
Adam Przepiórkowski

The IPI PAN
Corpus

preliminary version

INSTITUTE OF COMPUTER SCIENCE PAS
WARSAW 2004

Institute of Computer Science
Polish Academy of Sciences

ul. Ordona 21
01-237 Warszawa
Poland

Copyright © 2004 by Adam Przepiórkowski

ISBN 83-910948-8-X

Contents

Chapter 1. Introduction . 5

1.1. The IPI PAN Corpus . 5
1.2. Acknowledgements . 7

Chapter 2. Preliminary text processing . 11

2.1. From the original format to XML . 11
2.2. Further XML processing . 13
2.3. From XML to binaries . 16

Chapter 3. Tagset . 17

3.1. Text segmentation . 18
3.2. The structure of morphosyntactic tags 22
3.3. Grammatical categories . 22
3.4. Grammatical classes . 26

3.4.1. Flexemes . 26
3.4.2. Flexemic classes . 30
3.4.3. Lemmata . 35

3.5. Idiosyncratic segments of written Polish 37
3.5.1. Haplology of the full stop . 37
3.5.2. Abbreviations . 41
3.5.3. Numbers . 41
3.5.4. Names and initials . 42
3.5.5. Special symbols: %, $, €, ¥, etc. 42

Chapter 4. Corpus search . 43

4.1. Query syntax . 44
4.1.1. Searching for orthographic forms 44
4.1.2. Searching for base forms . 48
4.1.3. Higher order queries . 49
4.1.4. Searching for tags . 51
4.1.5. Ambiguities . 54
4.1.6. Constraining matches to sentences or paragraphs 57
4.1.7. Constraining matches with metadata 57
4.1.8. Aligning matches . 60

4 Contents

4.2. Poliqarp . 60
4.2.1. The WWW version . 60
4.2.2. The GUI version . 65
4.2.3. The text version . 71

Appendix A. CD contents . 83

A.1. Windows . 84
A.2. GNU/Linux . 84

Bibliography . 85

Index . 89

Introduction

1.1. The IPI PAN Corpus . 5
1.2. Acknowledgements . 7

1.1. The IPI PAN Corpus

This publication is an outcome of a project financed chiefly by the
State Committee for Scientific Research (Komitet Badań Naukowych; KBN;
project number 7 T11C 043 20) carried out at the Institute of Computer
Science, Polish Academy of Sciences (ICS PAS) between April 2001 and
March 2004, as well as the result of statutory research carried out at ICS
PAS. Its aim is to present some of the results of the project, namely, the IPI
PAN1 Corpus of written Polish, as well as tools for searching the corpus.
This presentation should make it possible to effectively use both the corpus
and the tools.

To the best of our knowledge, the IPI PAN Corpus is the first publicly
accessible corpus of Polish, where the term corpus is understood here as
a large (over 100 mln. running words) linguistically (morphosyntactically)
annotated collection of texts, containing a balanced subcorpus, developed
in accordance with current standards and best practices in so-called corpus
linguistics.

Such corpora exist for numerous languages, not only European, and
they are widely used in Natural Language Processing (NLP), in lexico-
graphy, and in other subfields of linguistics. Many countries consider the
creation of such a corpus a duty towards the languages spoken there,

1 The name of the corpus should be pronounced as in “E.P. Pahn Corpus”, IPI PAN
being the abbreviation of Instytut Podstaw Informatyki, Polska Akademia Nauk, the Polish
name of ICS PAS.

6 Chapter 1. Introduction

hence the development of ‘national’ corpora such the British National Cor-
pus (http://www.hcu.ox.ac.uk/BNC/), or the Czech National Cor-
pus (http://ucnk.ff.cuni.cz/). So far, the only publicly available
linguistically annotated corpus of Polish has been the corpus of the “Fre-
quency dictionary of contemporary Polish” (Kurcz et al., 1974, 1990), con-
taining around half a million running words.

Previous corpus research in Poland has been scattered over a number
of sites, and only very limited results of such work are publicly avail-
able at the time of writing this publication. Corpus research has been
carried out, inter alia, in Warsaw (the PWN publishing house), Cracow
(Institute of the Polish Language, Polish Academy of Sciences; IPL PAS),
Łódź (University of Łódź) and in Wrocław (University of Wrocław). The
currently available results of that research are raw (not linguistically an-
notated) samples of the PWN corpus, i.e., a 2 million sample available
for searching at http://korpus.pwn.pl/, another sample, four times
as large, sold with the luxury edition of PWN’s “Universal dictionary of
Polish”, as well as a sample sold by the University of Łódź, containing 10
million running words. The aim of the current project has been to address
the problem of public unavailability of extensive corpus data from Polish
and thus to provide the basis for wider development of statistical NLP
methods in Poland.

The binary version of the IPI PAN Corpus, distributed on the CD-
ROM enclosed with this publication, is aimed, first of all, at linguists and
other linguistically conscious speakers and learners of Polish. This binary
corpus should be accessed via the search tool Poliqarp, also enclosed on
the CD-ROM. The sources of the corpus, probably more useful for various
NLP applications, are available directly from ICS PAS (inquiries should be
directed to info@korpus.pl or adamp@ipipan.waw.pl).

The current version of both the corpus and the tools is called here
a preliminary version: we are painfully aware of various inadequacies of
the corpus and the tools available on the enclosed CD-ROM. Taking into
consideration the sheer size of the corpus, and the limited resources at
the disposal of the project, it was impossible to verify the results of the
automatic conversion of the incoming texts into the XML format, or the
results of morphosyntactic, structural or metadata annotation. Especially
the last kind of information, the general information about texts (their ori-
gin, title, author, etc.), should be considered as incomplete and extremely

1.2. Acknowledgements 7

preliminary. The IPI PAN Corpus in its current form is a typical opportun-
istic corpus, containing various genres in unbalanced proportions. A more
careful selection of a fully balanced subcorpus is a task which should be
addressed at the next stage of corpus development.

Also the corpus search tool enclosed on the CD-ROM, Poliqarp, even
though it can in many respects be favourably compared to other available
corpus search tools (e.g., CQP, GCQP, Bonito), is far from constituting
a finished product: the efficiency of searching of corpora over 50 mil-
lion words is still too low, virtually no statistical functionality is currently
available, there is no possibility of building queries the graphical way,
and the user’s influence on the output format is limited. Those and other
inadequacies will be addressed in future releases of the tool.

1.2. Acknowledgements

The IPI PAN Corpus and various tools for corpus creation and ac-
cess have been developed chiefly within the State Committee for Scientific
Research project, as well as within statutory research carried out at the
Institute of Computer Science, Polish Academy of Sciences, so it would
be a truism to say that without the support of these two institutions this
project would have never taken off the ground.

The success of this project owes much to the support of various people
and institutions. Prof. Zygmunt Saloni (University of Warmia and Mazury
in Olsztyn) and Marcin Woliński (ICS PAS) provided the project with
a morphological analyser, Morfeusz. Prof. Janusz S. Bień gave us access
to a cleaned-up version of the corpus of the “Frequency dictionary of
contemporary Polish”, mentioned above. Dr. Jan Hajič (Charles Univer-
sity, Prague) put at our disposal a tool for the manual disambiguation
of morphosyntactic forms, DAUJC, developed by Jiří Hana. Prof. Włodzi-
mierz Gruszczyński (University of Warsaw; UW) made available to the pro-
ject the numerous nominal paradigms, which helped to improve the results
of the morphosyntactic annotation of the corpus. Prof. František Čermak
(Institute of the Czech National Corpus, Charles University, Prague) in-
vited the staff of the IPI PAN Corpus project to pay a visit at the Institute
of the Czech National Corpus and learn from the experience of our Czech
colleagues.

8 Chapter 1. Introduction

One of the most time consuming and tedious tasks of the project was
the acquisition of texts and appropriate copyrights for publishing the texts
in a publicly available corpus. The process of acquisition was run chiefly
by Dr. Rafał L. Górski (IPL PAS). What helped us convince authors and
publishers to the idea of a large publicly available corpus of Polish were the
recommendations written for us by Prof. Jerzy Bralczyk (UW), Prof. Stan-
isław Gajda (the Committee of Linguistics, Polish Academy of Sciences),
and Prof. Ireneusz Bobrowski (IPL PAS). The list of people who helped us
reach authors and publishers is too long to be included here (but see the
WWW pages of the project).

As the leader and principal investigator of the project I would like
to cordially thank all investigators of the project for their hard work and
commitment. Łukasz Dębowski (ICS PAS), apart from being responsible
for the statistical tagger used in the project, also provided help in man-
aging the project. The detailed morphosyntactic tagset developed within
the project is the result of numerous discussions between the author,
Łukasz Dębowski and Marcin Woliński, as well as Elżbieta Hajnicz (ICS
PAS) and Zygmunt Saloni. Marcin Woliński also created a tool for the
effective extension of the empirical scope of the morphological analyser
used in the project. The manual disambiguation of the training corpus
was performed by Monika Czerepowicka (University of Warmia and
Mazury in Olsztyn), Dorota Lewandowska (UW), Hanna Maliszewska
(UW), Marta Nazarczuk-Błońska, Marta Piasecka (UW), Beata Wójtowicz
(UW) and Ewa Wolska; they also provided valuable feedback on the
tagset. The quality of that manual disambiguation was controlled by
Elżbieta Hajnicz.

The most difficult and time-consuming programming task within the
project was the development of Poliqarp, the tool for indexing, searching
and concordancing. The main authors of that tool, whose functionality in
some respects exceeds the state of the art, are Zygmunt Krynicki (Polish-
Japanese Institute of Information Technology) and Daniel Janus (UW).

Another difficult and tedious task was the conversion of texts received
from authors and publishers into a uniform XML format, whose initial
versions were designed by Dr. Piotr Bański (UW). Investigators involved
in the creation of programs supporting the conversion, as well as in the ac-
tual conversion, include: Piotr Bański, Artur Gniadzik (UW), Paweł Savov

1.2. Acknowledgements 9

(UW), Katarzyna Sokołowska (UW), Radosław Moszczyński (UW), Jakub
Sikora (UW) and Jakub Jurkiewicz (UW).

It is my hope that the cause for a large linguistically annotated and
publicly available corpus of Polish will continue to attract the support of
many people and institutions.

Preliminary text processing

2.1. From the original format to XML . 11
2.2. Further XML processing . 13
2.3. From XML to binaries . 16

Texts included in the IPI PAN Corpus undergo a long process of trans-
formation from the form in which they are acquired to the form accessed
via the search and concordance tool described in ch. 4. The present chapter
briefly discusses the stages of this conversion process.

2.1. From the original format to XML

All texts acquired within the project are converted from their original
format, e.g., HTML, Word, RTF, PDF, WordPerfect, LATEX, etc., into a uni-
form open textual format. For the purposes of the current project, that
common format is the slightly modified XML Corpus Encoding Standard
(XCES; Ide et al. 2000). XCES itself is an XML version of an earlier SGML
standard, the Corpus Encoding Standard (CES; Ide et al. 1996), based on the
Text Encoding Initiative (TEI) recommendations. Also character encoding is
converted to the common universal character set, i.e., to UTF-8.

Each text included in the IPI PAN Corpus is converted to three XML
files, located in a separate directory (folder):1

• header.xml: contains the metadata, i.e., data concerning people or
institutions responsible for the creation of the text, normally its au-
thor(s), the title, the publisher, dates of creation and publication, as

1 The initial stages of the adaptation of the XCES standard to the needs of the current
project are presented in Bański 2001, 2003.

12 Chapter 2. Preliminary text processing

well as information about the process of converting the texts into XML
and about further modifications in the results of this conversion;

• text.xml: contains information about structural divisions within the
text (into chapters, paragraphs, etc.), as well as some typesetting in-
formation (especially, about italics, bold font, etc.);

• morph.xml: contains morphosyntactically annotated text, divided into
sentences, paragraphs and some larger chunks of text.

Among the tools created within the project are tools supporting the
process of conversion of Word, HTML and PDF documents into prelim-
inary versions of header.xml and text.xml — texts in other formats
are initially converted to one of these three formats with the aid of pub-
licly available tools, or they are processed individually. Obviously, fully
automatic extraction of correct information about the origin of texts and
about their logical structure is impossible in case of documents containing
only or mostly typesetting information, such as Word documents or PDF
files, so post-conversion manual verification of these files is necessary. Such
verification includes the deletion of foreign passages and other fragments
of the original which do not represent continuous Polish texts, e.g., math-
ematical and chemical formulae. Apart from such deletions, texts are not
normalised: numbers written in digits, including dates, are not translated
into word forms, abbreviations are not expanded, errors are not corrected.

Because of the large amount of texts in the corpus, there were
more than five people involved in the conversion process, with differ-
ing levels of computer and XML expertise. For this reason, despite the
guidelines (Przepiórkowski, 2004) describing the mark-up in header.xml

i text.xml, with special emphasis on the differences between the stand-
ard XCES and the modified version of XCES assumed in the project,
certain cross-convertor differences were inevitable.

This first stage of text processing is the most time-consuming and
labour-intensive stage in the conversion process. The results of this
stage are the final version of header.xml and a preliminary version
of text.xml. These files are valid XML files, validated with the version
of XCES (xcesDoc.dtd and xheader.elt) assumed in this project.

2.2. Further XML processing 13

2.2. Further XML processing

Further stages of text processing do not normally require human in-
tervention. The preliminary version of text.xml created in the previ-
ous stage is converted into morph.xml, which does not contain detailed
structural information, but contains the text divided into sentences and
morphosyntactically annotated (cf. ch. 3).

Splitting the text into sentences is performed according to a simple
algorithm which, for each potential sentence-final punctuation mark, in-
vestigates the context of that mark, in particular, whether that punctuation
mark is a part of an abbreviation, and if it is, whether that abbreviation
is a potentially sentence-final abbreviation, whether the next non-space
character is a small letter or a capital letter, etc. Obviously, it is not always
possible to decide whether a given potential sentence-final punctuation
mark is an actual sign of the end of a sentence. The following Polish
sentences illustrate that point.

(2.1) Kiedy
when

to
this

się
Refl

działo?
happened

W
in

latach
years

40.
40

Stany
States

Zjednoczone
United

włączyły
entered

się
Refl

do
to

wojny.
war

When was that happening? In the forties, the United States entered
the war.

When was that happening? In the forties. The United States entered
the war (then).

(2.2) Skorzystać
use

z
from

Yahoo!
Yahoo!

Marek
Marek

i
and

jego
his

koledzy
colleagues

nie
not

chcieli.
wanted

As for using Yahoo!, Marek and his colleagues didn’t want to do
that.

To use Yahoo! (But) Marek and his colleagues didn’t want to do
that.

The text in morph.xml is not only divided into sentences, but also,
further, into smaller segments (approximately, words) which are the units
of morphosyntactic annotation, i.e., which are assigned to grammatical
classes (so-called parts of speech) and which are assigned the values of
appropriate grammatical categories such as case or person.

14 Chapter 2. Preliminary text processing

Morphosyntactic annotation is itself performed in two steps. First of
all, the morphological analyser splits the text into tokens, or segments,
and assigns to each segment (roughly, to each word, but see ch. 3 on why
segments are not always words) all possible morphosyntactic interpreta-
tions, without any attempt at determining which of these interpretations
are correct in the given context. The morphological analyser used in the
current project is Morfeusz, developed by Marcin Woliński on the basis
of linguistic data provided by Zygmunt Saloni, especially his database of
Polish verbs (Saloni, 2001) and the stemming rules published as Tokarski
1993. The analyser is still under development, and many of the annota-
tion errors in the current version of the IPI PAN Corpus stem from the
inadequacies of the current version of the analyser.

The second step in the morphosyntactic annotation is the disambigu-
ation of morphosyntactic interpretations provided by the morphological
analyser, i.e., the selection of those interpretations which are appropriate
in a given context. This disambiguation of morphosyntactic interpreta-
tions is performed by a program developed by Łukasz Dębowski, based
on statistical disambiguation methods (cf. Dębowski 2001, 2003, 2004). The
example below presents a small fragment of morph.xml, corresponding
to the sequence of forms Porządek dzienny, ‘daily order’, lit. ‘order daily’.2

<tok>

<orth>Porządek</orth>

<lex><base>porządek</base><ctag>subst:sg:acc:m3</ctag></lex>

<lex disamb="1">

<base>porządek</base><ctag>subst:sg:nom:m3</ctag>

</lex>

</tok>

<tok>

<orth>dzienny</orth>

<lex><base>dzienny</base><ctag>adj:sg:acc:m3:pos</ctag></lex>

<lex><base>dzienny</base><ctag>adj:sg:nom:m1:pos</ctag></lex>

<lex><base>dzienny</base><ctag>adj:sg:nom:m2:pos</ctag></lex>

<lex disamb="1">

<base>dzienny</base><ctag>adj:sg:nom:m3:pos</ctag>

</lex>

</tok>

2 The meaning of tags such as subst:sg:acc:m3 is explained in detail in ch. 3.

2.2. Further XML processing 15

As this example shows, morph.xml contains not only the interpreta-
tions selected by the disambiguator (cf. ‘disamb="1"’ above), but also all
other interpretations originally assigned by the morphological analyser.

Interpretations of both forms occurring in the example above, i.e.,
Porządek and dzienny, are fully disambiguated (to singular, nominative,
masculine inanimate). However, there are situations where the full disam-
biguation, to just one interpretation, would have to be utterly arbitrary, as
in (2.3), involving a syncretic accusative / genitive pronoun and a verb
taking an accusative or a genitive complement, where it is not possible to
determine whether the form go ‘him’ occurs in the accusative (as in (2.4a)),
or in the genitive (cf. (2.4b)).

(2.3) Pożądała
desired.

go.
him./

‘She desired him.’

(2.4) a. Pożądał
desired.

ją.
her.

‘He desired her.’

b. Pożądał
desired.

jej.
her.

Another example illustrating the same point is (2.5), where the form pijaną
‘drunk’ may be interpreted as accusative (as in (2.6a)) or as instrumental
(cf. (2.6b)).

(2.5) Pamiętam
remember.1

ją
her.

pijaną.
drunk./

‘I remember her drunk.’

(2.6) a. Pamiętam
remember.1

go
him.

pijanego.
drunk.

‘I remember him drunk.’

b. Pamiętam
remember.1

go
him.

pijanym.
drunk.

In such cases, both interpretations (<lex> elements) should be marked as
‘disambiguated’ (disamb="1").

16 Chapter 2. Preliminary text processing

The result of this stage of processing is the creation of the final ver-
sion of text.xml, containing identifiers of all XML elements, as well
as the final version of morph.xml, containing the morphosyntactic an-
notation and aligned with text.xml via references to those identifiers.
Both files are valid XML files satisfying the slightly modified version of
the XCES standard used in the project (xheader.elt and, respectively,
xcesDoc.dtd and xcesAna.dtd).

2.3. From XML to binaries

Given the size of the corpus, searching directly in the XML files cre-
ated within the previous stages of text processing would be extremely
inefficient. For this reason, all header.xml and morph.xml files which
constitute the corpus are compiled to a binary form, consisting of various
indices which allow Poliqarp, the program described in ch. 4, to access any
part of the corpus in an efficient way. During this compilation process,
some of the information contained in headers (i.e., in the header.xml

files) is ignored, but the most important information about the author,
the title and the publication date, as well as complete morphosyntactic
information, is retained and can be accessed via Poliqarp.

Only this binary representation of the corpus is available on the CD-
ROM enclosed with this publication.

Tagset

3.1. Text segmentation . 18
3.2. The structure of morphosyntactic tags 22
3.3. Grammatical categories . 22
3.4. Grammatical classes . 26

3.4.1. Flexemes . 26
3.4.2. Flexemic classes . 30
3.4.3. Lemmata . 35

3.5. Idiosyncratic segments of written Polish 37
3.5.1. Haplology of the full stop . 37
3.5.2. Abbreviations . 41
3.5.3. Numbers . 41
3.5.4. Names and initials . 42
3.5.5. Special symbols: %, $, €, ¥, etc. 42

The IPI PAN Corpus is annotated with morphosyntactic information.
What that means is that sequences of characters (roughly, words) are as-
signed so-called morphosyntactic tags which interpret those sequences as
certain word forms. We will call such interpretable sequences of characters
segments. Segmentation rules applied in this corpus are described in §3.1.

One (or more, in some cases) of the interpretations assigned to a given
segment is selected by the automatic disambiguator or by a human annot-
ator as correct in the given context. For example, in case of the segment
nie, the morphological analyser will assign to this segment, regardless of
the context in which it occurs, one tag interpreting this segment as the
negative particle , and a series of tags corresponding to various pro-
nominal interpretations of this segment. In case of nie occurring in the
sequence Janek nie przyszedł ‘John didn’t come’, lit. ‘John not came’, the
first tag, corresponding to the interpretation of nie as the negative particle,

18 Chapter 3. Tagset

will be selected as correct in this context. On the other hand, in case of the
sequence Twoje koleżanki przyjdą, poczekaj na nie ‘Your friends will come,
just wait for them’, lit. ‘Your friends. come., wait for them’, the ac-
cusative feminine plural post-prepositional pronominal interpretation will
be selected as correct.

The IPI PAN Corpus contains both kinds of interpretations: all possible
interpretations assigned to a given segment by the morphological analyser,
as well as appropriately marked interpretations selected as correct in the
given context. The internal structure of morphosyntactic tags is discussed
in §3.2, while the complete repertoire of grammatical categories and classes
adopted here is presented in §3.3 and §3.4.

The tagset discussed below is based on a rich body of work on Polish
morphosyntax by Zygmunt Saloni and his colleagues (Saloni, 1976, 1977,
1981, 1988; Gruszczyński and Saloni, 1978; Bień and Saloni, 1982; Bień,
1991). The specification of the complete tagset and the segmentation
rules was developed by Marcin Woliński and the author, and has been
greatly influenced by many discussions with Łukasz Dębowski, Elżbi-
eta Hajnicz and — in the final stages of research — Zygmunt Saloni.
Previous versions of the tagset were presented and justified in Woliński
and Przepiórkowski 2001, Przepiórkowski and Woliński 2003a,b, Woliński
2003 and Przepiórkowski 2003b, and in the guidelines for annotators
(Przepiórkowski et al., 2004a).

3.1. Text segmentation

Text segmentation consists in partitioning the text into sequences of
characters which are subject to morphosyntactic interpretation, i.e., into
segments. Segmentation rules are, even if often implicitly, part and parcel
of the design of any tagset. One tagset is needed when forms of inherently
reflexive verbs are split into two segments, e.g., in case bał się ‘feared’,
lit. ‘feared Refl’ is split into bał and się, and another tagset is needed when
such sequences are assigned only a single tag. Similarly, different tagsets
are needed in case the word przyszlibyśmy ‘we would come’ is split into
the segments przyszli ‘come’, by (subjunctive particle) and śmy ‘Aux-1.’,
and in case that word is considered to be a single segment.

3.1. Text segmentation 19

The fundamental segmentation principle adopted in the IPI PAN Cor-
pus is as follows:

• segments are contiguous, i.e., they consist of a continuous sequence of
characters, without gaps or other intervening segments, and

• they are disjoint, i.e., there are no characters which simultaneously
belong to two or more different segments.

This simple and intuitive segmentation principle has some perhaps not
so intuitive consequences. As the example (3.1) below shows, one of these
consequences is that so-called inherently reflexive verbs should be treated as
two separate segments: the verbal form itself and the reflexive marker się.

(3.1) Bo
because

ja
I

się
Refl

naprawdę
really

boję
fear

głośno
loudly

roześmiać.
lough

‘Becuase I’m really afraid to laugh out loudly.’

In the example above, illustrating the so-called haplology of the Polish
reflexive marker (Kupść, 1999), a single się seems to simultaneously be-
long to two reflexive verbs: ́ ̨ ‘to fear’ and ́́ ̨ ‘to laugh
out’. However, the requirement that segments be disjoint precludes the
possibility of (3.1) containing the segments boję się and roześmiać się, so
at least in such cases się should be analysed as a separate segment. Since
się is treated as a separate segment in case of some sentences involving
reflexive verbs, it is natural (and supported by Ockham’s razor) to regard it
as a separate segment also in other instances of reflexive verbs.

On the basis of similar reasoning applied to the examples below, also so
called analytic verbal forms, sequences like po polsku ‘in Polish’, etc., should
be split into smaller segments — otherwise, the sequences będę, niech, po,
etc., would have to belong to two segments at the same time: będę szedł and
będę śpiewał, niech przyjdzie and niech zaśpiewa, po polsku and po angielsku.

(3.2) a. Będę
I will

długo
long

szedł
walk

i
and

śpiewał.
sing

‘I’ll be walking and singing for a long time.’

20 Chapter 3. Tagset

b. Niech
Let

no
Part

tylko
only

przyjdzie
come

i
and

zaśpiewa!
sing

‘Just let him come and sing!’

(3.3) Mówię
I speak

po
in

polsku
Polish

i
and

angielsku.
English

‘I speak Polish and English.’

On the basis of such cases, a more general principle was adopted in
the IPI PAN Corpus, namely, that segments cannot be longer than or-
thographic words, i.e., maximal sequences of characters, excluding word-
delimiter characters such as white characters (spaces, tabulation marks,
etc.) and punctuation marks (except the hyphen, the apostrophe in forms
such Chomsky’ego and (de) l’Hospitala, and the full stop in abbreviations,
initials, etc.). Word-delimiting punctuation marks are regarded to be sep-
arate tokens.

Words understood as maximal sequences of non-word-delimiting char-
acters are usually individual segments, although there are cases where —
again on the basis of the contiguity and disjointness requirements men-
tioned above — such words should be split into smaller segments.

(3.4) a. Dawno
long time ago

nie
not

śpiewałam
sang-I

i
and

nie
not

tańczyłam.
danced-I

‘I haven’t sung and danced for a long time.’

b. Dawnom
long time ago-I

nie
not

śpiewała
sang

i
and

nie
not

tańczyła.
danced

(3.5) a. Kiedyś
once

zatańczyłbym
dance-would-I

i
and

zaśpiewałbym
sing-would-I

tam.
there

‘Once I would dance and sing there.’

b. Kiedyś
once

bym
would-I

tam
there

zaśpiewał
sing

i
and

zatańczył.
dance

Example (3.4) shows that the so-called agglutinative forms of the lexeme
́ ‘to be’, i.e., so-called mobile inflections -(e)m, -(e)ś, -(e)śmy and -(e)ście,
should be treated as separate segments. Similarly, example (3.5) justifies
the decision to treat the subjunctive particle by as a separate segment. All
exceptions from the rule that words, in the sense given above, are single
segments are given below.

3.1. Text segmentation 21

• Agglutinative forms of the lexeme ́ ‘to be’ are separate segments,
so the following words consist of two segments each: łgał eś ‘lied-you’,
długo śmy ‘long time-we’, tak em ‘so-I’.

• Also particles by (subjunctive particle), -ż(e) (emphatic particle) and
-li (question particle) are considered to be separate segments, so
the following words consist of a number of segments: przyszedł by

‘come-would’, napisała by m ‘write-would-I’, chodź że ‘come-Emph’,
potrzebował że by ś ‘need-Emph-would-you’, znasz li ‘know-Q’.

• The post-prepositional weak pronominal form -ń, as in do ń ‘to-him’
or ze ń ‘with-him’, is also a separate segment.

• Some words containing the hyphen are also split into segments,
namely:

— words such as polsko - niemiecki ‘Polish-German’,

— double names, e.g., Kowalska - Nowakowska .

On the other hand, inflected acronyms such as PRL-u are not split into
smaller segments.

• Sentence-final words containing word-final full stop, e.g., abbreviations
such as itp. ‘etc.’, ordinal numbers written in digits, and initials, are also
split into smaller segments, e.g.: itp . , George W . , etc. The reason for
that comes from the double role of the full stop in such cases: it is a
part of the word and at the same time it plays the role of a sentence-
final punctuation mark (cf. §3.5.1). When such words do not occur in
sentence-final positions, they are considered to be single segments.

The segmentation principles given above lead to the segmentation
of (3.6) (translated into English in (3.7)) that is presented in (3.8).

(3.6) Pojechalibyśmy z Janem M. Rokitą i Janem Nowakiem-Jeziorańskim
na sesję polsko-amerykańską, gdyby nas zaprosił George W. Byłaby
to nasza już 2. doń podróż od czasów PRL-u, a może i 3., czy
nawet 4.

(3.7) ‘We would go with Jan M. Rokita and Jan Nowak-Jeziorański to
the Polish-American session, if we were invited by George W. That
would already be our 2nd trip to him since the times of PRL, and
perhaps 3rd, or even 4th.’

22 Chapter 3. Tagset

(3.8) Pojechali by śmy z Janem M. Rokitą i Janem Nowakiem - Jeziorańskim

na sesję polsko - amerykańską , gdyby nas zaprosił George W . Była by

to nasza już 2. do ń podróż od czasów PRL-u , a może i 3. , czy

nawet 4 .

3.2. The structure of morphosyntactic tags

For a given segment, a tag assigned to this segment represents its base
form, so-called lemma, as well as a morphosyntactic interpretation of that
segment; we will sometimes use the term tag in this narrower meaning
of morphosyntactic interpretation, which excludes the lemma. In case of
punctuation segments, the base form of such a segment is that segment
itself, while the tag assigned to such a segment is interp. In what follows
we concentrate on the tagset for less trivial (non-punctuation) segments.

Each morphosyntactic tag is a sequence of colon-separated values, e.g.:
subst:sg:nom:m1 for the segment chłopiec ‘boy’. The first value, e.g., subst,
determines the grammatical class (cf. §3.4), while the values that follow
it, e.g., sg, nom and m1, are the values of grammatical categories (cf. §3.3)
appropriate for that grammatical class. That means that the tagset adopted
in the current project is a positional tagset, just like the tagset of the Czech
National Corpus or the family of tagsets developed within the Multext-
East project (Erjavec, 2001).

3.3. Grammatical categories

The following table presents the repertoire of grammatical categories
used in the IPI PAN Corpus.

Number: (2 values)

singular sg oko
plural pl oczy

Case: (7 values)

nominative nom woda

3.3. Grammatical categories 23

genitive gen wody
dative dat wodzie
accusative acc wodę
instrumental inst wodą
locative loc wodzie
vocative voc wodo

Gender: (5 values)

human masculine (virile) m1 papież, kto, wujostwo
animate masculine m2 baranek, walc, babsztyl
inanimate masculine m3 stół
feminine f stuła
neuter n dziecko, okno, co, skrzypce, spodnie

Person: (3 values)

first pri bredzę, my
second sec bredzisz, wy
third ter bredzi, oni

Degree: (3 values)

positive pos cudny
comparative comp cudniejszy
superlative sup najcudniejszy

Aspect: (2 values)

imperfective imperf iść
perfective perf zajść

Negation: (2 values)

affirmative aff pisanie, czytanego
negative neg niepisanie, nieczytanego

Accentability: (2 values)

accented (strong) akc jego, niego, tobie
non-accented (weak) nakc go, -ń, ci

24 Chapter 3. Tagset

Post-prepositionality: (2 values)

post-prepositional praep niego, -ń
non-post-prepositional npraep jego, go

Accommodability: (2 values)

agreeing congr dwaj, pięcioma
governing rec dwóch, dwu, pięciorgiem

Agglutination: (2 values)

non-agglutinative nagl niósł
agglutinative agl niosł-

Vocalicity: (2 values)

vocalic wok -em
non-vocalic nwok -m

The categories of number, case, person and degree are understood
here in the traditional way and do not require any explanation.

The grammatical category of gender is understood as in Mańczak 1956,
i.e., unlike in the ‘preliminary school grammar’, the gender of a noun does
not depend on that noun’s number. The following contexts might be used
to determine the gender of those nouns which have singular forms:1

1 The previous versions of the IPI PAN tagset assumed the repertoire of nine genders
proposed in Saloni 1976. Due to some limitations of the current version of the morpholo-
gical analyser used in the project, as well as because of some doubts (cf. Przepiórkowski
et al. 2002 and Woliński 2001) about the set of plurale tantum genders proposed in Saloni
1976, the current version of the tagset assumes the more conservative repertoire of five
genders. Such plurale tantum nouns as wujostwo ‘uncle and aunt’, are marked here as m1,
while plurale tantum forms such as skrzypce ‘violin’, sanie ‘sleigh’, spodnie ‘trousers’ are
assumed, partially on the basis of the reasoning presented in Przepiórkowski 2003a, to
be neuter forms, marked as n. The following contexts may help determine the gender of
plurale tantum nouns:

(i) byli ważni. m1

(ii) były ważne. n

3.3. Grammatical categories 25

(3.9) Widzę jednego z tych, których lubię. m1

(3.10) Widzę jednego z tych, które lubię. m2

(3.11) Widzę jeden . m3

(3.12) Widzę jedno . n

(3.13) Widzę jedną . f

The category of aspect is a lexical category: forms do not inflect for
aspect, but rather have the value of aspect, constant for all forms of a
given verb, determined lexically.

The category of negation is appropriate for those verbal forms for
which the negative prefix nie- is orthographically joined to the verbal form,
i.e., this category is useful for distinguishing forms such as pisanie ‘writing’
and niepisanie ‘non-writing’, napisany ‘written’ and nienapisany ‘unwritten’,
but not for distinguishing pisać ‘to write’ and nie pisać ‘not to write’.

The categories of accentability and post-prepositionality are relevant
only for some forms of personal pronouns (in case of post-propositionality
— only some forms of 3rd person pronouns).

The category of accommodability is appropriate to all numeral forms.
The value of this category for a given numeral form is ‘agreeing’ if and
only if that numeral form agrees in case with the accompanying noun. A
more detailed discussion of this category can be found in Przepiórkowski
2003b and Woliński 2003.

The two final grammatical categories assumed in the current tagset,
agglutination and vocalicity, are necessary because past forms such as
niosłem ‘carried-I.’ and niosłam ‘carried-I.’ are split into segments,
as in niosł em , niosła m . Although in the vast majority of cases the first seg-
ment in such forms looks just like the corresponding 3rd person past form,
e.g., ja szedł em ‘I walked-I’ and on szedł ‘he walked’, sometimes these two
forms differ, as in ja niosł em ‘I carried-I’ and on niósł ‘he carried’. In case
of such differences, the form which combines with the agglutinate (e.g.,
with -em), for example the form niosł-, will be marked as agglutinative,
while the form occurring on its own, e.g., the form niósł, will be marked
as non-agglutinative. Moreover, the category of vocalicity distinguishes
those agglutinates (e.g., -em) which attach to forms ending in a consonant,
from those (e.g., -m) which attach to forms ending in a vowel.

26 Chapter 3. Tagset

Traditional grammatical categories which are missing in the IPI PAN
tagset include tense, mood and voice: such categories are appropriate to
units larger than segments.

3.4. Grammatical classes

The basic notion of the present tagset which corresponds to the tra-
ditional notion of part of speech is grammatical class. We will use this term
interchangeably with the term flexemic class.

The scope of traditional parts of speech such as verb, noun, numeral
or pronoun is fuzzy and, hence, controversial. For example, are gerundial
forms such as picie ‘drinking’ and palenie ‘smoking’ verbs (they have the
category of aspect and they are productively related to verbal forms such
as pić ‘to drink’ and palić ‘to smoke’), or are they nouns (they decline for
case, and they have the lexical category of gender)? Are ordinal numerals
such as piąty ‘fifth’ numerals (semantically, they are numerals), or are they
adjectives (they have adjectival inflection)? Are adjectival pronouns such
as taki ‘such’ pronouns (semantics) or adjectives (inflection)?

Grammatical classes used in the IPI PAN Corpus are more precisely
delimited and, overall, finer-grained than traditional parts of speech. The
classes assumed here are based on the notion of flexeme, introduced in
Bień 1991, 2004, narrower than the notion of lexeme.

3.4.1. Flexemes

Informally speaking, two forms belong to the same lexeme if and only
if they mean the same thing (modulo productive differences in meaning
resulting from different values of grammatical categories such as num-
ber and person), and if they have a similar morphological form,2 so, for
example, the forms pięć ‘five.’, pięcioma ‘five.’ and pięciokrotny ‘five-
fold’ could be considered to be forms of the same lexeme, just as the forms
wypije ‘(s)he will drink up’, wypić ‘to drink up’ and wypito ‘was drunk up’
are forms of the same lexeme.

2 Well-known Polish exceptions to the last requirement include the lexeme  ‘year’,
which contains singular forms such as rokiem and plural forms such as latami, and the
lexeme  ‘man’, which contains singular forms such as człowiekiem and plural forms
such as ludźmi.

3.4. Grammatical classes 27

On the other hand, in case of flexemes, two forms belong to the same
flexeme when the requirements above are satisfied, i.e., when they mean
the same thing and have similar forms, and — additionally — when they
have the same grammatical categories. So, for example, the personal verbal
forms wypije ‘will drink up’, wypijecie ‘you will drink up’, wypijemy ‘we will
drink up’ all belong to the same flexeme, characterised by the categories
of number, gender and aspect, but forms such as wypić ‘to drink up’ or
wypito ‘was drunk up’, which do not have the categories of number and
gender, will be excluded from that flexeme.

On the basis of the above first approximation of the notion of flexeme,
the forms such as wypić ‘to drink up’ and wypito ‘was drunk up’ should
be classified as belonging to the same flexeme: they have the same gram-
matical categories, namely, no inflectional (morphological) categories and
the sole lexical category of aspect. However, both forms have the same
value of that single category (imperfective), so grammatical categories do
not distinguish those forms. Such a situation may occur in case of free
variants, e.g., funkcji and funkcyj ‘functions..’, or HIT-u and HIT-a
‘HIT..’, whose syntactic distribution is the same. However, in case of
wypić and wypito, grammatical categories of these forms are the same, but
their distribution clearly differs. We will require that forms with identical
values of grammatical categories and different syntactic distribution be-
long to different flexemes, so — in this particular case — we will posit
two non-inflecting verbal flexemes, each containing just one form, wypić
and wypito, respectively.

Continuing this line of reasoning, forms of perfective verbs such as
́ ‘to drink up’ can be partitioned into the following flexemes:

• so-called l-participle, containing forms which inflect for number and
gender, but not for person, e.g., wypił, wypili, wypiły,

• a flexeme containing future forms, inflecting for number and person,
but not for gender, e.g., wypiję, wypijemy, wypiją,

• the imperative flexeme, containing forms which also inflect for number
and person, but in a defective manner: wypijmy, wypij, wypijcie,

• three non-inflecting flexemes, each containing a single form: infinit-
ive (wypić), impersonal form (wypito), and anterior adverbial participle
(wypiwszy),

28 Chapter 3. Tagset

• gerund, containing forms which inflect for case, negation, and — po-
tentially — for number, and which have lexical gender (always neuter),
e.g., wypicie, wypiciem, niewypiciu,

• passive adjectival participle, containing forms which inflect for number,
case and gender, e.g., wypity, wypite, wypitymi.

Similarly, the forms of imperfective verbs such as ́ ‘to drink’ could
be split into the following flexemes:

• l-participle,

• a flexeme containing present tense forms, e.g.: piję, pijemy, pijecie,

• the imperative flexeme,

• three non-inflecting flexemes: infinitive, impersonal form, and the con-
temporary adverbial participle (pijąc),

• gerund,

• passive adjectival participle,

• active adjectival participle, which also contains forms inflecting for
number, case and gender, e.g.: pijący, pijące, pijącymi.

A different set of flexemes should be proposed for the verb ́ ‘to
be’: apart from the l-participle (był, byli, etc.), the present tense flexeme
(jestem, jesteśmy, jesteście, etc.), imperative (bądźmy, bądź, bądźcie), infinitive
(być), contemporary adverbial participle (będąc), gerund (bycie, etc.), and
the active adjectival participle (będący, etc.), also:

• a flexeme containing future tense forms, inflecting for number and
person, e.g., będę, będziecie, and

• the agglutinate, i.e., a flexeme containing the forms -em, -śmy, etc.

Also different forms of adjectives can be partitioned into a small
number of flexemes. Most adjectival forms inflect for number, case and
gender, and sometimes also for degree. For example, the forms polski,
polskiej, polskimi, etc., ‘Polish’, all belong to the same adjective flexeme. On
the other hand, there are two adjectival forms which do not have any of
these, or any other, grammatical categories: polsko, as in polsko-niemiecki
‘Polish-German’, and polsku, as in po polsku, lit. ‘in Polish’. Since these two
non-inflecting forms have different distribution, they will be split into two

3.4. Grammatical classes 29

different flexemes: ad-adjectival adjective (polsko) and post-prepositional
adjective (polsku).

When delimiting nominal flexemes, we assume that various forms of
the same nominal flexeme have the same grammatical gender, so, for ex-
ample, fryzjer ‘hairdresser.’ and fryzjerka ‘hairdresser.’ are forms of
two different flexemes. That means that a typical nominal flexeme, inflect-
ing for case and number, contains 14 forms (for two values of grammatical
number and seven values of grammatical case), but there are also plurale
tantum flexemes, which do not have singular forms, e.g., the flexemes -
 ‘uncle and aunt’,  ‘birthday’, and  ‘trousers’, as well
as singulare tantum nouns, which do not have plural forms, e.g., the flex-
emes  ‘who’ and  ‘what’.

In case of human masculine nouns, it is not clear how to treat the
so-called depreciative forms, e.g., profesory as in Przyszły głupie profesory i
naniosły błota ‘Stupid professors came and brought in some mud’, lit. ‘Came
stupid professors and brought in mud’, as opposed to the ordinary non-
depreciative form profesorowie, as in Przyszli głupi profesorowie i nanieśli błota.
How should non-depreciative forms such as profesorowie be distinguished
from depreciative forms such as profesory? One possibility is to introduce
a new grammatical category, let us call it depreciation, which would differ-
entiate between depreciative and non-depreciative forms. However, this
solution would lead to complications at the syntactic level, or more pre-
cisely, at the level at which agreement between such hypothetical human
masculine depreciative forms (profesory) and the non-human masculine
adjectival (głupie) and verbal (przyszły, naniosły) forms with which they
co-occur is described. For that reason, a different solution was adopted in
the current tagset, namely, a solution which consists in analysing such de-
preciative forms as belonging to a separate class of depreciative flexemes.
Such depreciative flexemes contain only two forms, both of the masculine
animate gender, in this case: profesory, which differ only in the value of
case, i.e., which are in the nominative or in the vocative case.

According to our understanding of flexemes, also numeral forms
should be partitioned into a number of flexemes:
• main numeral contains forms such pięć ‘five./’, pięciu ‘five./

//’ and pięcioma ‘five.’; such forms inflect for case, gender
and — in a defective manner — for accommodability, but they have
lexically determined number (usually plural),

30 Chapter 3. Tagset

• collective numeral contains forms such as pięcioro ‘five./’ and
pięciorgiem ‘five.’; they have lexically determined plural number and
neuter gender, and they inflect for case and accommodability (in a
defective manner),

• forms such as piąty ‘fifth...’, piąta ‘fifth...’, piątymi
‘fifth..’, etc., constitute an adjectival flexeme;

• also forms such as pięciokrotny ‘fivefold...’, pięciokrotnemu
‘fivefold...’, etc., constitute a separate adjectival flexeme.

Most of the traditional pronominal forms belong to adjectival flexemes
(e.g., taki ‘such’, jakiś ‘some’, który ‘which’, etc.), nominal flexemes (e.g.,
kto ‘who’, coś ‘something’), etc. However, because of its idiosyncratic in-
flection, it is convenient to distinguish a separate flexeme for the reflexive
pronoun , whose forms seem to inflect only for case, as well as sep-
arate flexemes for personal pronouns, which have a rather complex and
idiosyncratic paradigm.

Other inflecting flexemes include gradable adverbs, as well as flexemes
containing forms such as winien ‘ought...3’, winna ‘ought..
.3’, winniśmy ‘ought..1’, etc. Other flexemes are non-inflecting flex-
emes, i.e., they contain single forms, e.g., the flexeme , containing the
conjunction oraz, or the flexeme , containing the preposition na.

3.4.2. Flexemic classes

Just as flexemes are non-empty and disjoint sets of those word forms
which have uniform semantic, morphological, morphosyntactic, and — to
a certain extent — distributional properties, flexemic classes are non-empty,
disjoint, morphosyntactically and — to a certain extent — distributionally
uniform sets of flexemes.

The following table contains the rough morphosyntactic characteristics
of all flexemic classes assumed in the present tagset. The symbol ⊕ in the
table means that, for a given flexemic class, a given grammatical category
is a morphological category (flexemes belonging to this class normally
inflect for that category), while the symbol � means that the category is a
lexical category (for each flexeme belonging to this class, all forms of that
flexeme have the same value of that category, although that value may
differ between flexemes, as in the case of the gender of nouns).

3.4. Grammatical classes 31

n
u

m
be

r

ca
se

ge
n

d
er

p
er

so
n

d
eg

re
e

as
p

ec
t

n
eg

at
io

n

ac
ce

n
ta

bi
li

ty

p
os

t-
p

re
p

os
it

io
n

al
it

y

ac
co

m
m

od
ab

il
it

y

ag
gl

u
ti

n
at

io
n

vo
ca

li
ci

ty

noun ⊕ ⊕ �

depreciative form � ⊕ �

main numeral � ⊕ ⊕ ⊕

collective numeral � ⊕ � ⊕

adjective ⊕ ⊕ ⊕ ⊕

ad-adj. adjective
post-prep. adjective
adverb ⊕

pronoun (non-3rd person) � ⊕ ⊕ � ⊕

pronoun (3rd person) ⊕ ⊕ ⊕ � ⊕ ⊕

pronoun  ⊕

non-past form ⊕ ⊕ �

future ́ ⊕ ⊕ �

agglut. ́ ⊕ ⊕ � ⊕

l-participle ⊕ ⊕ � ⊕

imperative form ⊕ ⊕ �

impersonal form �

infinitive �

adv. contemp. prtcp. �

adv. anter. prtcp. �

gerund ⊕ ⊕ � � ⊕

adj. act. prtcp. ⊕ ⊕ ⊕ � ⊕

adj. pass. prtcp. ⊕ ⊕ ⊕ � ⊕

winien-like verb ⊕ ⊕ �

predicative
preposition �

conjunction
particle-adverb
alien (nominal) ⊕ ⊕ �

alien (other)
unknown form
punctuation

32 Chapter 3. Tagset

A more detailed characterisation of the morphosyntactic and, in some
cases, distributional features of particular flexemic classes is given below.

noun contains flexemes inflecting for number and case, with a lexically
determined grammatical gender, which do not have the category of
person, e.g.,  ‘water’,  ‘professor’, ̨́́ ‘five-
foldness’; this class also contains defective plurale tantum and singulare
tantum flexemes, but not depreciative flexemes,

depreciative form contains depreciative flexemes, i.e., flexemes with fixed
number (plural) and gender (animate masculine), defectively inflecting
for case (only nominative and vocative), e.g.,  ‘professors’,
 ‘students’,

main numeral contains flexemes inflecting for case, gender and — defect-
ively — for accommodability, with lexically determined number (nor-
mally plural), i.e., flexemes such as ̨́ ‘five’ and  ‘many’, also
including defective numeral flexemes such as ̨ ‘some’ and ̇
‘much, many’, whose case values are limited to nominative, accusative
and genitive,

collective numeral contains flexemes which inflect for case and — defect-
ively — for accommodability, with lexically determined number (al-
ways plural) and gender (always neuter), i.e., flexemes such as ̨
‘five’,

adjective contains flexemes inflecting for number, case and gender, as well
as — in some cases — for degree, e.g., ‘nice’,  ‘technical’,
 ‘such’, ́ ‘which’, ̨ ‘fifth’,  ‘manifold’ and 
‘one’,

ad-adjectival adjective contains non-inflecting de-adjectival flexemes such
as  ‘Polish’ and  ‘German’,

post-prepositional adjective contains non-inflecting de-adjectival flex-
emes such as  ‘Polish’ and  ‘German’,

adverb contains those flexemes which only inflect for degree (gradable
adverbs, e.g.,  ‘very’,  ‘nicely’), as well as non-inflecting de-
adjectival flexemes which do not belong to the two previous classes
(non-gradable de-adjectival adverbs, e.g., ),

3.4. Grammatical classes 33

non-3rd person pronoun contains exactly four flexemes, which inflect for
case and gender, but have lexically determined number and person: 
‘I’,  ‘we’,  ‘you.’,  ‘you.’; some forms of the flexemes  and
 additionally inflect for accentability (e.g., ci vs. tobie, ‘you..’),

3rd person pronoun contains exactly one flexeme,  ‘he’, with lexically
determined person (3rd), inflecting for number, case and gender; some
forms additionally inflect for accentability and post-prepositionality
(e.g., niego vs. go, ‘him.’),

siebie also contains exactly one flexeme, , apparently the only Polish
flexeme which inflects only for case (defectively, without nominative
and vocative forms),

non-past form contains flexemes which inflect for number and person,
and have the lexical category of aspect: future forms (with perfective
aspect), e.g., wypiję ‘I will drink up’, and present forms (with imper-
fective aspect), e.g., piję ‘I am drinking’,

future form of BYĆ contains just one flexeme, consisting of the future
forms of the imperfective verb ́ ‘to be’: będę, będziesz, etc.

agglutinate BYĆ contains one flexeme, consisting of the agglutinative
forms of ́: -m, -em, -śmy, etc.,

l-participle contains flexemes inflecting for number and gender, with a
lexically determined value of aspect, e.g., the flexeme containing the
forms niósł, niosł-, niosła, nieśli, niosły ‘carry’,

imperative also contains flexemes with a lexically determined value of
aspect, inflecting for number and gender, but only defectively so (only
the 1., 2. and 2. forms), e.g., the flexeme containing the forms pij
‘you. drink!’, pijcie ‘you. drink’, pijmy ‘let us drink!’,

impersonal consists of single-element flexemes containing non-inflecting
aspectual forms ending in -no or -to, e.g.,  ‘was drunk’,

infinitive consists of single-element flexemes which contain infinitive
forms, e.g., ́ ‘to drink’,

contemporary adverbial participle consists of single-element flexemes
containing imperfective adverbial participles, e.g., ̨ ‘drinking’,

anterior adverbial participle consists of single-element flexemes contain-
ing perfective adverbial participles, e.g.,  ‘having drunk up’,

34 Chapter 3. Tagset

gerund contains flexemes which inflect for number, case and negation,
and have the lexical categories of gender (always neuter) and aspect,
e.g.,  ‘drinking’ and  ‘drinking up’,

active adjectival participle contains active adjectival participles, inflect-
ing for number, case, gender and negation, with lexical aspect (always
imperfective), e.g., ̨ ‘drinking’,

passive adjectival participle contains passive adjectival participles, in-
flecting for number, case, gender and negation, with lexical aspect,
e.g.,  ‘drunk’,  ‘drunk up’,

winien contains the flexemes  ‘should’,  ‘should’ and 
‘eager, pleased’, inflecting for number and gender, with only analytical
past tense and conditional forms,

predicative contains non-inflecting flexemes such as  ‘to lack, to miss’,
 (deontic modality),  ‘to be worth it’, etc., which analytic-
ally inflect for tense and mood (e.g., było warto, warto, warto by, będzie
warto),

preposition contains non-inflecting prepositional flexemes, which have
the lexical category of case, indicating the subcategorisation prop-
erties of the preposition,3 and which do not occur with non-post-
prepositional forms of pronouns: , , , , , ,,
̨, , , , ̨, , , , , , -
, , , , , , ́, ́, , , , ,
, , , ̨, , , ̇, ,
́, ́́, ̇, , ́, , , ,
, , , , , , ̨, ́́, ,
, ́́, , , , , , , ̨, ,
, ́, , ́́, ̇, , , , , ̨,
, , ,

conjunction contains non-inflecting coordinating flexemes: , , -
, , , , ̇, , ̇, ̇, ̇, ̨́, , ,
, , ̇, ̇, ́, ́, , , ́, ́,
, , ̇, , , ̇, ̇, , , , , , ,
̇, ́, ́, ̇, , , , , , , ̇,

3 It should be noted that the meaning of the category of case for prepositions differs
substantially from the meaning of the same category for other grammatical classes.

3.4. Grammatical classes 35

, ̇, ́, ́, , , , , , ̇, ,
, ̨, , , ́, ́, , ̇, ̇,

particle-adverb contains non-inflecting flexemes which do not fit any of
the previous classes, e.g., ̇ ‘already’,  ‘too’, ̨ (reflexive marker),
 (negation marker),  (subjunctive particle), - (question particle),
 (interjection),  (interjection), etc.

Apart from the classes listed above, the present tagset introduces ad-
ditional four classes:
nominal alien contains foreign expressions, mathematical and chemical

formulae, etc., which occupy a nominal position in the sentence and,
hence, may be assigned the values of number, case and gender,

other alien foreign expressions, mathematical and chemical formulae,
etc., which do not occupy a nominal position and, hence, are treated
here as non-inflecting,

unknown form contains forms which have not been recognised in the
process of morphological analysis,

punctuation contains non-inflecting punctuation ‘flexemes’, e.g., :, ., !, etc.

3.4.3. Lemmata

As mentioned above, complete morphosyntactic tags assigned to a par-
ticular segment contain not only the interpretation of this segment in terms
of grammatical classes and categories, but also the base form of that seg-
ment in those interpretations, or its lemma. But what should the base form
of, e.g., the segment idziemy ‘walk.1, go.1’ be? Should it be one of the
forms belonging to the same flexeme as idziemy, e.g., idę ‘walk.1, go.1’,
or should it be the traditional base form, i.e., the infinitive form iść, even
though it belongs to a different flexeme?

The stance adopted in the IPI PAN Corpus follows tradition: segments
are assigned traditional base forms such as infinitive or single masculine
nominative forms, even if such a base form does not belong to the same
flexeme as the segment itself.

The following table provides the information about base forms for all
grammatical classes, as well as the abbreviations of these classes as used
in the IPI PAN Corpus.

36 Chapter 3. Tagset

flexeme abbreviation base form example

noun subst singular nominative profesor

depreciative
form

depr singular nominative form
of the corresponding noun

profesor

main numeral num inanimate masculine
nominative form

pięć, dwa

collective
numeral

numcol inanimate masculine
nominative form
of the main numeral

pięć, dwa

adjective adj singular nominative
masculine positive form

polski

ad-adjectival
adjective

adja singular nominative
masculine positive form
of the adjective

polski

post-prepositional
adjective

adjp singular nominative
masculine positive form
of the adjective

polski

adverb adv positive form dobrze, bardzo

non-3rd person
pronoun

ppron12 singular nominative ja

3rd-person
pronoun

ppron3 singular nominative on

pronoun  siebie accusative siebie

non-past form fin infinitive czytać

future ́ bedzie infinitive być

agglutinate ́ aglt infinitive być

l-participle praet infinitive czytać

imperative impt infinitive czytać

impersonal imps infinitive czytać

infinitive inf infinitive czytać

contemporary
adv. participle

pcon infinitive czytać

anterior
adv. participle

pant infinitive czytać

gerund ger infinitive czytać

3.5. Idiosyncratic segments of written Polish 37

active
adj. participle

pact infinitive czytać

passive
adj. participle

ppas infinitive czytać

winien winien singular masculine form powinien, rad

predicative pred the only form
of that flexeme

warto

preposition prep the only form
of that flexeme

na, przez, w

conjunction conj the only form
of that flexeme

oraz

particle-adverb qub the only form
of that flexeme

nie, -że, się

nominal alien xxs singular nominative form de, l’Hospital

other alien xxx the only form
of that flexeme

bene

unknown form ign the only form
of that flexeme

punctuation interp the only form
of that flexeme

;, ., (,]

3.5. Idiosyncratic segments of written Polish

The morphosyntactic annotation of written Polish texts requires mak-
ing a number of decisions about the segmentation and tagging of se-
quences of characters which lie at the border of the interest of linguists
and typographers. This section discusses several classes of such sequences
typical for written texts.

3.5.1. Haplology of the full stop

Some natural language forms end in the full stop, e.g.:

• abbreviations like np. ‘e.g.’, itp. ‘etc.’, and, in some case positions, dr.
‘Dr.’, mgr. ‘M.Sc.’, etc.,

• ordinal numbers written in digits,

• initials.

38 Chapter 3. Tagset

It is not a priori clear how the full stop should be treated in such forms,
when they occur in sentence-final positions, i.e., when the full stop also
marks the end of the sentence, e.g.:

(3.14) Działo
happened

się
Refl

to
this

w
in

1945
1945

r.
yr.

‘This was happening in 1945.’

(3.15) Czy
Q

to
this

3.
3rd

pacjent?
patient

Nie,
no

2.
2nd

‘Is this the third patient? No, it’s the second.’

(3.16) Prezydenta
President.

Stanów
States.

Zjednoczonych
United.

zwą
call.3

George
George.

W.
W.

‘The president of the United States is called George W.’

The solution adopted in the IPI PAN tagset is to always treat the full
stop at the end of a sentence as a punctuation mark, even if it is a part
of an abbreviation, an ordinal number or an initial. So, in the examples
above, the full stop is a separate segment: r . , 2 . , W . .

On the other hand, in case the full stop in such forms does not play
a double role of sentence-final punctuation, it is not considered to be a
separate segment. For example, the forms r., 2. and W. are single segments
in sentences below.

(3.17) Działo
happened

się
Refl

to
this

w
in

1945
1945

r.!
yr.

‘This was happening in 1945!’

(3.18) Czy
Q

to
this

3.
3rd

pacjent?
patient

Nie,
no

to
this

2.
2nd

pacjent
patient

‘Is this the third patient? No, it’s the second patient.’

(3.19) Obecny
current.

prezydent
president.

Stanów
States.

Zjednoczonych
United.

nazywa
called.1

się
Refl

George
George

W.
W.

Bush.
Bush

‘The current president of the United States’s name is George W.
Bush.’

3.5. Idiosyncratic segments of written Polish 39

The base forms of abbreviations are also abbreviations, written without
the full stop in case of abbreviations such as wg, dr and mgr, and with
the full stop in case of abbreviations such as hab., itp., or np., following
Polish orthography. In case of ordinal numbers, the base form is the same
number, ending in the full stop (even if it occurred without the full stop in
the text). Moreover, base forms of initials are the same initials, also always
spelled with the full stop, e.g.:

(3.20) Klawiatura,
keyboard

myszka
mouse

itp.
etc.

są
are

wliczone
included

w
in

cenę
price

komputera.
computer

‘Keyboard, mouse, etc., are included in the price of the computer.’

• segment: itp.

• base form: itp.

(3.21) Wliczone
included

w
in

cenę
price

komputera
computer

są
are

klawiatura,
keyboard

myszka
mouse

itp.
etc.

‘Keyboard, mouse, etc., are included in the price of the computer.’

• segment: itp.

• base form: itp.

(3.22) Działo
happened

się
Refl

to
this

w
in

1945
1945

r.!
yr.

‘This was happening in 1945!’

• segments: 1945, r.

• base forms: 1945., r.

(3.23) Działo
happened

się
Refl

to
this

w
in

1945
1945

r.
yr.

‘This was happening in 1945.’

• segments: 1945, r

• base forms: 1945., r.

(3.24) To
this

3.
3rd

pacjent.
patient

‘This is the third patient.’

• segment: 3.

• base form: 3.

40 Chapter 3. Tagset

(3.25) Nie,
no

to
this

już
already

4.
4th

‘No, it’s already the fourth.’

• segment: 4

• base form: 4.

(3.26) To
this

George
George

W.
W.

Bush.
Bush.

‘This is George W. Bush.’

• segment: W.

• base form: W.

(3.27) Ale
but

zwą
call

go
him

George
George

W.
W.

‘But they call him George W.’

• segment: W

• base form: W.

(3.28) Oto
this

mgr
M.Sc.

Kwaśniewski.
Kwaśniewski.

‘This is Kwaśniewski, M.Sc.’

• segment: mgr

• base form: mgr

(3.29) Rozmawiałem
talked

z
with

mgr.
M.Sc.

Kwaśniewskim.
Kwaśniewski.

‘I talked to Kwaśniewski, M.Sc.’

• segment: mgr.

• base form: mgr

3.5. Idiosyncratic segments of written Polish 41

3.5.2. Abbreviations

Segmentation and lemmatisation of abbreviations is discussed in §3.5.1
above. Morphosyntactic interpretations of abbreviations of single seg-
ments should correspond to the interpretations of the full forms of those
segments. For example, the abbreviation mgr. (for magister ‘M.Sc.’) in
Rozmawiałem z mgr. Kwaśniewskim ‘I talked to Kwaśniewski, M.Sc.’ should
be the tag subst:sg:inst:m1, just as it would be for the full form magistrem
in this context.

In case of abbreviations of multi-word expressions, the flexemic class
of such abbreviations is determined on the basis of their inflection and
distribution, e.g.:

• particle-adverbs: itp. ‘etc.’, itd. ‘etc.’, np. ‘e.g.’, etc. ‘etc.’, jw. ‘as above’,

• adjectives: tzw. ‘so-called’, śp. ‘R.I.P.’,4 ww. ‘mentioned above’,

• nouns: br. ‘current year’, cd. ‘contd.’, lit. ‘continuation’,

• prepositions: ds. ‘responsible for’ (prep:gen), pt. ‘under the title of’
(prep:nom),

• verbal non-past forms: cdn. ‘will be continued’.

3.5.3. Numbers

The base form of a number spelled in digits is the same number, with
the full stop in case of ordinal numbers (cf. §3.5.1). In case that number
is interpreted as ordinal, it is tagged as an adjective, just as ordinal nu-
merals are; otherwise it receives the main numeral interpretation, with the
exception of the number 1, which is interpreted as an adjective, just like
the form jednego ‘one’, e.g.: jednego, np.:

(3.30) Dałem
gave

to
this

21.
21st

pacjentowi.
patient

adj:sg:dat:m1:pos

‘I gave this to the 21st patient.’

(3.31) Dałem
gave

to
this

21
21

pacjentom.
patients

num:pl:dat:m1:congr

‘I gave this to 21 patients.’

4 Classified as adjective on the basis of its distribution.

42 Chapter 3. Tagset

(3.32) Dałem
gave

to
this

1.
1st

pacjentowi.
patient

adj:sg:dat:m1:pos

‘I gave this to the 1st patient.’

(3.33) Dałem
gave

to
this

1
1

pacjentowi.
patient

adj:sg:dat:m1:pos

‘I gave this to one patient.’

(3.34) 0
0

komputerów
computers

zostało
got

sprzedanych.
sold

num:pl:nom:m3:rec

‘0 computers were sold.’

Negative integers are interpreted just as positive integers, with the only
exception of -1, interpreted as a numeral, not as an adjective (unless it has
an ordinal interpretation). The initial minus sign is a part of such numeral
segments. Other real numbers are tagged as numerals.

3.5.4. Names and initials

First names, surnames and initials are tagged as nouns, even if they
have apparently adjectival declension. The gender of such nouns depends
on the natural gender of the person bearing the name, i.e., it is either m1

or f. The segmentation and lemmatisation of initials is discussed in §3.5.1.

3.5.5. Special symbols: %, $, €, ¥, etc.

Base forms of symbols such as %, $, € and ¥ are the same symbols,
while their tags are the same as the tags of the corresponding full forms:

(3.35) Kosztowało
cost

to
this

5$.
5$

‘This cost 5$.’

• base form: $

• tag: subst:pl:gen:m3

(3.36) Już
already

tylko
only

5%
5%

wyborców
voters

nie
not

popiera
supports

Leppera.
Lepper

‘Only 5% voters do not support Lepper now.’

• base form: %

• tag: subst:sg:nom:m3

Corpus search

4.1. Query syntax . 44
4.1.1. Searching for orthographic forms 44
4.1.2. Searching for base forms . 48
4.1.3. Higher order queries . 49
4.1.4. Searching for tags . 51
4.1.5. Ambiguities . 54
4.1.6. Constraining matches to sentences or paragraphs 57
4.1.7. Constraining matches with metadata 57
4.1.8. Aligning matches . 60

4.2. Poliqarp . 60
4.2.1. The WWW version . 60
4.2.2. The GUI version . 65
4.2.3. The text version . 71

The binary version of the IPI PAN Corpus enclosed on the CD-ROM
should be accessed via Poliqarp,1 a search and concordance engine created
within the present project by Zygmunt Krynicki and Daniel Janus, under
the supervision of the author.2 Poliqarp has the ambition to be a univer-
sal search engine and concordancer: it reads the external specification of
the tagset and it uses the universal character encoding scheme, UTF-8.
This means that it should be possible to use Poliqarp also with corpora
other than the IPI PAN Corpus, including corpora of languages other than
Polish.

1 POLyinterpretation Indexing Query and Retrieval Processor.
2 Mateusz Przepiórkowski took part in the initial design and development phase.

44 Chapter 4. Corpus search

There are three versions of Poliqarp:

• the graphical version, described in §4.2.2, for the following operat-
ing systems: Windows2000, Windows XP (and possibly other Windows
systems, but the program was not tested for those) and GNU/Linux;

• text version, described in §4.2.3, for GNU/Linux;

• WWW version, described in §4.2.1, accessible with any Internet browser
such as Mozilla, Internet Explorer, Opera or Links.

What is common for these three versions is the rich query syntax,
described in §4.1.

4.1. Query syntax

Poliqarp’s query syntax is based on that of Corpus Query Processor
(CQP), perhaps the most popular program of this kind, created at the
University of Stuttgart (Christ, 1994), but it contains a number of additional
features and improvements.3 The present section describes the syntax of
Poliqarp queries and illustrates it with numerous examples.

4.1.1. Searching for orthographic forms

In the simplest case, a query is just a sequence of segments, e.g.:

(4.1) przyszedł czas

(4.2) przyszedł em rano

There are three segments in query (4.2) above, corresponding to two
words (cf. §3.1): przyszedłem and rano. In the case of simple queries like
the two queries above, Poliqarp attempts to identify those words which
might consist of smaller segments and to handle them properly, so also
the following queries will give the expected results:

(4.3) przyszedłem rano

(4.4) długom szedł

3 Although the query syntax of Poliqarp is based on that of CQP, Poliqarp was im-
plemented from scratch within the current project and it does not contain any CQP code.

4.1. Query syntax 45

In case of the latter query, Poliqarp will find all occurrences of the three-
segment sequence długo m szedł , interpretable as an adverb (długo ‘long’),
an agglutinate (-m ‘be’), and an l-participle (szedł ‘walk, go’), as well as
all occurrences of the two-segment sequence długom szedł , where the first
segment is interpreted as a dative nominal form (długom ‘debts’), and the
second — again, as an l-participle.

By default, queries are interpreted in a case-sensitive manner, so the
following queries will produce different results:

(4.5) przyszedł

(4.6) Przyszedł

In order to find all occurrences of the form przyszedł, regardless of case,
the flag /i should be used. Thus, the two queries below will produce the
same results, which will in particular contain all results of both queries
above.

(4.7) przyszedł/i

(4.8) Przyszedł/i

Both in the graphical version and in the text version of Poliqarp, case
sensitivity can be set globally, for a whole query or a series of queries,
cf. §§4.2.2 and 4.2.3.

Queries may contain standard regular expressions over characters, spe-
cified with the help of the following special characters: ?, *, +, ., ,, |,
{, }, [,], (,), as well as natural numbers; segment specifications con-
taining regular expressions must be enclosed in quotes ". Since the formal
introduction of regular expressions lies far outside the scope of the cur-
rent publication, we will be content with discussing just a few examples,
which, nevertheless, should allow the user to understand the syntax and
semantics of such regular expressions.

(4.9) "Ala|Ela"

the character | introduces the alternative of two expressions, so the
query above can be used to find all occurrences of segments of the
form Ala or Ela,

(4.10) "[AE]la

square brackets denote the alternative of characters within them,

46 Chapter 4. Corpus search

so the query above can be used to find those segments whose first
character is A or E, and the following two characters are la, i.e., this
query is equivalent to the previous query,

(4.11) "beza?"

the question mark signals the optionality of the character or the
expression in parentheses which immediately precedes it, so the
question above will be used find all occurrences of the segments bez
and beza,

(4.12) "bez."

the period denotes any character, so the results of this query will
include beza, bezy, bezą, etc., but not bez or bezami,

(4.13) "bez.?"

bez, beza, bezy, bezą, etc., but not bezami,

(4.14) ".z.z."

5-character segments, where 2nd and 4th characters are z (e.g., czczą
and rzezi),

(4.15) ".z.z..?"

segments of length 5 or 6, where 2nd and 4th characters are z (e.g.,
czczą, rzezi and szczyt),

(4.16) "a*by"

the asterisk denotes any number of occurrences of the character or
the expression in parentheses which immediately precedes it, so this
query can be used to find segments beginning with any number of
as, followed by by, e.g., by (zero occurrences of a), aby, aaaaby, etc.,

(4.17) "Ala.*"

segments beginning with Ala, e.g., Ala and Alabama,

(4.18) "ala.*"/i

segments beginning with ala, Ala, aLa, ALA, etc., e.g., Ala, alabaster
and ALABAMA,

(4.19) ".*al+"

the plus has a similar interpretation as the asterisk: it denotes any
number greater than zero of occurrences of the character or the
expression in parentheses which immediately precedes it, so this
query can be used to find segments ending in al, all, alll etc., but
not in a, e.g., dal, robal and Gall,

4.1. Query syntax 47

(4.20) "a{1,3}b.*"/i

the expression of the form {n,m} denotes from n to m occurrences
of the character or the expression in parentheses which immedi-
ately precedes it; in this case, the query above can be used to find
segments beginning with 1 to 3 occurrences of a or A, followed by
b or B, and then followed by any sequence of characters, e.g., Aby,
aaaby, absolutnie, ABBA,

(4.21) ".*(la){3,}.*"

{n,} means at least n occurrences, so this query will help to find
segments which contain at least three occurrences of the sequence
la in a row, e.g., tralalala, sialalala,

(4.22) "[bcćdfghjklłmnńprsśtwzźż]{4,}[aąeęioóuy]"/i

segments consisting of at least 4 consonants and exactly 1 vowel,
e.g., źdźbła i Chrzczę,

(4.23) "([bcćdfghjklłmnńprsśtwzźż]{3}[aąeęioóuy]){2,}"/i

segments consisting of at least two sequences of the type CCCV,
where C is a consonant, and V is a vowel, e.g., wszystko, Zdmuch-
nąwszy i Szmajdziński; {n} means exactly n occurrences,

(4.24) "(pod|na|za)jecha.*"

segments beginning with podjecha, najecha or zajecha, e.g., podjechał,
zajechawszy.

The specifications of segments given above must match complete seg-
ments, rather than only their parts, hence the necessity of flanking the
sequence (la){3,} in query (4.21) above with the regular expression .*,
matching any sequence of characters (also the empty sequence). The same
effect can be achieved with the help of the flag /x, which means that the
given specification must be matched by a subsequence of the segment, not
necessarily by the complete segment:

(4.25) "(la){3,}"/x

segments which contain at least three occurrences of the sequence
la in a row, e.g., tralalala, sialalala,

(4.26) "(la){3,}"/ix

segments which contain a sequence like lalala, LaLAla, etc., e.g.,
tralalala, SiaLaLALA.

48 Chapter 4. Corpus search

4.1.2. Searching for base forms

The following query may be used in order to find all forms of the
lexeme :

(4.27) [base=korpus]

The base attribute is one of many attributes that may be used in a
query. The value of this attribute should specify the base form (the lemma)
in the sense of §3.4.3, so a query like [base=pisać] can be used to
find forms such as pisać ‘write’ (infinitive), piszę (non-past form), pisała (l-
participle), piszcie (imperative), pisanie (gerund), pisano (impersonal), pisane
(adjectival participle), etc.

Another attribute that may be used in queries is orth. The values of
this attribute specify segments, so each of the following pairs contains
queries which are equivalent.

(4.28) a. przyszedł

b. [orth=przyszedł]

(4.29) a. Przyszedł/i

b. [orth=Przyszedł/i]

(4.30) a. przyszedł czas

b. [orth=przyszedł][orth=czas]

On the other hand, the two queries below are not equivalent:

(4.31) a. przyszedłem rano

b. [orth=przyszedłem][orth=rano]

In the first case, Poliqarp will guess that the word przyszedłem may consist
of two segments, przyszedł and em, and will expand the query accordingly,
as described in §4.1.1. In contrast, the value of orth is always interpreted
as the specification of a single segment.

The values of base and orth may contain regular expressions of the
kind described in §4.1.1 above, e.g.:

(4.32) [orth="bez.?"/i]

find segments bez, Beza, bezy, etc., but not bzem or bezami,

4.1. Query syntax 49

(4.33) [base="bez.?"/i]

find all segments whose base form has 3 or 4 characters and starts
with bez (understood in a case-insensitive manner), e.g., the seg-
ments bzem, bez, bezami, etc.

4.1.3. Higher order queries

Queries about segments and about base forms may be combined. For
example, the following query may be used to find all occurrences of the
segment minę understood as a form of the lexeme  ‘mine, face’ (and
not, say, as a form of the lexeme ́, ‘to pass’):

(4.34) [orth=minę & base=mina]

A similar effect can be achieved with the help of the following query,
about those occurrences of the segment minę which are not interpreted as
forms of ́.

(4.35) [orth=minę & base!=mijać]

The condition that the base form be different from mijać may also be
specified by putting the negation (the exclamation mark) before the name
of the attribute, so the query below is equivalent to the query above.

(4.36) [orth=minę & !base=mijać]

Just as in the propositional calculus, double negation is equivalent to
no negation, so the following queries about the segment nie understood
as a form of the pronoun  are fully equivalent:

(4.37) [orth=nie & base=on]

(4.38) [orth=nie & !base!=on]

(4.39) [orth=nie & !!!base!=on]

(4.40) [orth=nie & !!base=on]

In Poliqarp queries, the operator & plays the role of logical conjunction.
The operator dual to & is |, which plays the role of logical disjunction,
e.g.:

(4.41) [base=on | base=ja]

find all forms of lexemes  and , equivalent to [base="on|ja"],

50 Chapter 4. Corpus search

(4.42) [base=on | orth=mnie | orth=ciebie]

find all forms of the lexeme , as well as the segments mnie and
ciebie,

(4.43) [orth=pora & !(base=por | base=pora)]

find those occurrences of the segment pora which are not interpreted
as forms of the lexemes  or .

In order to better understand the difference between the operators &

and |, let us compare the effect of the following two queries:

(4.34) [orth=minę & base=mina]

(4.44) [orth=minę | base=mina]

The result of the former query will consist of those segments which sim-
ultaneously (conjunction) have the orthographic form minę and are inter-
preted as a form of the lexeme . On the other hand, the result of the
latter query will consists of segments which either (disjunction) have the
orthographic form minę, regardless of the interpretation of this segment,
or are a form of the lexeme  (e.g., mina, miny, minami). Hence, the
latter query should return many more results than the former query.

As the examples above show, specifications of corpus positions, en-
closed in square brackets, may contain any number of conditions of the
type attribute=value, combined with the operators !, & and |. It is
also possible to completely omit any conditions — the query below could
be used to find all segments in the corpus.4

(4.45) []

This trivial specification of corpus positions, matching any segment,
may be useful for finding two forms in a certain distance from each other,
e.g., two segments separated by two other segments, as in the following
query:

(4.46) [orth=się][][][base=bać]

The result of this query will include sequences such się nikogo nie bać, się
Boga nie boicie, etc.

4 Could be, if not for the fact that Poliqarp contains various internal constraints on
the number of results of a query.

4.1. Query syntax 51

It would perhaps be more interesting to specify the upper limit on the
number of segments which may intervene between two forms, not just the
exact number of such intervening positions. Poliqarp makes it possible
to pose such queries, as it allows to posit regular expressions also over
corpus positions. For example, the following query may be used to find
a form of the lexeme ́ occurring two, three or four positions after the
segment się:

(4.47) [orth=się][]{2,4}[base=bać]

The result of this query will contain all the sequences found by the pre-
vious query, as well as sequences such as się każdy następny Rywin będzie
bał.

A more accurate query concerning various occurrences of the inher-
ently reflexive verb ́ ̨ should find się within a certain window before
a form of the lexeme ́, but without any intervening punctuation (inter-
vening punctuation will often indicate clause boundary), or immediately
after a form of bać, separated from that form by at most a single personal
pronoun:5

(4.48) [orth=się][orth!="[.!?,:]"]{,5}[base=bać]

|[base=bać][base="on|ja|ty|my|wy"]?[orth=się]

4.1.4. Searching for tags

The rather baroque query (4.48) can be simplified by replacing the
condition orth!="[.!?,:]" with a direct reference to the ‘grammatical
class’ interp (cf. ch. 3):

(4.48′) [orth=się][pos!=interp]{,5}[base=bać]

|[base=bać][base="on|ja|ty|my|wy"]?[orth=się]

In general, the values of the pos attribute are the abbreviations of
names of grammatical classes discussed in §3.4 (cf. the table on p. 36). For
example, a query about a sequence of two nominal forms beginning with
an a may be formulated as follows:

(4.49) [pos=subst & orth="a.*"]{2}

5 This query is broken into two lines for typographic reasons.

52 Chapter 4. Corpus search

The specifications of the values of pos may, just as in case of orth and
base, contain regular expressions. For example, taking into account the
fact that personal pronouns are split between the class of 3rd person pro-
nouns ppron3 and non-3rd person pronouns ppron12, the following queries
may be used to find any form of any personal pronoun:

(4.50) [pos=ppron12 | pos=ppron3]

(4.51) [pos="ppron12|ppron3"]

(4.52) [pos="ppron(12|3)"]

(4.53) [pos="ppron[123]+"]

(4.54) [pos="ppron.+"]

(4.55) [pos=ppron/x]

That means that the query (4.48) may be further simplified:

(4.48′′) [orth=się][pos!=interp]{,5}[base=bać]

|[base=bać][pos=ppron/x]?[orth=się]

Apart from the specifications of segments (with the help of orth),
base forms (base) and grammatical classes (pos), queries may contain
specifications of particular grammatical categories, such as case or gender.
The following attributes may be used to this end (cf. §3.3):

attribute possible values

number sg pl

case nom gen dat acc

inst loc voc

gender m1 m2 m3 f n

person pri sec ter

degree pos comp sup

aspect imperf perf

negation aff neg

accentability akc nakc

post-prepositionality npraep praep

accommodability congr rec

agglutination agl nagl

vocalicity nwok wok

4.1. Query syntax 53

Hence, it is possible to pose the following queries:

(4.56) [number=sg]

find singular forms

(4.57) [pos=subst & number=sg]

find singular nominal forms

(4.58) [pos=subst & gender!=f]

find masculine and neuter nominal forms

(4.59) [number=sg & case="nom|acc" & gender="m[123]"]

find singular masculine forms in the nominative or in the accusative
case

The following three-letter abbreviations may be used instead of the full
names of the attributes:

attribute abbreviation

number nmb

case cas

gender gnd

person per

degree deg

aspect asp

negation neg

accommodability acm

accentability acn

post-prepositionality ppr

agglutination agg

vocalicity vcl

For example, the query below is equivalent to (4.59):

(4.59′) [nmb=sg & cas="nom|acc" & gnd="m[123]"]

In the graphical and text versions of Poliqarp, it is possible to define so-
called aliases, i.e., abbreviations for alternative values of a given attribute,
which may themselves be used as if they were possible values of attributes.
The current version of the IPI PAN Corpus has four such aliases already
pre-defined:

54 Chapter 4. Corpus search

alias definition

masc m1 m2 m3

noun subst depr ger xxs ppron12 ppron3

pron ppron12 ppron3 siebie

verb fin praet aglt bedzie inf imps impt

pact ppas pcon pant ger winien

With the definitions of the aliases noun and masc given above, the fol-
lowing two queries are equivalent:

(4.60) [pos=noun & gender=masc]

(4.61) [pos="subst|depr|ger|xxs|ppron12|ppron3"

& gender="m1|m2|m3"]

The values of grammatical classes and categories may be specified
jointly, with the use of the tag attribute. For example, the following query
may be used to find singular nominative neuter nouns:

(4.62) [tag=subst:sg:nom:n]

The values of the tag attribute have the form kl:kat1:kat2:...:katn,
where kl is the name of a grammatical class, while each of kati is the
value of a grammatical category appropriate for that class, in the order
specified in the table on p. 31 (§3.4.2).

Just as in case of other attributes, also the specification of the value of
tag may contain regular expressions, e.g.:

(4.59′′) [tag=".*:sg:(nom|acc):m[123].*"]

(4.59′′′) [tag="sg:(nom|acc):m[123]"/x]

4.1.5. Ambiguities

One of the features that distinguish the IPI PAN Corpus and Poliqarp
from other corpora and search tools is the representation and processing
of ambiguities. As discussed, e.g., in Oliva 2001, and as already mentioned
in §2.2, there are cases where it is impossible to tell which of a number of
interpretations is the right one, as in (2.5) in §2.2, repeated below.

(2.5) Pamiętam
remember.1

ją
her.

pijaną.
drunk./

‘I remember her drunk.’

4.1. Query syntax 55

(2.6) a. Pamiętam
remember.1

go
him.

pijanego.
drunk.

‘I remember him drunk.’

b. Pamiętam
remember.1

go
him.

pijanym.
drunk.

Since it is impossible to resolve the grammatical case of pijaną in (2.5),
both interpretations, accusative and instrumental, should be marked in
the corpus as correct in this context.

However, given that after disambiguation a single segment may contain
more than one interpretation, the question arises whether such ambiguous
segments, e.g., pijaną in (2.5), should be included in the result of a query
which matches only some of these interpretations, e.g., in the result of
the query [case=acc]. On the one hand, the segment pijaną should be
included in the result of [case=acc], as accusative is one of the correct
interpretations of this segment in this context, but on the other hand, this
segment should not be included, as it is not absolutely certain that this is
an accusative form.

Instead of choosing between these interpretations of a query like
[case=acc], Poliqarp allows the user to pose both kinds of queries.
When a single equality sign is used, as in [case=acc], all segments
whose at least one interpretation matches the given condition will be
returned, so both pijaną and ją in (2.5) will be included in the result
of this query. On the other hand, when two equality signs are used,
as in [case==acc], only those segments will be returned whose all
interpretations satisfy the condition expressed with ==, i.e., in (2.5), only
the form ją will match the query.

With this distinction in hand, it is possible to search for forms which,
e.g., may in a given context be interpreted as either accusative or genitive
(cf. (2.3) on p. 15), so — given a properly tagged corpus — the following
query should give non-empty results.

(4.63) [case=acc & case=gen]

Conversely, the query below matches those segments whose all interpret-
ations in the given context are at the same time accusative and genitive,
so it will necessarily produce empty results.

(4.64) [case==acc & case==gen]

56 Chapter 4. Corpus search

The queries above pertain to interpretations which are the result of
morphosyntactic disambiguation. As mentioned in §2.2 above, the IPI PAN
Corpus contains also all other interpretations assigned to a given segment
by the morphological analyser.

In some situations it is useful to have access to such interpretations
rejected by the disambiguator, e.g., for the task of finding all syncretic
forms of a certain kind in the corpus, or when investigating disambigu-
ation errors. For example, in order to find all syncretic accusative/genitive
forms in the corpus, regardless of their interpretation in contexts in which
they occur, the following query may be posed:

(4.65) [case~acc & case~gen]

The final equality operator available in Poliqarp queries is ~~. The
following query may be used for finding those forms which are unam-
biguously accusative, again, regardless of the context in which they occur.

(4.66) [case~~acc]

The table below summarises the four equality operators put at the
user’s disposal in Poliqarp.

in the results of in the results of

morphological analysis disambiguation

at least one interpretation ~ =

each interpretation ~~ ==

It should be clear that the following implications hold:

• [attribute~~value] → [attribute==value]

i.e., each match of the query [attribute~~value] also matches the
query [attribute==value]

• [attribute==value] → [attribute=value]

i.e., each match of the query [attribute==value] also matches the
query [attribute=value]

• [attribute=value] → [attribute~value]

i.e., each match of the query [attribute=value] also matches the
query [attribute~value]

4.1. Query syntax 57

4.1.6. Constraining matches to sentences or paragraphs

Texts contained in the IPI PAN Corpus are divided into sentences and
paragraphs. This information may be taken into account in queries, in
order to constrain a query to a sentence or a paragraph, as in the query
below, which may be used to find the form się separated from a form of
the verb ́ by any positive number of (non-się) segments, but within a
sentence.

(4.67) [base=bać][orth!=się]+[orth=się] within s

Similarly, the qualifier ‘within p’ constrains the scope of a query to a
paragraph.

4.1.7. Constraining matches with metadata

Each text in the IPI PAN Corpus comes with a set of data about that
text, such as its title and author, publisher, date of publication, etc. Some
of such metadata are accessible through Poliqarp and may be used to
constrain the scope of a query, e.g., to texts by a given author or published
between certain dates.

There are three types of metadata available in the current version of
the IPI PAN Corpus, and there are five meta-attributes which correspond
to those three types:

• the name of the author or authors: the attribute author,

• the title: the attribute title,

• date of creation or publication: three attributes:

— created — when the text was created,

— first_published — when it was first published,

— published — when the version in the corpus was published.

Usually only some of these attributes will have a value defined, e.g., when
only the date of the publication is known, not the date of the first pub-
lication or the date of origin, or in case of short newspaper notes, which
might lack information about the author or even the title.

In order to constrain the scope of a query with metadata, the keyword
meta should be placed at the end of the query and it should be followed by

58 Chapter 4. Corpus search

specifications of values of meta-attributes. In case the scope of the query
is also constrained to a sentence or to a paragraph, the specification of
metadata should follow the structural constraint, e.g.:

(4.68) [pos=subst]{6,} within s meta author=Kowalski

Just as in case of ordinary attributes such as orth or pos, also the specific-
ations of values of the meta-attributes author and title may contain
regular expressions. For example, the query below may be used to find
forms of the lexeme  in those texts whose title contains one of the
sequences: windows or microsoft.

(4.69) [base=wirus] meta title="windows|microsoft"

By default, the specifications of values of author and title are taken
to be case-insensitive and they are interpreted as matching (at least) parts
of values of appropriate meta-attributes, so the following query will find
sequences of nominal forms in works by, inter alia, Pol, Polkowski and
Rampolski:

(4.70) [pos=subst]{5} meta author=Pol

To change that default behaviour, the flags /X and /I may be used. The
effect of these flags is dual to the effect of the flags /x and /i described
above: the effect of /X is that a given specification of the value of an
attribute is understood as matching the complete value of that attribute,
while the flag /I enforces the case-sensitive interpretation, as in examples
below:

(4.71) [pos=subst]{5} meta author=Pol/I

the scope of the query is limited to texts by Pol, Polkowski, etc., but
not by Rampolski,

(4.72) [pos=subst]{5} meta author="Marek Pol"/X

query limited to texts by Marek Pol,

(4.73) [pos=subst]{5} meta author=Pol/X

query limited to texts by those authors whose complete name is
either Pol, or POL, or pol, etc.

(4.74) [pos=subst]{5} meta author=".* Pol"/I

query limited to texts by an author whose surname is Pol.

4.1. Query syntax 59

Regular expressions are not allowed in case of the date-valued attrib-
utes created, first_published and published. On the other hand,
it is possible to use the lesser/greater signs < and >, e.g.:

(4.75) [pos=subst]{5} meta created>1950

query limited to texts created after year 1950

Constraints on meta-attributes may be combined with the operators &,
| and !, e.g:

(4.76) [pos=subst]{5} meta created>=1951 & created<=1960

query limited to texts created in years 1951–1960

(4.77) [pos=subst]{5} meta published>1900 &

author!=Sienkiewicz

query limited to texts published after 1900, by authors other than
Sienkiewicz

(4.78) [pos=subst]{5} meta (author=sienkiewicz &

title=potop) | (author=żeromski & title=przedwiośnie)

query limited to Potop by Sienkiewicz and Przedwiośnie by Żeromski

In the current preliminary version of the IPI PAN Corpus, many texts
do not have complete metadata associated with them. The results of
the queries involving metadata specifications above will only come from
those texts which have values of the relevant meta-attributes defined. That
means that, perhaps contrary to expectations, the result of the first of the
two queries below will be a small subset of the result of the second query.

(4.79) [pos=subst] meta created>1900 | created<=1900

(4.80) [pos=subst]

In case a given meta-attribute does not have a value defined, it is as-
sumed that its value is the empty string, i.e., "", so the query below is
equivalent to query (4.80).

(4.81) [pos=subst] meta published>1900 | published<=1900 |

published=""

60 Chapter 4. Corpus search

4.1.8. Aligning matches

In order to make the results of a query more readable, it is possible
to place within the query proper, i.e., before the qualifiers within and
meta, a special alignment marker, ^, as in:

(4.82) [pos=adj & case=nom]+^[pos=subst & case=nom]+

Instead of the usual three columns containing the left context of the match,
the match itself, and the right context, the results of this query will be split
into four columns, containing, respectively, the left context, the left match,
i.e., the sequence of segments matching the part of the query before the
alignment marker ^ (here, a non-empty sequence of nominative adjectives),
the right match (here, a non-empty sequence of nominative nouns), and
the right match, as in Fig. 4.1.

4.2. Poliqarp

The aim of this section is to present three Poliqarp interfaces: from the
WWW version (§4.2.1), with the most limited functionality, through the
graphical version (§4.2.2), appropriate for most users, to the GNU/Linux
text version (§4.2.3), quicker and more powerful than the previous two
versions, but with the visually least attractive user interface.

4.2.1. The WWW version

The Internet version of the IPI PAN Corpus is available at korpus.pl.
There are currently no restrictions on the access to the corpus, but such
restrictions might be introduced in case the popularity of that service
exceeds the capacity of the WWW server on which the corpus resides.

Although the functionality of the current WWW version is substantially
limited in comparison with the other two interfaces, the full query syntax,
as described in §4.1, is accepted by that version. After pointing the browser
at korpus.pl and selecting the corpus, the user is presented with a query
box, as in Fig. 4.2.

After entering the query and pressing Enter (or clicking on Execute), the
results will be displayed in three or four columns, depending on whether
the query contained the alignment marker, cf. Fig. 4.3. A larger context of

4.2. Poliqarp 61

Figure 4.1. Match alignment in the graphical version

any given result may be displayed by clicking on the result, or — more
precisely — on the central part of the result which shows the match,
cf. Fig. 4.4. The results of a query are shown in batches containing 25
results each. In order to view the next 25 results, the user should click on
the button Next 25, while in order to go back to the previous 25 results,
the user should click on Previous 25.

The only additional functionality present in the current WWW version
is the option to sort the results according to the elements of any of the three
or four columns, alphabetically a fronte (from the beginning of strings) or
a tergo (from the end of strings), in the ascending or in the descending
order.

62 Chapter 4. Corpus search

Figure 4.2. WWW version after selecting the corpus

The WWW version of Poliqarp is the version which currently under-
goes most dynamic changes, so the version available at the time this pub-
lication sees the light of day may substantially differ from the version
described here.

4.2. Poliqarp 63

Figure 4.3. WWW version: results of a query

64 Chapter 4. Corpus search

Figure 4.4. WWW version: larger context

4.2. Poliqarp 65

4.2.2. The GUI version

The advertised version of the search engine and concordancer Poliqarp
is the graphical version. Apart from the menu at the top of the window,
the main window of the graphical version consists of the query box, the
upper window for displaying the results of a query, and the lower window
for displaying the larger context, as in Fig. 4.1 on p. 61, and for presenting
the metadata.

Figure 4.5. Graphical version immediately after start up

Immediately after starting Poliqarp, the query box and both window
parts are empty, as shown in Fig 4.5. Before searching a corpus, it is neces-
sary to load the corpus — this can be done by choosing File in the menu,
then selecting Open corpus..., and then identifying the directory contain-
ing the IPI PAN Corpus on the CD-ROM or the hard disk, depending on
where the corpus is installed (cf. appendix A). The same sequence of steps
can be used to change the current corpus, without leaving the program.

66 Chapter 4. Corpus search

Once Poliqarp loads the corpus, it stores its localisation, and the next time
Poliqarp is started this localisation is available from the menu File, and
then Most recently used. It is also possible to load the first of the corpora
whose localisations have been stored by pressing Ctrl-Alt-1, the second —
by pressing Ctrl-Alt-2, etc.

Figure 4.6. Query results without alignment

After loading the corpus, the user may enter the query in the query
box, and then press Enter or click on Execute to actually start the search.
If the query did not contain the alignment marker, three columns will be
shown in the upper window, containing, for each query result, the left
context, the match and the right context, as shown in Fig. 4.6. Otherwise,
four columns will be displayed, as explained in §4.1.8. The width of the
columns may be changed by dragging the borders between the headers of
the columns with the mouse.

4.2. Poliqarp 67

Poliqarp stores the history of queries posed in the current session, as
well as in the previous sessions. The history is accessible, e.g., by clicking
on the little button placed between the query box and the Execute button.

After executing a query, the first fifty results will be shown in the
upper window. In order to view subsequent results, the down arrow in
the bottom right corner of the Poliqarp window should be clicked on.
Clicking on the up arrow placed to the left from the down arrow will
re-display previous results.

Figure 4.7. Larger context in the graphical version

After clicking on any of the results in the upper window, a larger
context of that result will be displayed in the lower window. The lower
window is also used to present metadata — in order to switch between
the context mode and the metadata mode of the lower window, the button
marked as Metadata (in the larger context mode) or Context (in the metadata
mode) should be pressed.

68 Chapter 4. Corpus search

Query results can be sorted by any of the columns. In the simplest case,
in order to sort the results alphabetically a fronte in the ascending order,
it is sufficient to click with the left mouse button on the header of the
column, e.g., on the header Match (in case the query did not contain the
alignment marker). Clicking on that header again will have the effect of
re-sorting the results in the descending order. Clicking again will restore
the ascending order, etc.

It is also possible to sort columns a tergo, i.e., from the end, both in
the ascending and in the descending order. This functionality is available
from a menu which is invoked by clicking on the appropriate header with
the right hand button of the mouse, as shown in Fig. 4.8, which illustrates
the a tergo ascending sorting of the left match column.

Figure 4.8. Sorting a tergo in the ascending order

The way results should be sorted can also be set globally, from the
menu Settings, by selecting the submenu Options... and then the Sorting

4.2. Poliqarp 69

tab. Settings of the sorting options changed this way are binding for the
following queries and they are stored for future sessions.

One of the customisation options available from Settings → Options... is
Context, which allows the user to specify the size (in segments) of the left
context column, the right context column, and the larger context presented
in the lower window.

An important feature of Poliqarp and other similar search and concord-
ance engines is the possibility to view not just the orthographic forms (the
segments), but also their base forms and morphosyntactic disambiguated
tags. The current graphical version of Poliqarp allows the user to determ-
ine, separately for the context columns and for the match column(s), which
of these three kinds of information (segments, base forms, tags) should be
displayed. For example, the settings shown in Fig. 4.9 correspond to the
formatting of results illustrated in Fig. 4.10.

Figure 4.9. Customising the display options

As mentioned above (p. 53), the graphical version of Poliqarp lets the
user define aliases, i.e., abbreviations of alternative values of a given at-
tribute. Aliases can be added, edited and removed via the Aliases tab in
Settings → Options... In the current version of the program, aliases defined
this way are not persistent, i.e., they are not stored for future sessions.

Another tab, Flags, allows the user to determine, separately for the
query proper and for the meta part of the query, whether specifications of
attribute values should be understood as pertaining to the complete value,
or to its part, and whether they should be understood in the case-sensitive
manner.

By default, a query like [pos=ppro] will match those segments whose
grammatical class is exactly ppro, i.e., it will return the empty result. In

70 Chapter 4. Corpus search

Figure 4.10. Query results displayed according to the options in Fig. 4.9

order to find forms of personal pronouns, whose actual grammatical class
is either ppron12 or ppron3, that query should also include the flag /x, as
discussed above (p. 47). In order to make Poliqarp interpret all conditions
as if they contained the flag /x, the option Whole words only in the Query

column of the Flags tab should be checked.
Similarly, it is possible to change the complete match vs. partial match

interpretation of query conditions on metadata, and the case sensitivity
of attribute value specifications in the query proper, and in the conditions
on metadata.

Another tab in the Settings → Options... menu is the Metadata tab. It
allows to the user to constrain the scope of a series of queries to texts
with certain values of meta-attributes, e.g., to texts by a given author or
published within a given period. Finally, the Look and feel tabs lets the user
select the size of the font.

4.2. Poliqarp 71

In the main Poliqarp menu, apart from the submenus File and Set-

tings, there is also another submenu, Statistics. In the current version of
Poliqarp, this submenu contains only the most rudimentary quantitative
information about the corpus. For example, the information displayed
in Fig. 4.11, concerning a subcorpus of the IPI PAN Corpus, says that
there are over 56 million positions (tokens) in that subcorpus, occupied
by over 729 thousand different segments (types) with over 355 thousand
different lemmata. The number of different tags (sequences of the form
kl:kat1:kat2:...:katn, cf. p. 54) in this corpus is 1150.

Figure 4.11. Quantitative information about a corpus

Finally, Save results... in the File menu saves the results of the last query,
while Exit starts the process of erasing the contents of the hard disk.6

4.2.3. The text version

The text version of Poliqarp is designed for PC computers running the
GNU/Linux operating system.

The program can be started with the command poliqarp corpus,
where corpus is the name of the corpus (the first segment in the names of
files such as wstepny.cfg and wstepny.poliqarp.corpus.image),
including the path to that corpus. For example, assuming the corpus
is located in the ./corpus/ directory and consists of files such as
wstepny.cfg, wstepny.poliqarp.chunk.image, etc., the program
can be invoked in the following way:

6 Just kidding.

72
C

h
apter

4
.

C
orp

u
s

search

Figure 4.12. Query results in the text version (default configuration)

4.2. Poliqarp 73

(4.83) $ poliqarp corpus/wstepny

As a result of executing that command, the shell command line will be
replaced by the Poliqarp command line, e.g.:

(4.84) CORPUS/WSTEPNY>

The Poliqarp command line can be used both to enter queries and to enter
Poliqarp commands. In order to pose a query, the user should enter the
query in the command line and press Enter. Results of a query like (4.85)
will be displayed in the format shown in Fig. 4.12.

(4.85) CORPUS/WSTEPNY> [pos=adj]^[base="róża|stokrotka"]

Unless the user specifies otherwise, query results will be generated in
the HTML format and they will be displayed by the Links browser (which,
hence, should be installed in the system).

4.2.3.1. Editing queries on the command line

Just as in case of the graphical version of the program, also the text
version of Poliqarp stores query history, which also includes commands
issued from the Poliqarp command line. These past queries and com-
mands may be accessed by pressing the arrow up and arrow down cursor
keys.

There is also a limited history search functionality: pressing the keys
Ctrl-r and entering a sequence of characters (and then Enter) results in
invoking the last query or command in the history which contains that
sequence of characters.

Queries can be edited using the usual cursor keys, the Backspace key,
as well as, inter alia, key combinations known from Emacs, as illustrated
in the table on the next page. On the other hand, the keys Del, Home and
End do not have the expected effect.

When sending the query for processing (by pressing Enter), the cursor
may be placed in any position on the command line, not necessarily at the
end of the line.

74 Chapter 4. Corpus search

key effect

Ctrl-b moves the cursor one character to the left
Ctrl-f moves the cursor one character to the right
Ctrl-a moves the cursor to the beginning of the line
Ctrl-e moves the cursor to the end of the line
Esc-b moves the cursor one word to the left
Esc-f moves the cursor one word to the right
Ctrl-d deletes the character at the cursor position
Esc-d deletes characters from the cursor to the end of the

current word
Esc-Backspace deletes characters from the beginning of the word to

the character immediately preceding the cursor
Ctrl-k deletes characters from the cursor to the end of the

line
Esc-4 Ctrl-f same effect as pressing Ctrl-f four times, i.e., moves the

cursor four characters to the right
Esc-2 Esc-d same as pressing Esc-d twice

etc.

4.2.3.2. Customisation

The operation of the text version of Poliqarp may be changed by modi-
fying the configuration file .poliqarp_config, placed in the user’s
home directory. The simplest way of creating the first version of such
a configuration file is to issue, at the Poliqarp command line, the com-
mand /dump-config. This will result in the creation of a file called
.poliqarp_config.new, also placed in the user’s home directory, con-
taining the default settings of the text version of Poliqarp. In order for this
file to become the valid configuration file, its name should be changed to
.poliqarp_config.

The configuration file is, actually, just a sequence of Poliqarp com-
mands, which are executed at startup. Each of these commands, if pre-
ceded with the slash character /, may also be issued directly from the
Poliqarp command line.

For example, in order to change the size (in segments) of the right con-
text for the purposes of the current session only, the following command
should be entered at the Poliqarp command line:

4.2. Poliqarp 75

(4.86) CORPUS/WSTEPNY> /set right-context 20

The configuration file analog of that command, but taking effect in sub-
sequent Poliqarp sessions, would be:

(4.87) set right-context 20

Similarly, the size of the left context may be modified either from the
command line, as in (4.88) (the change will only be valid during the current
session), or putting the line (4.89) in the configuration file (the change will
be valid for the subsequent sessions).

(4.88) CORPUS/WSTEPNY> /set left-context 20

(4.89) set left-context 20

Poliqarp variables right-context and left-context are just two
of a number of variables modifiable with the set command. Brief descrip-
tions of all such variables will be shown upon the execution of the /desc

command, issued from the command line,7 while the current values of all
Poliqarp variables may be examined with the /show command. If any of
these two commands is invoked with arguments, which are the names of
some of Poliqarp variables, the appropriate information will be displayed
only for those variables. For example, in order to obtain the information
about the current values of right-context and left-context, the
following command should be given:

(4.90) CORPUS/WSTEPNY> /show right-context left-context

As Fig. 4.12 illustrates, left and right context columns contain, by de-
fault, only the segments, i.e., orthographic forms as they occur in the text,
while the match columns contain also the base forms and the disambig-
uated tags. This behaviour may be modified by setting the values of the
following variables: cl-x (to change the kind of information displayed in
the left context), ml-x (left match), mr-x (right match or, in case there is
only one match column, the whole match) and cr-x (right context). The
values of these variables are sequences of letters. If one of these letters is
o (as in orth), the information about the segments (orthographic forms)

7 Just as all the other commands of the text version, also the desc command may be
placed in the configuration file — this will result in the brief description being displayed
at each subsequent startup of the text version.

76 Chapter 4. Corpus search

will be among the information shown in this column. If b (as in base) is
one of these letters, the base form will be displayed. Finally, if the value of
the variable contains the letter t (as in tag), morphosyntactic tags after
disambiguation will be displayed, while in case it contains the capital letter
T, all tags assigned by the morphological analyser will be shown. For ex-
ample, assuming the configuration file contains the lines shown in (4.91),
the result of a query will be formatted as in Fig. 4.13.

(4.91) set cl-x bo

set ml-x bt

set mr-x bt

set cr-x o

In the current text version of Poliqarp, query results are generated as a
sequence of HTML files, each containing at most hits-per-page results.
These results are displayed via a browser specified in the value of pager.
For example, after the set commands below are executed, subsequent
query results in this session will be displayed in the Mozilla browser, 50
results per page.

(4.92) CORPUS/WSTEPNY> /set hits-per-page 50

(4.93) CORPUS/WSTEPNY> /set pager mozilla

The exact format of HTML results may be modified in detail by setting
the variables result-format i match-format: the former determines
the overall HTML format of the page, while the latter determines the
format of a single result. The values of these variables should only be
modified by users with a deep understanding of the HTML format. A
detailed discussion of possible values of these two variables lies outside
the scope of this publication.

Other variables that should be mentioned here include input-encod-

ing and output-encoding: their values determine the character encod-
ing assumed for the purpose of terminal input and output, respectively.
Normally the values of these variables should not be modified. Their de-
fault value is latin2.

Similarly as in the graphical user interface, also the text version allows
the user to sort the results according to the values of any of the columns,
in the ascending or in the descending order, in the usual a fronte order,
or in the a tergo order. The sorting order is specified via the sort-by

4
.2

.
P

oliqarp
77

Figure 4.13. Formatting query results with the settings in (4.91)

78 Chapter 4. Corpus search

variable, whose values are sequences of sort specifications. For example,
after issuing the command in (4.94), query results will be sorted (a fronte,
in the ascending order) according to the values of the right context.

(4.94) CORPUS/WSTEPNY> /set sort-by r

There is a different letter corresponding to each column:

letter column

l left context
r right context
n left match
m right match

In case the value of the sort-by variable contains the small letter l, r, n

or m, the results will be sorted in the usual a fronte order of the values of
that column; if it contains the capital letter L, R, N or M, the results will be
sorted in the a tergo order. Moreover, each of the letters may be preceded
by + (for the ascending order) or - (for the descending order). The lack
of + or - before a letter is interpreted as if + were present. For example,
the effect of the command in (4.95) will be that subsequent results will be
sorted according to the left context, a tergo, in the descending order.

(4.95) CORPUS/WSTEPNY> /set sort-by -L

If the value of the sort-by variable contains a number of sorting
specifications referring to different columns, the results are first sorted
according to the first specified column, then — in case values of that first
specified column are equal — according to the second column specified in
the value of sort-by, etc. For example, the command below will cause
query results to be sorted in the ascending order according to the values
of the right match column, and then, within this order, in the ascending
order according to the left match column, as illustrated in Fig. 4.14.

(4.96) CORPUS/WSTEPNY> /set sort-by m-n

The results of the last query are remembered until the next query
is posed and they can be re-sorted and re-displayed in the new order,
without the need to execute the query again. The command that sorts
the results according to the current sorting specifications is sort, while
the command view displays the results. For example, in order to view

4
.2

.
P

oliqarp
79

Figure 4.14. Sorting query results according to (4.96)

80 Chapter 4. Corpus search

the results of the last query, re-sorted on the left context, the following
sequence of commands should be given:

(4.97) CORPUS/WSTEPNY> /set sort-by l

(4.98) CORPUS/WSTEPNY> /sort

(4.99) CORPUS/WSTEPNY> /view

Instead of using the full variable names, it is possible to use their abbre-
viations, i.e., such prefixes of variable names which uniquely identify the
variables. For example, instead of the command ‘set cl-x bo’ in (4.91),
a shorter command ‘set cl bo’ may be given, where the name of the
variable cl-x is abbreviated to cl; on the other hand, the command ‘set

c bo’ is not a valid command, as the abbreviation c does not uniquely
identify the variable: it is not clear whether it is meant to refer to cl-x,
or to cr-x.

Again similarly as in case of the graphical interface, also the text version
allows the user to view metadata associated with particular search results.
As shown in Fig. 4.12–4.14, the last column of the results table contains
a number — this number identifies the text a given result is part of. In
order to examine the metadata of that text, the /meta <numer> command
should be issued at the Poliqarp command line, e.g., /meta 10735.

The text version also allows the user to define and cancel aliases. For
example, once the following line is present in the configuration file, the
sequence ppron can be used as an abbreviation for ppron12 and ppron3.

(4.100) alias ppron = ppron12 ppron3

Of course, just as in case of other commands, this command can also
be given at the Poliqarp command line, preceded by a slash. The alias

command executed without any arguments will result in displaying all
currently defined aliases, while the unalias command with one or more
arguments, names of aliases, will result in the cancellation of these aliases.

The command exit does what it says. It is also possible to change
the current corpus without leaving Poliqarp: the open command should
be used, as in the following example, which makes Poliqarp change the
current corpus to frek in the /home/adamp/corpus/ directory.

(4.101) CORPUS/WSTEPNY> /open "/home/adamp/corpus/frek"

4.2. Poliqarp 81

Rudimentary quantitative information about the current corpus can be
examined with the stat command, while the help command displays a
compact description of all Poliqarp commands.

4.2.3.3. Environment variables

As in case of the graphical user interface, also the text version speaks
two languages: Polish and English. The language is selected automatically,
on the basis of the value of the system environment variable LANG: in case
the value of that variable is pl_PL, the Polish interface to Poliqarp is star-
ted, otherwise, the English interface is used. Other standard environment
variables which may influence the behaviour of Poliqarp are HOME, TMP,
TEMP and USER. Their impact on Poliqarp is described in more detail in
the README.en.txt file in the linux directory on the CD-ROM enclosed
with this publication.

CD contents

A.1. Windows . 84
A.2. GNU/Linux . 84

The CD-ROM which is enclosed with the current publication contains:

• the preliminary version of the IPI PAN Corpus (the corpus directory),

• three versions of Poliqarp:

— the graphical version designed for Windows 2000 and Windows XP
(the windows directory and the startup script autorun.inf),1

— the graphical version for GNU/Linux systems running on PCs (the
linux/gui directory),

— the text version for GNU/Linux systems running on PCs (the
linux/text directory),

• this publication in the PDF format (the pdf directory).

This CD-ROM also contains the licence agreement (the eula.en.txt

file) which defines the terms and conditions under which current versions
of the IPI PAN Corpus and Poliqarp are distributed. Installing the IPI PAN
Corpus and/or Poliqarp on a hard disk, starting Poliqarp, or redistribut-
ing the IPI PAN Corpus and/or Poliqarp in any form is tantamount to
accepting the conditions of this licence agreement.

1 This version should also work under the Windows 98 and Windows NT systems, but
it was not tested under these systems.

84 Appendix A. CD contents

A.1. Windows

After inserting the CD-ROM into a drive controlled by Microsoft Win-
dows, the Poliqarp install wizard will be automatically started. The wizard
will allow the user to select the directory in which Poliqarp should be
installed, and it will offer the user the possibility of copying the corpus
from the CD-ROM to the hard disk. Copying the corpus to hard disk is
not necessary, but it will speed up corpus access.

The graphical version of Poliqarp, including the graphical version for
Windows, requires an operational Java environment. The install wizard
will attempt to find Java on the user’s computer, and in case it fails, it will
offer to install the Java version enclosed on the CD-ROM.

As a result of a successful installation of Poliqarp, it will be added to the
Programs menu and, in case the user opted for that during the installation,
an icon will be placed on the Desktop.

A.2. GNU/Linux

The installation of both the graphical and text interfaces of the GNU/
/Linux version of Poliqarp is described in the README.en.txt file in the
linux directory.

Bibliography

Bański, P. (2001). The proposed annotation scheme for the IPI PAN cor-
pus. IPI PAN Research Report 936, Institute of Computer Science, Polish
Academy of Sciences.

Bański, P. (2003). Anotacja zewnętrzna: wpływ architektury korpusu IPI
PAN na efektywność jego tworzenia oraz wykorzystania. Polonica, XXII–
XXIII, 77–91.

Bień, J. S. (1991). Koncepcja słownikowej informacji morfologicznej i jej kom-
puterowej weryfikacji, volume 383 of Rozprawy Uniwersytetu Warszawskiego.
Wydawnictwa Uniwersytetu Warszawskiego, Warsaw.

Bień, J. S. (2004). An approach to computational morphology. In M. A. Kło-
potek, S. T. Wierzchoń, and K. Trojanowski, editors, Intelligent Information
Processing and Web Mining, Advances in Soft Computing, pages 191–199.
Springer-Verlag, Berlin.

Bień, J. S. and Saloni, Z. (1982). Pojęcie wyrazu morfologicznego i jego za-
stosowanie do opisu fleksji polskiej (wersja wstępna). Prace Filologiczne,
XXXI, 31–45.

Christ, O. (1994). A modular and flexible architecture for an integrated
corpus query system. In COMPLEX’94, Budapest.

Dębowski, Ł. (2001). Tagowanie i dezambiguacja morfologiczna. IPI PAN
Research Report 934, Institute of Computer Science, Polish Academy of
Sciences.

Dębowski, Ł. (2003). A reconfigurable stochastic tagger for languages with
complex tag structure. In Proceedings of Morphological Processing of
Slavic Languages, EACL 2003.

Dębowski, Ł. (2004). Trigram morphosyntactic tagger for Polish. In Pro-
ceedings of IIS:IIPWM 2004.

Erjavec, T., editor (2001). Specifications and Notation for MULTEXT-East Lex-
icon Encoding. Ljubljana.

Gruszczyński, W. and Saloni, Z. (1978). Składnia grup liczebnikowych we

86 Bibliography

współczesnym języku polskim. Studia Gramatyczne, II, 17–42.
Ide, N., Priest-Dorman, G., and Véronis, J. (1996). Corpus encoding stand-

ard. Ms., http://www.cs.vassar.edu/CES/.
Ide, N., Bonhomme, P., and Romary, L. (2000). XCES: An XML-based

standard for linguistic corpora. In Proceedings of the Linguistic Resources
and Evaluation Conference, Athens, Greece.

Kupść, A. (1999). Haplology of the Polish reflexive marker. In R. D. Borsley
and A. Przepiórkowski, editors, Slavic in Head-Driven Phrase Structure
Grammar, pages 91–124. CSLI Publications, Stanford, CA.

Kurcz, I., Lewicki, A., Sambor, J., and Woronczak, J. (1974). Słownictwo
współczesnego języka polskiego. Listy frekwencyjne. Ms., University of
Warsaw.

Kurcz, I., Lewicki, A., Sambor, J., Szafran, K., and Woronczak, J. (1990).
Słownik frekwencyjny polszczyzny współczesnej. Wydawnictwo Instytutu
Języka Polskiego PAN, Kraków.

Mańczak, W. (1956). Ile jest rodzajów w polskim? Język Polski, XXXVI(2),
116–121.

Oliva, K. (2001). On retaining ambiguity in disambiguated corpora. TAL
(Traitement Automatique des Langues), 42(2).

Przepiórkowski, A. (2003a). A hierarchy of Polish genders. In P. Bański
and A. Przepiórkowski, editors, Generative Linguistics in Poland: Morpho-
syntactic Investigations, pages 109–122, Warsaw. Institute of Computer
Science, Polish Academy of Sciences.

Przepiórkowski, A. (2003b). Składniowe uwarunkowania znakowania mor-
fosyntaktycznego w korpusie IPI PAN. Polonica, XXII–XXIII, 57–76.

Przepiórkowski, A. (2004). Instrukcja konwertowania tekstów na format
XML w projekcie korpusowym IPI PAN. Ms., Institute of Computer
Science, Polish Academy of Sciences.

Przepiórkowski, A. and Woliński, M. (2003a). A flexemic tagset for Pol-
ish. In Proceedings of Morphological Processing of Slavic Languages,
EACL 2003, pages 33–40, Lisbon.

Przepiórkowski, A. and Woliński, M. (2003b). The unbearable lightness
of tagging: A case study in morphosyntactic tagging of Polish. In Pro-
ceedings of the 4th International Workshop on Linguistically Interpreted
Corpora (LINC-03), EACL 2003, pages 109–116.

Przepiórkowski, A., Kupść, A., Marciniak, M., and Mykowiecka, A. (2002).
Formalny opis języka polskiego: Teoria i implementacja. Akademicka Oficyna

Bibliography 87

Wydawnicza EXIT, Warsaw.
Przepiórkowski, A., Bański, P., Łukasz Dębowski, Hajnicz, E., and Woliński,

M. (2003). Konstrukcja korpusu IPI PAN. Polonica, XXII–XXIII, 33–38.
Przepiórkowski, A., Hajnicz, E., Woliński, M., and Dębowski, Ł. (2004a).

Zasady znakowania morfosyntaktycznego w Korpusie IPI PAN. Ms.,
Institute of Computer Science, Polish Academy of Sciences.

Przepiórkowski, A., Krynicki, Z., Dębowski, u., Woliński, M., Janus, D.,
and Bański, P. (2004b). A search tool for corpora with positional tagsets
and ambiguities. In Proceedings of the Fourth International Conference on
Language Resources and Evaluation, LREC 2004, pages 1235–1238.

Saloni, Z. (1976). Kategoria rodzaju we współczesnym języku polskim.
In Kategorie gramatyczne grup imiennych we współczesnym języku polskim,
pages 41–75. Ossolineum, Wrocław.

Saloni, Z. (1977). Kategorie gramatyczne liczebników we współczesnym
języku polskim. Studia Gramatyczne, I, 145–173.

Saloni, Z. (1981). Uwagi o opisie fleksyjnym tzw. zaimków rzeczownych.
Folia Linguistica, 2, 265–271.

Saloni, Z. (1988). O tzw. formach nieosobowych [rzeczowników]
męskoosobowych we współczesnej polszczyźnie. Biuletyn Polskiego To-
warzystwa Językoznawczego, XLI, 155–166.

Saloni, Z. (2001). Czasownik polski. Odmiana, słownik. Wiedza Powszechna,
Warsaw.

Tokarski, J. (1993). Schematyczny indeks a tergo polskich form wyrazowych.
Wydawnictwo Naukowe PWN, Warsaw. Elaborated and edited by Zyg-
munt Saloni.

Woliński, M. (2001). Rodzajów w polszczyźnie jest osiem. In
W. Gruszczyński, U. Andrejewicz, M. Bańko, and D. Kopcińska, edit-
ors, Nie bez znaczenia... Prace ofiarowane Profesorowi Zygmuntowi Saloniemu
z okazji jubileuszu 15000 dni pracy naukowej, pages 303–305. Wydawnictwo
Uniwersytetu Białostockiego, Białystok.

Woliński, M. (2003). System znaczników morfosyntaktycznych w korpusie
IPI PAN. Polonica, XXII–XXIII, 39–55.

Woliński, M. and Przepiórkowski, A. (2001). Projekt anotacji morfosynk-
taktycznej korpusu języka polskiego. IPI PAN Research Report 938,
Institute of Computer Science, Polish Academy of Sciences.

Index

abbreviation, 12, 21, 37–41
accentability, 25
accommodability, 25
acronym, 21
adjective, 28, 32, 41

ad-adjectival, 29, 32
post-prepositional, 29, 32

adverb, 30, 32
agglutinate, 20, 21, 25, 28, 33
agglutination, 25
alias, 53–54, 69, 80
alien

nominal, 35
other, 35

alignment marker, 60, 66
ambiguity, 14–16, 54–56
analytic forms, 19
aspect, 25
attribute

accentability, 52, 53
accommodability, 52, 53
agglutination, 52, 53
aspect, 52, 53
base, 48–52, 57, 58
case, 52, 53
degree, 52, 53
gender, 52, 53
negation, 52, 53
number, 52, 53
orth, 48–52, 57
person, 52, 53
post-prepositionality, 52,

53
pos, 51–53, 58, 59

tag, 54
vocalicity, 52, 53

Bonito, 7

case, 24
case sensitivity, 45
CES, 11
character set, 11
command

alias, 80
desc, 75
exit, 80
help, 81
meta, 80
open, 80
set, 74–75
show, 75
sort, 78
stat, 81
view, 78

concordance, 43
conjunction, 34
context, 60, 65–67, 69, 74–76
Corpus Encoding Standard, see CES
Corpus Query Processor, see CQP
CQP, 7, 44
Czech National Corpus, 22

DAUJC, 7
degree, 24
depreciative form, 29, 32
disambiguation, see ambiguity
disambiguator, 14–15

90 Index

flag
/I, 58–59, 70
/i, 45, 47, 58, 70
/X, 58–59, 70
/x, 47, 58, 70

flexemic class, 26–37
full stop, 21, 37–40
future ́, 28, 33

GCQP, 7
gender, 24
gerund, 26, 28, 34
grammatical category, 22–26, 51–54
grammatical class, 22, 26–37, 51–54

haplology of full stop, 21
hyphen, 21

imperative, 28, 33
imperfective verb, 28
impersonal, 27, 28, 33
infinitive, 27, 28, 33
inherently reflexive verb, see reflex-

ive verb
initial, 21, 37

l-participle, 25, 27, 28, 33
lemma, 22
lexeme, 26
Links, 73

meta-attribute, see metadata
metadata, 6, 11, 57–59, 65, 67, 70, 80

author, 57, 58
created, 57, 59
first_published, 57, 59
published, 57, 59
title, 57, 58

mood, 26
Morfeusz, 7, see morphological ana-

lyser

morphological analyser, 14–15, 56
morphosyntactic tag, 17
Multext-East, 22

negation, 25
non-past form, 27, 28, 33, 41
normalisation, 12
noun, 29, 32, 41, 51, 54

plurale tantum, 29
singulare tantum, 29

number, 21, 24, 37, 41–42
numeral, 42

collective, 30, 32
main, 29, 32, 41
ordinal, 41

part of speech, 26
participle

adjectival
active, 28, 34
passive, 28, 34

adverbial
anterior, 27, 33
contemporary, 28, 33

past, see l-participle
particle-adverb, 35, 41
perfective verb, 27
person, 24
Poliqarp, 8, 43–81, 83–84

graphical version, 65–71
query syntax, 44–60
text version, 71–81

commands, see command
variables, see variable

WWW version, 60–62
positional tagset, 22
post-prepositionality, 25
predicative, 34
preposition, 34, 41

Index 91

pronoun, 30, 54
3rd person, 33, 52
anaphoric siebie, 30, 33
non-3rd person, 33, 52
weak, 21

punctuation, 22, 35, 51

qualifier
meta, 57–59
within, 57

query history, 73

reflexive marker się, 19
reflexive verb, 19, 51
regular expression, 45–47, 52, 54, 58

segment, 17–22, 44–47
segmentation, 18–22
sorting, 68–69, 76–80

tagset, 18, 22–35, 43
TEI, 11
tense, 26
Text Encoding Initiative, see TEI

unknown form, 35
UTF-8, 11, 43

variable
cl-x, 75–76
cr-x, 75–76
hits-per-page, 76
input-encoding, 76
left-context, 75
match-format, 76
ml-x, 75–76
mr-x, 75–76
output-encoding, 76
pager, 76
result-format, 76
right-context, 74–75
sort-by, 76–80

verb, 54

vocalicity, 25
voice, 26

winien, 34
word, 17, 20, 44
word delimiter, 20

XCES, 11–16
XML, 11

