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Abstract
This article compares and evaluates common statistics used in the process of filtering the hypotheses within the task of automatic valence
extraction. A broader range of statistics is compared than the ones usually found in the literature, including Binomial Miscue Probability,
Likelihood Ratio, t Test, and various simpler statistics. All experiments are performed on the basis of morphosyntactically annotated but
very noisy Polish data. Despite a different experimental methodology, the results confirm Korhonen’s findings that statistics based solely
on the number of occurrences of a given verb and the number of cooccurrences of the verb and a given frame in general fare much better
than statistics comparing such conditional frame frequency with the unconditional frame frequency.

1. Introduction
Valence dictionaries are crucial resources in Natural

Language Processing, and yet, for many languages such
resources are unavailable or they are available in paper
form only. Early 1990s saw the advent of the use of cor-
pora and statistical methods for the automatic learning of
valence information, but it has been noted in the literature
(cf., e.g., (Korhonen, 2002)) that some of the commonly
used statistics are less appropriate for the task at hand.

The aim of this paper is to evaluate such common
statistics, as applied to very noisy data: in the experiments
reported below, linguistic cues are identified by a simple
and error-prone shallow grammar on the basis of a cor-
pus automatically annotated with the help of a preliminary
version of a morphological analyzer and a statistical dis-
ambiguator with a rather high 9.4% error rate (Dębowski,
2004).

The rest of the paper is structured as follows. §2.
briefly describes the linguistic input to the statistical mod-
ule, while the next section, §3., introduces the statistics
employed in the experiments. The following section, §4.,
describes the setup of the experiments. Finally, §5. dis-
cusses the results, while §6. compares them to the results
of similar experiments reported in the literature.

2. Linguistic Data
The textual material for the experiments reported

in this paper is the IPI PAN Corpus of Polish
(Przepiórkowski, 2004), the first and currently the only
large publicly available morphosyntactically annotated
corpus of Polish (cf. www.korpus.pl). Since the cor-
pus is rather large (over 300 million segments), its 15-
million segment (over 12 million orthographic words;
punctuation marks and, in some special cases, clitic-like
elements are treated as separate segments) subcorpus,
sample, was used in the experiments. The corpus does
not contain any constituent annotation apart from sentence

boundary markers, but it employs a detailed positional
tagset providing information about parts of speech, as well
as values of inflectional and morphosyntactic categories
(Przepiórkowski and Woliński, 2003).

The process of collecting valence cues consists of four
steps. First, a simple shallow grammar is applied to the
XML corpus sources, resulting in the identification of
some NPs, PPs and verbs. Second, each sentence is split
into clauses, on the basis of those punctuation marks and
conjunctions which are not constituents of NPs and PPs.
Third, for each clause containing exactly one verb, V , all
NPs and PPs identified in this clause are collected into an
observed frame F , and the pair 〈V, F 〉 is added to the set
of observations. Finally, all observations are collected into
hypotheses represented by tuples 〈〈V, F 〉, n, f, k〉, where
〈V, F 〉 is a verb/frame combination, n is the number of
the verb’s occurrences in the cue set, f is the total number
of the occurrences of the frame, and k is the number of
clauses in which they cooccur.

A simple cascade of regular grammars with some
added unification-like functionality is used for the shal-
low parsing of the input and for handling NP- and PP-
internal agreement. The whole grammar consists of 18
rules and, consequently, the range of phrases identified by
the grammar is very limited: numeral phrases, adjectival
phrases, adverbial phrases, clauses and infinitival verbal
phrases are excluded from consideration here, i.e., the task
at hand is constrained to the identification of possible NP
and PP arguments. Two important simplifications in the
grammar concern the treatment of nominative and genitive
NPs: the former are ignored altogether, i.e., no attempt at
distinguishing subject-taking verbs and subjectless verbs
is made, while the latter are attached to the immediately
preceding NPs and PPs whenever possible, rather than be-
ing always treated as potential arguments of verbs.



3. Statistics
Once all the hypotheses are collected, they are rated

depending on the dependability of the evidence they pro-
vide for inferring that a given frame is valid for a given
verb. Two classes of statistics were used for evaluating
the strength of the hypotheses: the first class, discussed in
§3.2., is composed of metrics which exclude certain hy-
potheses due to an insufficient verb/frame cooccurrence
count given the number of verb’s occurrences attested in
the cue set; and the second class (§3.3.) judges a given
frame as likely to be valid for a given verb if the verb’s
statistical association with the frame is higher than aver-
age for all other verbs in the cue set.

3.1. Probabilistic Model
The statistics presented below share a common prob-

abilistic model. The probability of a frame F occurring
given a verb V is taken to be Bernoulli-distributed, i.e.,
the event-space is defined as that of a single weighted coin
toss, where success is defined as an occurrence of F , and
failure as the occurrence of some other frame. This model
is represented by a random variable X1 ∼ Be(π1), where
π1 is the theoretical, conditional probability of F occur-
ring in a clause that contains V . A complementary ran-
dom variable X2 ∼ Be(π2) will also be taken into con-
sideration in the model, representing the probability of F
occurring given some verb other than V .

On the basis of this model, and given a number C equal
to the total number of clauses in the cue set, a hypothesis
of the form 〈〈V, F 〉, n1, f, k1〉 is interpreted as describing
two samples m1 and m2 taken from X1 and X2, respec-
tively. m1’s size is taken to correspond to the number of
V ’s occurrences, n1, and the number of positive outcomes
in m1 is the number of F ’s occurrences with V , i.e., k1.
The size of m2 is equal to the total number of clauses that
do not contain V (n2 = C − n1), and the number of suc-
cesses corresponds to the number of F ’s occurrences with
verbs other than V (k2 = f − k1).

The elements of each sample are assumed to be inde-
pendent. For i random variables Y1, Y2, · · · , Yi with an
identical distribution Be(π), the sum Y =

∑i
j=1 Yj (i.e.,

a random variable representing the total number of suc-
cesses in a sample drawn from those i variables) has a
binomial distribution Bin(i, π). Thus, the probability of
F occurring k1 times given n1 occurrences of V is repre-
sented by the random variable M1 ∼ Bin(n1, π1), and the
probability of F occurring k2 times given n2 occurrences
of some other verb is represented by the random variable
M2 ∼ Bin(n2, π2). Everywhere in this text, π1 and π2

are estimated on the basis of m1 and m2 as, respectively,
π̂1 = p1 = k1

n1
and π̂2 = p2 = k2

n2
.

3.2. Minimum Significant Count Statistics
Minimum Significant Count (MSC) statistics rate a

given hypothesis on the basis of the numeric relation be-
tween k1 and n1, assigning every k1, n1 some measure of
how likely it is for k1 occurrences of F to have been ob-
served in n1 trials because of noise.

The general form of an MSC is S = φ(k1, n1) where
φ is any function monotonically increasing with k1 for a

set n1. A given F is considered a valid frame for V is
made if S exceeds a certain critical value c, below which
the evaluated cooccurrence count is deemed accidental.

3.2.1. Binomial Miscue Probability
For a certain independently established probability BF

that a frame F occurs with a verb V even though it is not a
valid frame for this verb, the Binomial Miscue Probability
(BMP) is the probability of k1 or more occurrences of F in
n1 trials being produced by a ‘noise-generating’ random
variable Z ∼ Bin(n1, BF ). BMP was first introduced in
(Brent, 1993).1 The formula for BMP is the following:

BMPBF
(k1, n1) = 1− ΦZ(k1) (1)

where ΦZ is the distribution function for Z. Note that
in the case of the formula above, the smaller the value of
BMP, the more likely it is for F to be a valid frame for V .

3.2.2. Baseline: Relative Frame Frequency
The baseline MSC consists simply of taking the rel-

ative frame frequency for a given verb (p1 = k1
n1

), and
rejecting those verb/frame combinations, for which the re-
sultant value is lower than some threshold.2

3.3. Strength of Association Statistics
The Strength of Association (SOA) statistics are based,

roughly, on comparing the conditional and unconditional
distributions of a given frame by assessing the significance
of the difference between p1 and p2. The expectation is
that if p1 is significantly lower than p2, i.e., F occurs with
V much less often than it does otherwise, F should be
classified as an invalid frame for V .

3.3.1. Likelihood Ratio
The Likelihood Ratio LR statistic is based on compar-

ing the probability that m1 and m2 were generated by the
best among the models stipulating that π1 = π2 and the
best one among those that do not need to satisfy this condi-
tion. Given that the best fit for the latter model is given by
a joint distribution of M1 and M2, for Bn,p ∼ Bin(n, p),
a value λ is calculated with the following formula:

λ =
maxp P (Bn1,p = k1, Bn2,p = k2〉

P (M1 = k1,M2 = k2)
(2)

where the maximal value of p equals k1+k2
n1+n2

and the rel-
evant probabilities are calculated straightforwardly from
the aproppriate probability density functions for the bino-
mial distribution. Low values of lambda imply that the
two models are distinct, i.e., the values of π1 and π2 differ
significantly. An assymetrical LR statistic is given by

LR± = −2 log λ× b (3)

where b = −1 if p1 − p2 < 0 and 1 otherwise. The re-
sultant statistic has a distribution related to χ2

df=1, and b is
introduced in order to distinguish between V strongly fa-
voring F and strongly disfavoring it. If the value of LR is

1BMP is also referred to as the Binomial Hypothesis Test.
2In the literature on valence extraction, this particular statistic

is referred to as the Maximum Likelihood Estimate (of π1).



lower than a certain critical value, F occurs with V signif-
icantly less than with other verbs, and should be classified
as an invalid frame for V .

3.3.2. t Test
The t test measures the significance of the difference

between the means of two independent samples. The for-
mula for t is the following:

t =
p1 − p2√

s2
1

n1
+ s2

2
n2

(4)

where s2
i is the estimate of the variance of Xi, calculated

as pi(1−pi). Like with LR, low values of t mean that p1 is
significantly lower than p2, and therefore F is not a valid
frame for V . The distribution of t is N(0, 1).

3.3.3. Baseline: Probability Ratio and Difference of
Probabilty

The two statistics above were matched against two
trivial measures of the difference between p1 and p2: p1

p2
and p1 − p2 . In both these cases, the expectation was that
the lower the value of such statistic, the less likely it is for
F to be a valid frame for V .

4. Experiments
The performance of the statistics was evaluated in four

experiments, the results of which are presented in Ta-
ble 1. First, the shallow parsing mechanism described
in §2. was applied to four distinct cue sets: one consist-
ing of hypotheses containing all attested 〈V, F 〉 combina-
tions (ALL), and three cue sets containing only hypothe-
ses concerning frames within a given frame frequency
range: high (HF, with f ≥ 0.01 × C), average (MF,
0.001×C ≤ f < 0.01×C), and low (LF, f < 0.001×C).
The values for all six statistics were then calculated for
the four cue sets and matched against a baseline treatment
consisting in considering all the frames seen with a given
verb as valid.

The gold standard adopted for the purpose of evaluat-
ing the results of these experiments was Marek Świdziń-
ski’s machine readable valence dictionary (Świdziński,
1998) containing 1492 entries.3 This dictionary was pro-
cessed by conflating multiple entries with the same lemma
to single entries, which reduced the dictionary to 1369 en-
tries, by translating the original sometimes complex nota-
tion, which allowed for optionality and disjunction, into
sequences of atomic valence frames, and by removing all
frames containing specifications different than NPs and
PPs. From the resulting dictionary, 100 frequent verbs
(each occurring at least 100 times in the cue set) evenly
distributed across the scale of the number of occurrences
were blindly selected as the training set (see below), and
other 100 verbs, not necessarily frequent, were selected
the same way as the evaluation set. The evaluation set was
then tailored to each specific cue set by removing frames
which do not fall within the particular frame frequency
category, therefore the recall values for HF, MF, and LF

3The authors are grateful to Prof. Świdziński for making this
dictionary available to them.

are calculated in relation to a standard containing only
high, average, and low frequency frames, respectively.

The critical (cutoff) values for each statistic were es-
tablished experimentally. For each cue set and each statis-
tic, an exhaustive search was performed through all rele-
vant critical values, and the one that resulted in the highest
F-measure for the training set was chosen for the experi-
ments.4

ALL HF MF LF

BMP P 49.29 66.43 38.46 15.00
R 47.76 59.01 39.22 17.65
F 48.52 62.50 38.83 16.22

p1 P 39.72 47.10 27.45 10.71
R 50.52 75.78 41.18 17.65
F 44.48 58.10 32.94 13.33

t P 55.03 66.41 37.14 25.00
R 31.96 52.80 38.24 35.29
F 40.43 58.82 37.68 29.27

LR P 50.71 47.11 41.67 30.00
R 24.40 65.84 34.31 35.29
F 32.95 54.93 37.63 32.43

p1 − p2 P 32.09 49.08 25.77 10.71
R 47.42 66.46 41.18 17.65
F 38.28 56.46 31.70 13.33

p1/p2 P 4.86 36.93 24.39 1.88
R 70.79 70.19 39.22 41.18
F 9.08 48.39 30.08 3.60

BASELINE P 4.89 20.30 9.47 1.80
R 77.32 91.93 67.65 47.06
F 9.20 33.26 16.61 3.46

Table 1: Precision, recall, and F-measure for the four ex-
periments. Boxes indicate the best-performing statistic in
each of the cue sets.

5. Discussion
Our initial theoretical prediction, in line with (Korho-

nen, 2002), was that the SOA statistics should perform vis-
ibly worse than the MSC measures. The reason for this is
that even though used considerably in the literature, they
seem not to test for the right thing: deciding whether F is a
valid frame for V should not, in principle, be based on how
often it occurs with V in comparison to other verbs, as in
this way, frames which are very rare for V , but otherwise
common, would always be flagged as invalid. The princi-
pal source of error is the parsing procedure, when an actual
frame observed in the corpus is classified as some other,
possibly invalid frame. The rate of such misclassification

4Note that the fact that critical values were trained for each
category separately is the reason why for some statistics, the
overall F-measure might be larger than that for some other statis-
tic, while the F-values for the three cue subsets are all lower. This
means that the statistics ‘adapts’ better to the smaller categories,
while giving a worse fit for the complete dataset.



should, however, be proportional to the number of clas-
sified clauses, and there seems to be no apparent relation
between such error and the relation between frame fre-
quencies in two conditional distributions. In this vein, the
SOA statistics should be seen as operating on the level of
some rough approximation of the actual error, most prob-
ably dependent, but definitely not directly conditioned by
the true error variable.

These predictions were confirmed by BMP performing
the best in three out of four categories, and p1 perform-
ing surprisingly well in the mid- to high-frequency range
despite its simplicity. The most serious discrepancy in
this pattern, that is t and LR performing significantly bet-
ter on the LF cue set, supports an unconfirmed suspicion
expressed in (Korhonen et al., 2000) that these statistics
should be particularly applicable to low-frequency data.

A surprising set of results is provided by the perfor-
mance of the two baseline SOA statistics. p1/p2 performs
worse than even the baseline, while p1 − p2 does aston-
ishingly well. The probable reason for the former is that
p1/p2 is extremely sensitive to low-frequency verbs —
the less frequent frames occurring with such verbs yield
very high values of p1/p2, thus significantly upsetting the
desired ordering, where valid frames are ranked higher
than invalid ones. The reason for p1 − p2 performing
this well, on the other hand, is that the less frequent the
frames it is applied to, the more it generally approximates
p1, and the conditional frequency comparison effect is di-
minished; the value of p1 is usually much larger than that
of p2, and the difference is even more significant for rare
(and in particular spurious) frames.

6. Comparison
Similar comparisons of common statistics for subcate-

gorization acquisition can be found in the literature. (La-
pata, 1999) mentions in passing that BMP, with the BF

(cf. §3.2.1.) established separately for each frame on the
basis of the information contained in the COMLEX sub-
categorization dictionary (Grishman et al., 1994), gives re-
sults comparable to, but slightly worse than, p1.5 (Sarkar
and Zeman, 2000; Zeman and Sarkar, 2000) compare
BMP, t and LR and report identical results for t and LR,
with BMP giving worse recall and better precision and
F-measure, but it is not clear how reliable these results
are, given various errors in the formulae for t and LR,6

and given the unexplained discrepancy between the recall
numbers reported in the two papers.

Finally, in a series of papers (see (Korhonen, 2002) and

5While BMP performs better than p1 in the experiments re-
ported here, with different sets of verbs for training and for the
evaluation (cf. §4.), the F-measure for p1 is higher than that for
BMP if the same set is used for both tasks.

6In both papers, their formula for LR mentions L(p, k1, n2)
instead of L(p, k1, n1), while their formula for t assumes a
wrong formula for variance and lacks normalization in the
denominator. Interestingly, these errors are also present in
(Maragoudakis et al., 2000) and — the former — in (Sarkar and
Tripasai, 2002). Moreover, the authors make no mention of dis-
tinguishing between likelihood ratios generated with positive and
negative values of p1 − p2.

references therein), Korhonen carefully compares BMP,
LR and p1, using an estimate of BF proposed by (Briscoe
and Carroll, 1997), i.e., an estimate based to some extent
on the unconditional probabilities of frames. This means
that her version of BMP is not a pure MSC statistic in the
sense of §3.2., but should rather be classified as a SOA
statistic, cf. §3.3.. Korhonen notes that, of the three statis-
tics that she compares, p1 performs better than BMP and
much better than LR, with the respective F-measures be-
ing 65.2, 53.3 and 45.1. In case of high frequency frames
(above 0.01 relative frequency), p1 results in a number of
false positives similar to BMP and LR, but a much smaller
number of false negatives, which implies a much higher
recall. On the other hand, in case of lower frequency
frames, BMP and LR show a much higher number of false
positives than in the case of p1. Similarly to the thesis
of the current paper, (Korhonen et al., 2000) explain both
differences by noticing that BMP and LR, but not p1, refer
not only to frame frequencies for a given verb, but also to
estimates of unconditional frame probability.
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