
Daniel Janus
Warsaw University

Adam Przepiórkowski
Institute of Computer Science, Polish Academy of Sciences

POLIQARP 1.0:
Some technical aspects of a linguistic search engine for large corpora

1. Introduction

The aim of this article is to present a new universal search engine for large corpora, Poliqarp,1 whose first
official version (1.0) was released in March 2006 under the terms of a free software licence (GNU GPL).2

Although the tool was developed within a project aiming at creating the first large publicly available
morphosyntactically annotated corpus of Polish, cf. http://korpus.pl/, it is universal in the sense that it uses an
externally defined tagset and UTF-8 internal encoding, so it could be used for managing a corpus of any
language.

The flexibility of Poliqarp and its rich query language has been discussed elsewhere (Przepiórkowski et al.
2004). In this article, we concentrate on some novel features of the current release, i.e., on various aspects of the
client-server architecture of Poliqarp, as well as on the techniques used for greatly improving the efficiency of the
tool.

2. Overview

2.1. From XML to the binary corpus format

The basic source format of the corpus assumed by Poliqarp is the XML Corpus Encoding Standard (XCES;
cf. Ide et al. 2000). However, this representation needs plenty of disk space and is not efficient for the purposes
of concordancing. Therefore, before one can search the corpus, it must be compiled to a space-efficient binary
form. This is performed by a utility called bp (build Poliqarp representation), included in the distribution.

Of particular note about bp is the size of corpora produced by it: typically in the range of 10-12 bytes per
text segment.3 For example the 2nd edition of the IPI PAN Corpus, currently the largest corpus of Polish
containing over 250 million morphosyntactically annotated segments, as well as structural information and
metadata, corresponds to about 2.7 gigabytes of the binary Poliqarp representation, but as much as 7.3 gigabytes
in the source format (with all texts compressed with the gzip utility).

Another feature worth mentioning is the ability of bp to retrieve metadata from XML header files. XCES
requires that each document in the corpus contain a file named header.xml with, inter alia, bibliographical
information about the source document. However, bp does not require this file to be fully XCES-compliant.
Instead, it makes it possible to define templates of paths to XML elements for each kind of metadata defined for

1 Polyinterpretation Indexing Query and Retrieval Processor.
2 Poliqarp has been developed within two projects conducted at the Institute of Computer Science,

Polish Academy of Sciences, led by by the second author (The IPI PAN Corpus of Polish ― a national KBN
grant, number 7T11C04320, 1 April 2001 ― 31 March 2004, and Automatic extraction of linguistic
knowledge from a large corpus of Polish ― a national Ministry of Education and Science grant, number
3T11C00328, 9 March 2005 ― 8 September 2007). Currently, the main developer of Poliqarp, responsible
for the first official release of the tool, is the first author. The first functional version of Poliqarp, released as a
binary executable program in mid-2004, was developed mainly by Zygmunt Krynicki, under the supervision
of the second author, with the participation of the first author. Although the current release differs from that
early version in many respects, including the general architecture and the user interface, it still contains
crucial modules of the first functional version, including the corpus builder described below.

3 A segment is the basic textual token, defined as a unit of text which has a morphosyntactic tag
assigned to it, i.e., roughly, a word, but smaller in some cases. Also punctuation marks are separate segments.

the corpus. If an element is found to match such a template, its value is retrieved and stored in the binary corpus.
For example, the following three templates are among those used in the IPI PAN Corpus:

(multi "styl" "/cesHeader/profileDesc/textClass/h.keywords/keyTerm")

(single "medium" "/cesHeader/profileDesc/textDesc/channel")

(multi "autor"

 "/cesHeader/fileDesc/(sourceDesc/biblFull/)*sourceDesc/biblStruct/analytic/h.author"

 "/cesHeader/fileDesc/(sourceDesc/biblFull/)*sourceDesc/biblStruct/monogr/h.author")

The first template defines the value of the 'styl' (genre) attribute as being the content of the XML element
defined by the path '/cesHeader/.../keyTerm'. It is an attribute of type 'multi' because many such
keyTerm elements may be present and the values of all of them should be collected into the value of the
attribute 'styl'. The second template is similar, but it defines a 'single'-type attribute, i.e., if many XML
elements defined by the given path are present, only the contents of the first one is copied to the value of the
attribute 'medium'. Finally, the third template illustrates a more complex case, where the information about the
author may be given by a number of different paths. In fact, each of the two path specifications in this template
corresponds to an infinite number of paths, with any number of the (recursive) 'sourceDesc/biblFull/'
subpath sequences.

Unfortunately, bp is currently only available for GNU/Linux, because of its heavy use of features that are
specific to Linux and the GNU C library. This restriction will hopefully be lifted in future releases.

2.2. The corpus indexer

The indexer performs second (optional) stage of corpus building. Given a binary corpus constructed by bp, it
generates sparse inverted indexes that are used to speed up execution of queries. For simple queries that yield few
results (like searching for a word or a sequence of words), the speed boost achieved can amount to two orders of
magnitude (from several minutes down to tenths of second). The details of the usage and the construction of
indexes are discussed in section 4.2.

2.3. The user interfaces

Currently, there exist two user interfaces to the corpus presenting search results in the usual KWIC format.
Both use the same corpus processing engine and support the same query language. One interface is a standalone
cross-platform utility written in Java using the Swing toolkit. (Precompiled Windows and Linux versions, as well
as the source codes, can be downloaded from http://korpus.pl/ or http://poliqarp.sourceforge.net/.)

The other interface consists of a collection of PHP scripts designed to make corpora available for searching
over the WWW; it is less feature-rich than the standalone GUI and currently not included in the source
distribution, but available at the Web site of the IPI PAN Corpus (cf. http://korpus.pl/).

The GUI supports incremental displaying of search results as they are found, thus it is no longer necessary to
wait for the end of searching to browse the results (as was the case with the preliminary version of Poliqarp).
Besides being more efficient and stable, it also allows to browse metadata defined for documents containing the
results, allows to impose default restrictions on the queries and has an on-line help facility.

3. The client-server architecture

The concordancer is split into two programs: the server (written in portable C) that performs the actual
concordancing, and the client whose job is to present the results of searching to the user. Each of the interfaces
introduced in the previous section is in fact a client, and they both communicate with the same server using a
simple text-based protocol over TCP.

An obvious benefit of this approach is that it clearly draws the line between the logical and interface modules
of the system, but it is not the only advantage of this architecture. First, the server supports multiple connections,
so it is possible to connect two instances of a client, or even two different clients, to one server and use the clients
concurrently, without the unnecessary duplication of system resources. Second, the protocol supports the notion
of a session, which can span multiple connections. It is therefore possible to connect to the server only for a short
period of time, to issue a query and/or see whether any new results of an already issued query have arrived. This
is crucial in the case of Web-based clients, where the HTML-generating scripts must run quickly, or else the user
will be distracted.

Furthermore, the entire functionality of corpus processing is contained in a C library with a well-defined
interface. It is thus possible to create another library conforming to the same interface and use it with the rest of
the system. The new library does not even have to support the same query language, or the same format of
corpora.

In the rest of this chapter, we briefly describe the protocol used by the concordancing clients to communicate
with the server. The idea is to demonstrate that Poliqarp may be viewed as a collection of reusable components:
even if some of them are not feasible in a given application, others might be. For instance, one might imagine a
simple J2ME-based client for mobile devices, or an altogether different corpus library that works on raw text
instead of corpora in a dedicated format, etc. The protocol plays an important part in the interoperation between
the components, and we hope that it will be more widely supported.

The protocol has been designed with simplicity and flexibility in mind. The client opens a two-way reliable
communication channel (Poliqarp uses local TCP for this purpose) and sends requests to the server. Each request
consists of exactly one line of text, terminated by a newline character.

The server replies to each request instantly, regardless of how long it might take to process it. The length of
each message from the server varies depending on what type of request it replies to, but it always can be deduced
from the first line the server sends. In addition, the server can also send asynchronous messages that are not
instant replies to a request, but are used to notify clients that, for instance, execution of a query has just finished,
or a new bunch of results has been found, and so on.

The client commands can be split into two groups: session manipulation commands and corpus manipulation
commands. The first group is used to create sessions, remove them and bind or unbind connections to them. Each
command in the second group is executed in the context of a session. At any time, a client can disconnect from
the server, which does not result in removing its session or cancelling requests that might be executed in its
context. In particular, it can reconnect later and access the session data as if it had not disconnected at all.

The corpus manipulation part of the protocol does not make any implicit assumptions about the query
language. It is also independent of the internal structure of corpora, assuming only that a corpus consists of a
number of documents that: (i) are mutually disjoint; (ii) sum up to the entire corpus (i.e. every segment belongs to
exactly one document); and (iii) can have textual or date-type metadata assigned to them.

As of Poliqarp 1.0, the protocol consists of 25 commands, three of which are meta-commands (used to check
whether the server is working, to retrieve its version and to terminate the server), three belong to the session
manipulation group, and the remaining 19 are used for processing corpora. Due to space constraints, we will not
attempt to describe each of these in full detail here,4 but we will illustrate it with a transcript of the sample
dialogue between a client and a server ('-->' indicates messages sent by the client, '<--' marks messages sent by
the server):

--> MAKE-SESSION user
<-- R OK 0
--> OPEN /usr/share/corpora/samplecorpus
<-- R OK
<-- M OPENED
--> MAKE-QUERY [pos=subst]{5}
<-- R OK
--> RUN-QUERY 100
<-- R OK
--> BUFFER-STATE
<-- R OK 1000 54
<-- M QUERY-DONE 100
--> SET wide-context-width 5
<-- R OK
--> GET-CONTEXT 0
<-- R OK
<-- R Nie wiem, czy otrzymał
<-- R
<-- R pan premier list szefów wydziałów
<-- R w tej sprawie. Czujemy
--> CLOSE

4 The M.Sc. thesis of the first author, currently in preparation (under the supervision of the second
author) at the Institute of Informatics, Warsaw University, contains a detailed description.

<-- R OK
--> CLOSE-SESSION
<-- R OK

Some comments are in order. First of all, the first letter of each message from the server identifies the
type of the message: R denotes a synchronous message (part of a reply to a request from the client), while M
stands for an asynchronous message. Second, the 0 sent by the server in response to the MAKE-QUERY
command is the session identifier which can later be used to reconnect. Third, after making a query, the client is
expected to issue a command specifying how many results it wants to receive (cf. the 'RUN-QUERY 100'
above). Fourth, the client may at any point ask about the status of query execution, using the BUFFER-STATE
command; the first number in the reply to the command denotes the overall capacity of the buffer, while the
second indicates the number of results that are currently stored in the buffer (i.e., found so far). After finding the
requested 100 results, the server issues an asynchronous message (cf. the 'QUERY-DONE 100' above). Before
requesting the results, the client may specify the widths of left and right contexts, measured in segments (cf. 'SET
wide-context-width 5'). Finally, the GET-CONTEXT command, followed by the number of the results
(counting from 0), may be used to retrieve a query result (here, the five nouns in a row, 'pan premier list
szefów wydziałów') together with its left and right context, preceding and following the match respectively.5

4. Efficiency

4.1. The binary corpus format

The binary corpus consists of several backends, i.e., collections of files that contain information related to
the same aspect of the corpus. The backends use two main on-disk data structures to store data, namely vectors
(sequences of fixed-size data, e.g., numbers, stored in a single file) and dictionaries (sequences of variable-size
data, e.g., strings, stored in two files: the first contains the actual data, while the second contains a vector of
offsets to particular elements, which provides constant-time lookup). These structures are mostly accessed using
the underlying operating system facility of file to memory mapping (e.g., mmap() in Unix).

The main corpus backend is a vector of eight-byte long structures, representing segments and consisting of
the following fields:

● a flag specifying whether there is a space before the segment;
● an offset into the dictionary of orthographic words;
● an offset into the dictionary of sets of disambiguated interpretations6, i.e., those marked as correct in the given

context;
● an offset into the dictionary of sets of ambiguous interpretations, i.e., those assigned by the morphological

analyser, regardless of whether they were marked as correct in later stages of tagging.

Each of these dictionaries is kept in its own backend; moreover, there are backends that hold structural
information about the documents comprising the corpus (offsets of each structural element's borders), document
metadata, tagset, predefined aliases, etc. In total, there are nine or ten backends, depending on whether the
indexer utility has been invoked on the corpus.

The description of the search algorithm is well outside of the scope of this paper, but it is worth mentioning
that the queries are compiled to finite-state automata in which edges are labeled with expressions corresponding
to specifications of a single segment. In its simplest form, a compiled expression is a vector of bits, with the
meaning of the nth bit set being that the nth word (or set of interpretations) matches this expression. Thus,
matching the segment against a simple expression requires only one bit test, without the need of accessing other
backends.

4.2. The use of indexes

For typical corpora, the number of segments in a corpus greatly exceeds the number of distinct elements in
each of the sequences described above (i.e., the sequence of orthographic words, and both sequences of sets of
interpretations). Therefore, it is useful to have a data structure that, for each of those distinct elements, assigns to

5 Actually, the match itself may be split into two parts: left match and right match (see Przepiórkowski
2004 for details). If no such split is requested, the match is returned by the server as the right match, with the
left match empty. This explains the line in the sample session above which only contains the single R.

6 An interpretation is defined as a tag with the base form of a given word.

it a list of its occurrences in the corpus. Such structures are called inverted indexes, and are what the indexer
utility produces.

Each of those three sequences has its own index. By default, indexer produces all three indexes, but it is
possible to tell it to skip some of them, e.g., to produce only the index of orthographic forms. This is useful, for
instance, in the case of a corpus devoid of morphological annotation (i.e., one that has a dummy tag assigned to
each segment). In such a case, queries regarding morphological information will not be posed anyway, so the
irrelevant indexes may be omitted.

The main problem with inverted indexes is that they can be very large when stored naïvely. Poliqarp
overcomes this problem in two ways. First, not every occurrence of each word7 is stored in the index. Instead, the
corpus is artificially split into chunks (pseudo-documents) of equal size (by default, 1024 segments, but this is
configurable). Then, for each item, only the numbers of the chunks in which it occurs are stored in the index,
regardless of how many times it occurs in each chunk. This allows for compaction of those lists that contain a
very large number of elements, while retaining most of the effectiveness gained through the use of indexes.

Second, a mechanism of index compression is employed. The compression schema used provides very fast
decompression, while maintaining a reasonable compression ratio. The main idea is to store differences between
elements of the lists with varying number of bits per element: thus, the lists corresponding to stop words,
containing a very large number of elements, will be coded using few bits per element, while those corresponding
to hapax legomena will contain many bits per element (but will not occupy much space anyway, thanks to their
length).

This technique is known as Golomb encoding. The algorithms used to store and compress the indexes have
been adapted (with minor changes to make them fit well with Poliqarp's method of storing corpora) from Witten
et al. 1999.

Typically, the total size of indexes produced by the indexer utility is about 15% of the total binary corpus
size, but it varies depending on the corpus structure and the indexes' granularity (i.e., size of the artificial
chunks). For instance, in the case of the preliminary version of the IPI PAN corpus (over 70 million segments,
654 megabytes unindexed), the total size of indexes was 95 megabytes when indexed with granularity of 1024
segments, but only 67 megabytes when indexed with granularity of 4096 segments.

5. Concluding remarks

A question may arise as to why we decided to implement our own search engine and concordancer instead of
either using the standard relational databases (the viability of such an approach has been demonstrated within the
PELCRA Corpus of Polish project, http://korpus.ia.uni.lodz.pl/) or existing corpus management tools, such as the
IMS Corpus Workbench (http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/).

One reason for this decision is already alluded to in Przepiórkowski et al. 2004. Even though Poliqarp was
designed as a universal corpus search tool, it also had to meet the specific requirements of the IPI PAN Corpus of
Polish, esp., its handling of ambiguities and the fact that it contains much richer morphosyntactic information
than other corpora that we were familiar with. In particular, we needed a tool that would make it possible to
represent and query two layers of morphosyntactic information: all (possibly many-way ambiguous) information
provided by the morphological analyser, or only the morphosyntactic information judged contextually correct by
the tagger (but possibly still ambiguous, as some ambiguities cannot be resolved even on the basis of infinite
context). To the best of our knowledge no tool offering such expressive power was available at the time, and an
attempt at confining this complex hierarchical information into the straight-jacket of relational databases struck
us as unmaintainable.

Even if such an attempt had succeeded, it would be still very hard to map Poliqarp's query language to the
equivalent SQL queries. The high-level regular expression feature of Poliqarp's query language would make the
corresponding SQL queries unnecessarily complex and hard for the optimizers to cope with. Apart from that, the
standalone installation of a corpus on a user's workstation for local usage would be painful and very disk-
consuming ― Poliqarp makes it easy (to the best of our knowledge, this is a unique feature among programs that
deal with corpora of this size).

Another reason for this approach was our need for a corpus search tool that would grow with the annotation
layers of the IPI PAN Corpus. At the time no such open source tool that would make IPI PAN Corpus-specific
modifications possible was available.8 This need becomes important now, as the IPI PAN Corpus enters the
syntactic annotation phase.

7 Or, more generally speaking, each item.
8 In the meantime, the tool used by BNC, Xaira, has been released as open source (cf.

http://xaira.sourceforge.net/), and we have been informed that there are also plans to make the sources of the
IMS Corpus Workbench available.

REFERENCES

Ide, N., Bonhomme, P. and L. Romary. (2000). “XCES: An XML-based standard for linguistic corpora.” In:
Proceedings of the Second International Conference on Language Resources and Evaluation,
LREC 2000. Athens: ELRA. 825-830.

Janus, D. (2006). Metody przeszukiwania i obrazowania jego wyników w dużych korpusach tekstów. M.Sc. thesis
(in preparation). Warsaw: Faculty of Mathematics, Informatics and Mechanics, Warsaw
University.

Przepiórkowski, A. (2004). The IPI PAN Corpus: Preliminary version. Warsaw: Instytut Podstaw Informatyki
PAN.

Przepiórkowski, A., Krynicki, Z., Dębowski, Ł., Woliński, M., Janus, D. and P. Bański. (2004). “A search tool
for corpora with positional tagsets and ambiguities.” In: Proceedings of the Fourth
International Conference on Language Resources and Evaluation, LREC 2004. Lisbon:
ELRA. 1235-1238.

Witten, I. H., Moffat, A. and T. C. Bell. (1999). Managing gigabytes: compressing and indexing documents and
images. San Francisco: Morgan Kaufmann Publishers Inc.

Keywords: concordancer, corpora, search engine, client-server architecture, efficiency, XCES, XML

