structure Grammar), HPSG, LFG, and MP – fundamentally on the basis of the (possibly sole) analyses briefly discussed here
- central issue: division of labour between syntax and the lexicon
- case study
 - the treatment of designated preverbal constituents in Hungarian: foci and verbal modifiers, which are in complementary distribution
1.2. Introduction

structure of the presentation
1. Introduction
2. Introduction to GASG
 [I assume (basic) familiarity with HPSG, LFG & MP]
3. The data
4. The four approaches
 4.1. GASG
 4.2. MP
 4.3. HPSG
 4.4. LFG
5. A comparison of these approaches
6. General remarks
7. Conclusion
2.1. Introduction to GASG

- GASG: Generative Argument Structure Grammar
- partially motivated by Karttunen (1986)
- goal: the treatment of syntactic and morphological phenomena in a “totally lexical” fashion
- designed to be implementable
- its lexicon contains lexical items with complex descriptions comprising *properties* and *requirements*
- no phrase structure (!)
- the only admitted operation is unification
- word order constraints handled just like case or agreement constraints
2.2. Introduction to GASG

Totally Lexicalist Morphology (TLM) [emphasis mine, TL]

“… does not follow the usual way by having a morphological component, which first creates words, and then syntax and semantics can operate on them. In TLM every kind of morpheme can have their own requirements and semantic content (but not all of them actually have). This way a main difference between Hungarian and English can disappear […], namely that in Hungarian suffixes express e.g. causativity or modality, while in English separate words are responsible for the same roles. The “cost” of TLM is that the “usual” information is not cumulated in a word (e.g. the case of a noun), but it can be solved by rank parameters. Using rank parameters is a crucial point of the theory, and so the implementation. Every expectation can be overridden by a stronger requirement (like in optimality theory); in other words, every requirement can be satisfied directly or indirectly (by fulfilling a stronger requirement). This way several phenomena can be handled easily, such as word order […], or case and agreement (without gathering the information of all the morphemes of the word)” (Alberti & Kleiber 2010: 108).
2.3. Introduction to GASG

• Szilágyi (2008): the analysis of a Hungarian noun phrase

\[(1) \text{az én okos magyar tanár-om} \]
\[\text{the I clever Hungarian teacher-POSS.1SG} \]
\[\text{‘my clever Hungarian teacher’} \]

Different degrees of adjacency requirements are imposed on various categories combining with nouns, which is encoded by rank parameters. In this particular example a **nationality adjective** has the **highest rank** (expressed by the **lowest rank number**), next in the hierarchy is an **ordinary adjective**, it is followed by the **nominative possessor**, which in turn is followed by the **definite article**.
3. The data

- the famous *verbal modifier* (VM) vs. *FOCUS* preverbal complementarity in Hungarian

(2) Péter *be hozott* egy tortá-t a szobá-ba.

Peter.NOM in *brought.3SG* a cake-ACC the room-into

‘Peter brought a cake into the room.’

(3) Péter EGY TORTÁ-T *hozott* be a szobá-ba.

Peter.NOM a cake-ACC *brought.3SG* in the room-into

‘It was a cake that Peter brought into the room.’

- in (2), the particle *be* ‘in’, a VM, obligatorily immediately precedes the verb in a neutral sentence
- in (3), a non-neutral sentence, a focused constituent, *egy tortát* ‘a cake.ACC’ precedes the verb, and forces the VM to occur postverbally
4.1. A GASG treatment

- **Szilágyi (2008)**

- In GASG **free word order** is captured by assuming that the rank parameters of **predicate–complement, predicate–adjunct** and even predicate–complement’s-complement relations coincide, i.e. they are equally **weak**, see the number **7s**.
- **VMs** are treated as **complements** (see **r7b**).
- In **neutral sentences** they immediately precede the verb, which is captured by assuming that they have an **alternative rank**, which puts them in the preverbal position: **r3a**. This rank places *be* ‘in’ in front of the verb in (2).
- **Focus**, which is treated as a **phonetically null lexical item** in Hungarian, **overrides** this **r3a** (word order) relation, and puts the focused constituent in front of the verb: **r0a**. Thus, the **VM’s r3a** is cancelled, and it is relegated to an ordinary complement status: **r7b**.
4.2.1. A cartographic MP treatment

• É. Kiss (2008)

- FocP and NNP (Nonneutral Phrase) are not projected in neutral sentences
- Complementarity of focus and VM: the head of a phase must be overt → it is always the highest overt head in the phase
4.2.2. An interface MP treatment

- Surányi (2011)

- the movement of VM in (2) and that of focus in (3) is not for feature-checking purposes: it is triggered by the EPP \rightarrow real positional complementary distribution
- in (3), it is in Spec,TP (syntax) that the focused constituent can have the id-focus interpretation (semantics) with the appropriate prosody (phonology)
4.3.1. An HPSG treatment

Szécsényi (2011, 2013) – 1

• the VM, which is a complement of the verb, makes up a complex predicate with that verb (motivated by MP analyses in this vein)
• the VM occupies a special, immediately preverbal position
• the VM (whether a particle or any other VM type) has a special feature: CAR (verb-carrier), based on Kálmán (2001)
• hozott ‘brought’ in (2) has four complements (cf. GB/MP mainstream): the subject, the object, the oblique argument, and the verbal particle be ‘in’, with the CAR feature
• focusing is a lexical process: the verb gives the focus feature (F-GIVE) to one of its complements or adjuncts, and the CAR feature must be (or must become) empty
• the focus and the VM occupy two distinct syntactic positions: the former is VP-adjointed and the latter is VP-initial (roughly: Spec,VP), and their complementarity is captured by the Focus Selecting Lexical Rule
4.3.2. An HPSG treatment

Szécsényi (2011, 2013) – 2

- HPSG structure for Hungarian finite sentences
cf. É. Kiss’ (1992) unorthodox GB analysis

- Focus Selecting Lexical Rule
4.4.1. An LFG treatment

Laczkó (2014) – 1

• disjunctive functional annotations for this sentence structure

| T: { (c-)topic | sent.adv. } | Q: { quantifier | WH } | Spec: { focus | VM | WH } |
|-----------------------------|-----------------------------|-----------------------------|
| \((↑GF)= \downarrow \) | \((↑GF)= \downarrow \) | \((↑GF)= \downarrow \) |
| \(↓ ∈ (↑ CONTR-TOPIC) \) | \((↑GF)= \downarrow \) | \((↑GF)= \downarrow \) |
| \(↓ ∈ (↑ ADJUNCT) \) | \((↑CHECK_QP)=c + \) | \((↑GF)= \downarrow \) |
| \((↓ADV-TYPE)=c\) SENT } | \((↑CHECK_VM-INTER)=c + \) | \((↑FOCUS)= \downarrow \) |
| | \((↑CHECK_QP-INTER)=c + \) | \((↑GF)= \downarrow \) |
| | \((↓SPECIFIC)=c + \) | \((↓CHECK_VM)=c + \) |
| | | \((↑GF)= \downarrow \) |
| | | \((↑GF)= \downarrow \) |

• structure for Hungarian finite sentences (cf. É. Kiss 1992!)
4.4.2. An LFG treatment

Laczkó (2014) – 2

(1) be PRT
 \((\uparrow \text{PRT-FORM}) = \text{be}\)
 \((\uparrow \text{CHECK } _\text{PRT-VERB}) = c +\)
 \{ (\uparrow \text{FOCUS})
 | ~ (\uparrow \text{FOCUS})
 (\uparrow \text{CHECK } _\text{VM}) = + \}
 ((\uparrow \text{DIR}) = \text{in}).

(2) \(\text{hoz V}\)
 \((\uparrow \text{PRED}) = \text{‘bring-in } < (\uparrow \text{SUBJ}) (\uparrow \text{OBJ}) (\uparrow \text{OBL}) >’\)
 \((\uparrow \text{PRT-FORM}) = c \text{ be}\)
 \((\uparrow \text{CHECK } _\text{PRT-VERB}) = +\)
 \((\uparrow \text{DIR}) = c \text{ in}.\)

• the preverbal complementarity of foci and VMs is captured in terms of syntactic positional complementarity (encoded by functional annotational disjunctions) -- both in the syntax and the lexicon
5.1. A comparison of the four (five) approaches [represented by the analyses highlighted here]

(i) the treatment of the particle (VM)–verb relationship

1. they make up a complex predicate (of some sort): MP, LFG, HPSG, GASG
2. special representation for the complex predicate in the lexicon: LFG, HPSG, GASG
3. the preverbal position of the particles is lexically specified \Rightarrow no syntactic movement: LFG, HPSG, GASG
4. syntactic complex predicate formation (in overt syntax or in LF) \Rightarrow movement: MP
5. in the complex predicate, the particle is a complement of the verb: MP, HPSG, GASG
6. the particle is not a complement of the verb syntactically: LFG

\cdot (5)-(6): a special issue in its own right (for a discussion, see Laczkó & Rákosi 2011)
5.2. A comparison of the four (five) approaches

(ii) the treatment of (preverbal) focus

1. syntactic movement triggered by a particular feature [+F] or a syntax-semantics-phonology interface relationship: **MP**
2. syntactic treatment: preverbal base-generation (and annotational encoding) of focus: **LFG**
3. lexical treatment: a lexical rule assigns the focus feature to a constituent (complement or adjunct): **HPSG**
4. lexical treatment: the highest ranked word order parameter determines the preverbal position of the focused constituent (whether a complement or an adjunct): **GASG**

(iii) the treatment of focus–VM complementarity

1. distinct preverbal syntactic positions: (cartographic) **MP, HPSG**
2. the same syntactic position: (interface) **MP, LFG, GASG**
5.3. A comparison of the four (five) approaches

- the treatment of preverbal focus and VM in Hungarian

Syntactic encoding:
- MP
- LFG

Lexical encoding:
- LFG
- HPSG
- GASG

FOC/VM
- (+ ‘Wh’!)
- (+ Neg!)

• handling the complementarity of focus and VM, cf. WYSIWYG

<table>
<thead>
<tr>
<th>Syntactic Encoding</th>
<th>Lexical Encoding</th>
<th>Handling Complementarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFG</td>
<td>HPSG</td>
<td>GASG</td>
</tr>
<tr>
<td>{ FOC</td>
<td>VM }</td>
<td></td>
</tr>
</tbody>
</table>

C-MP

MP

IF-MP

vs.

FOC – VM
6.1. General remarks on the four (five) approaches

1. All the four theories are complex and coherent systems in which these (and many other) phenomena can be formally handled in a principled fashion.

2. MP is fully syntactic and, consequently, absolutely transformational and, hence, derivational. The other three theories are non-transformational and representational.

3. GASG is fully lexical, and it does not even employ phrase structure.

4. LFG is crucially lexical (no syntactic transformations); however, (richly annotated) syntactic (phrase-structural) representations are indispensably important.

5. HPSG is between GASG and LFG; however, it seems to be closer in spirit and architecture to GASG.

6. The behaviour of complex predicates naturally calls for a lexical treatment. The three lexically biased theories can efficiently handle these phenomena. For a detailed HPSG analysis of complex predicates (including verbal particles) in German, see Müller (2002). For a comparative LFG-XLE analysis of particle verb constructions in English, German and Hungarian, see Forst et al. (2010).
6.2. General remarks on the four (five) approaches

7. The complementarity of foci and VMs needs to be partially captured in the lexical forms of particles.

8. On the syntactic side, the complementarity is intuitively most feasibly captured by postulating a single syntactic position that the two elements fight for: along the GASG, LFG and interface MP lines.

9. Both GASG and HPSG use lexical focusing (redundancy) rules (\Leftrightarrow LFG).
6.3. General remarks on the four (five) approaches

DF papers in HPSG-proceedings

- Szécsényi (2013)
 - analysis of Hungarian
 - modularity and parallel structures & interfaces
6.4. General remarks on the four (five) approaches

Haji-Abdolhosseini (2003) – 1

[...] the syntactic/semantic, prosodic and information structures are all constructed from a unique list of lexical items, W. The arrows pointing from W to various structures represent well-formedness constraints on those structures. The arrows that point back to W represent constraints on the features of the members of W imposed by those structures. Structural constraints are basically those found in standard HPSG literature such as rule schemata and the like. Informational constraints define well-formed information structures (145).

Figure 1: Architecture of the information-based model of prosodic constituency
6.5. General remarks on the four (five) approaches

Haji-Abdolhosseini (2003) – 2

What is assumed here is that phonology, syntax and information structure all operate as independently as possible while working on one common list of domain objects that we assume to be lexical items here for convenience. Thus, sign will have (at least) the following feature appropriateness constraint defined over it (149).

Type info has two subtypes: marked-info and unmarked-info. The type marked-info itself subsumes theme and rheme.

<table>
<thead>
<tr>
<th>(10)</th>
<th>Appropriateness Constraint on sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign</td>
<td>pros</td>
</tr>
<tr>
<td>SYNSEM</td>
<td>synsem</td>
</tr>
<tr>
<td>DOM</td>
<td>list(dom-obj)</td>
</tr>
<tr>
<td>INFO</td>
<td>list(info)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(11)</th>
<th>Informational Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>info</td>
<td>list(dom-obj)</td>
</tr>
<tr>
<td>INF-DOM</td>
<td>marked-info, unmarked-info</td>
</tr>
<tr>
<td></td>
<td>theme, rheme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(12)</th>
<th>Tonal Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>tone</td>
<td>list(dom-obj)</td>
</tr>
<tr>
<td>TONE-DOM</td>
<td>marked-tone, unmarked-tone</td>
</tr>
<tr>
<td></td>
<td>rfr, fall</td>
</tr>
</tbody>
</table>
6.6. General remarks on the four (five) approaches

7. Conclusion

- two main issues on the basis of Szécsényi’s (2013) approach:
 - the locus of treating DF phenomena: LFG – HPSG – GASG
 - Hungarian-phenomenon-specific: syntactic/positional complementarity of FOC & VM, cf. WYSIWYG
Acknowledgements

This talk has been supported in part by

- the NKFIH/OTKA (Hungarian Scientific Research Fund) project entitled *COMPREHENSIVE GRAMMAR RESOURCES: HUNGARIAN* (grant number: NK 100804);

- the Institute of English and American Studies, University of Debrecen, Hungary.
References (1)

References (2)

1. Appendix

De Kuthy & Meurers (2003) – 1

The phonology of signs is altered as shown in figure 2 to include an ACCENT attribute to encode whether a word receives an accent or not, and whether it is a rising or a falling accent in case it receives one (103).

The information structure of words is defined through the principle shown in figure 3 which assigns the semantic contribution of the word to the focus or topic specification in the information structure representation of that word, depending on the type of accent the word receives. (103-104).
Since verbs need to be able to lexically mark which of their arguments can project focus when they are accented, we introduce the boolean-valued feature FOCUS-PROJECTION-POTENTIAL (FPP) for object of type synsem (105).

The third disjunct specifies under which circumstances focus can project in the verbal domain: a phrase headed by a verb can only be in the focus (i.e., its entire logical form is token identical to an element of its focus value) if the daughter that has the focus projection potential (FPP plus) is entirely focused itself (106).