
D
R

A
FT

A Preliminary Formalism for Simultaneous

Rule-Based Tagging and Partial Parsing∗

Adam Przepiórkowski

Abstract

This paper presents a formalism for simultaneous rule-based morphosyntactic tagging and
partial parsing. A prototype implementation of the formalism exists, while a more efficient
implementation is being developed with the aim of annotating the IPI PAN Corpus of
Polish.

1 Introduction

After well over a decade of the almost absolute rule of the statistical paradigm in NLP, we seem
to be witnessing a renewed interest in rule-based approaches to such common problems as
morphosyntactic tagging (Neumann et al., 2000, Neumann and Piskorski, 2002, Hinrichs and
Trushkina, 2002, Oliva and Petkevič, 2002, Rudolf, 2004) and partial syntactic parsing (Grover
and Tobin, 2006), and in combining statistical and rule-based approaches (Hajič et al., 2001,
Piasecki, 2006). The aim of this paper is to present a formalism for rule-based tagging and
partial parsing, which is to be used for the processing of Polish, and possibly other languages.

Usually tagging and partial parsing are done separately, with the input to the parser assumed
to be morphosyntactically fully disambiguated text. Some approaches (Karlsson et al., 1995,
Schiehlen, 2002, Müller, 2006) interweave tagging and parsing, with Karlsson et al. (1995)
actually using the same formalism for both tasks. In the latter case, the application of a uniform
formalism was possible because all words in this dependency-based approach come with all
possible syntactic tags, so partial parsing boils down to rejecting wrong hypotheses, just as in
the case of morphosyntactic tagging.

Conversely, rules used in rule-based tagging often implicitly identify syntactic constructs, but
do not mark such constructs in texts. A typical such rule may say that when an unambiguous
dative-taking preposition is followed by a number of possibly dative adjectives and a noun
ambiguous between dative and some other case, then the noun should be disambiguated to
dative. Obviously, such a rule actually identifies a PP and some of its structure.

Since both tasks, morphosyntactic tagging and partial constituency parsing, involve similar
linguistic knowledge, we propose a formalism for simultaneous tagging and parsing. The input

∗ Published in: Data Structures for Linguistic Resources and Applications, Georg Rehm, Andreas Witt, Lothar Lem-
nitzer (eds.), Tübingen: Gunter Narr Verlag. 2007. pp. 81–90.

81

D
R

A
FT

A Preliminary Formalism for Simultaneous Rule-Based Tagging and Partial Parsing

to the rules of this formalism is a tokenised and morphosyntactically annotated XML (XCES,
Ide et al., 2000) text. The output contains two new levels of constructions: syntactic words and
syntactic groups. In the remainder of this paper we assume the following terminology:

segment (or basic word) is the smallest interpreted unit, i. e., a sequence of characters together
with their morphosyntactic interpretations (lemma, grammatical class, grammatical cate-
gories); in the XML format assumed here (both input and output) segments are marked
as <tok> elements;

syntactic word is a non-empty sequence of segments and/or syntactic words; it is marked in the
XML output as <syntok>;

token is a segment or a syntactic word; it follows that syntactic words may be defined as any
non-empty sequences of tokens;

syntactic group (in short: group) is a non-empty sequence of tokens and/or syntactic groups; in
the XML output it is marked as <group>;

syntactic entity is a token or a syntactic group; it follows that syntactic groups may be defined
as any non-empty sequences of syntactic entities.

Syntactic words are named entities, analytical forms, or any other sequences of tokens or
syntactic words which, from the syntactic point of view, behave as single words. Just as ba-
sic words, they may have a number of morphosyntactic interpretations. On the other hand,
syntactic groups are sequences of (basic or syntactic) words and smaller groups; each group is
identified by its syntactic head and semantic head, which are (basic or syntactic) words; a ratio-
nale for such a description of syntactic groups is given in Przepiórkowski (2006).

2 The Formalism

2.1 The Basic Format

Each rule consists of up to six parts marked as Left, Match, Right, Cond(ition), Synt(actic
action) and Morph(osyntactic action), as in the following example:

Left:

Match: [pos~~prep] [base~"co|kto"]

Right:

Cond: agree(case,1,2)

Synt: group(PG,1,2)

Morph: unify(case,1,2)

The application of this rule should consist in:

• finding a sequence of two tokens such that:

– the first token is an unambiguous preposition ([pos~~prep]),

– the second token is a form of the lexeme co ‘what’ or kto ‘who’ ([base~"co|kto"]),

– there exist interpretations of these two tokens with the same value of case (agree
(case,1,2));

82

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Adam Przepiórkowski

• marking thus identified sequence as a syntactic group (group) of type PG (prepositional
group), whose syntactic head is the first token (1) and whose semantic head is the second
token (2; cf. group(PG,1,2));

• rejecting all interpretations of the two tokens which do not agree in case (cf. unify(case,
1,2)).

Any of the six parts of a rule may be empty; in such a case the whole part may be omitted, as
in the following rule which is fully equivalent to the rule above.

Match: [pos~~prep] [base~"co|kto"]

Cond: agree(case,1,2)

Synt: group(PG,1,2)

Morph: unify(case,1,2)

The order of the parts is not meaningful. The character # starts a comment, so another
equivalent formulation of the same rule is given as follows:

Synt: group(PG,1,2) # Simple prepositional group: rule 193

Morph: unify(case,1,2)

Cond: agree(case,1,2)

Match: [pos~~prep] [base~"co|kto"] # ’na co’, ’z kim’

2.2 ‘Left’, ‘Match’ and ‘Right’

The contents of parts Left, Match and Right have the same syntax and semantics. Each of
them may contain a sequence of the following specifications:

• token specification, e. g., [pos~~prep] or [base~"co|kto"]; these specifications adhere
to segment specifications of the Poliqarp corpus search engine (Janus and Przepiórkowski,
2006) as specified in Przepiórkowski (2004); a specification like [pos~~subst] says that
all morphosyntactic interpretations of a given token are nominal (substantive), while
[pos~subst] means that there exists a nominal interpretation of a given token;

• group specification, extending the Poliqarp query language as proposed in Przepiórkowski
(2006), e. g., [semh=[pos~~subst]] specifies a syntactic group whose semantic head is an
unambiguous noun (or, more precisely, the semantic head is a possibly ambiguous token
whose all interpretations are nominal);

• one of the following specifications:

– ns: no space,

– sb: sentence beginning,

– se: sentence end,

• an alternative of such sequences in parentheses, e. g.:

– ([pos~~subst] | [synh=[pos~~subst]]) or

– ([pos~~prep] [pos~subst] ns [pos~interp] se | [synh=[pos~~prep]]).

Additionally, each such specification may be modified with one of the three standard regular
expression quantifiers: ?, * and +.

83

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

A Preliminary Formalism for Simultaneous Rule-Based Tagging and Partial Parsing

2.3 ‘Cond’

The Cond part contains a sequence of conditions that must be satisfied by the tokens matched
by the specifications in Left, Match and Right, in order for actions specified in Morph and Synt

to take place. These specifications are numbered from 1, counting from the first specification
in Left to the last specification in Right. For example, in the rule given below, there should
be case agreement between the adjective specified in the left context and the adjective and the
noun specified in the right context (cf. agree(case,1,4,5)), as well as case agreement (possibly
of a different case) between the adjective and noun in the match (cf. agree(case,2,3)).

Left: [pos~~adj]

Match: [pos~~adj] [pos~~subst]

Right: [pos~~adj] [pos~~subst]

Cond: agree(case,2,3), agree(case,1,4,5)

In the case of the more realistic rule given next, the reference 2 refers to all tokens matched
by the specification [pos~~adj]*, so the condition agree(case,2,3) requires case agreement
between tokens whose number is unknown at the time of reading and parsing the rule.

Left: sb

Match: [pos~~adj]* [pos~~subst]

Cond: agree(case,2,3)

The repertoire of conditions that may appear in the Cond part still evolves, with agree being
the most frequent condition. It takes a variable number of arguments: the initial arguments,
such as case or gender, specify the grammatical categories that should simultaneously agree, so
the condition agree(case,gender,1,2) is properly stronger than the sequence of conditions:
agree(case,1,2),agree(gender,1,2). Subsequent arguments of agree are natural numbers
referring to token specifications that should be taken into account when checking agreement.

2.4 ‘Morph’

The Morph part contains a sequence of action specifications that should be carried out on mor-
phosyntactic interpretations of appropriate tokens. Similarly to Cond, a reference to token
specification refers to all tokens matched by that specification, so, e. g., in case 1 refers to spec-
ification [pos~~adj]*, unify(case,1) means that all adjectives matched by that specification
must be rid of all interpretations whose case is not shared by all these adjectives.

The set of actions currently contains unify, with a variable number of arguments and with
semantics analogous to the condition agree, so, e. g., unify(case,gender,1,2) may lead
to the rejection of a larger number of interpretations than the action sequence unify(case,

1,2), unify(gender,1,2). Other actions implemented in the prototype are delete (e. g.:
delete(prep,nom,2), i. e., from the token(s) found by the specification 2 delete those inter-
pretations, according to which these tokens are prepositions subcategorising for a nominative
argument) and leave (e. g., leave(subst,1,2), i. e., for tokens found by specifications 1 and 2,
leave only nominal interpretations).

We assume that the actions specified in Morph may only refer to single tokens; when a refer-
ence in such an action refers to a syntactic group, the action is performed on the syntactic head

84

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Adam Przepiórkowski

of that group. For example, assuming that the following rule finds a sequence of a nominal
segment, a multi-segment syntactic word and a nominal group, the action unify(case,1) will
result in the unification of case values of that nominal segment, of the syntactic word as a whole
and of the syntactic head of the group.

Match: ([pos~~subst] | [synh=[pos~~subst]])+

Morph: unify(case,1)

2.5 ‘Synt’

While actions specified in Morph delete some interpretations, actions in Synt group syntactic
entities into syntactic words or syntactic groups; the two operators used for this purpose are,
correspondingly, word and group.

Syntactic Word

Any specification of an action aimed at creating a syntactic word is of the form word(<spec>)

where <spec> is the specification of the action that should be carried out. Marking a syntactic
word is more difficult than marking a syntactic group as it requires specifying the orthographic
form of the word (i. e., <orth> in XML terms) and its possible interpretations (<lex>).

We assume that the orthographic form of the syntactic word is always a simple concatenation
of all orthographic forms of all tokens immediately contained in that syntactic word, taking
into account information about space or its lack between consecutive tokens; see the end of
section 2.6 for an example.

The creation of morphosyntactic interpretations of syntactic words involves more sophisti-
cated operations. For example, a rule identifying negated verbs, such as the following one, may
require that the interpretations of the whole syntactic word be the same as the interpretations
of the verbal segment, but with neg added to each interpretation.

Left: ([pos!~"prep"] | [case!~"acc"])

Match: [orth~"[Nn]ie"] [pos~~"praet|fin|impt|imps|inf"]

(ns [pos~~aglt])?

Synt: word(neg(3))

Morph: leave(2,qub)

In this case, the specification neg(3) is used to copy and appropriately modify all interpreta-
tions of the segment matched by the specification [pos~~"praet|fin|impt|imps|inf"]. The
result of the application of this rule for the sequence nie było ‘wasn’t’, lit. ‘not was’, will be as
shown in listing 1 (leaving out disambiguation information and some interpretations of nie).

85

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

A Preliminary Formalism for Simultaneous Rule-Based Tagging and Partial Parsing

<syntok> the code in italics was added by the rule
<orth>nie było</orth>

<lex>

<base>nie być</base>

<ctag>neg:praet:sg:n:imperf</ctag>

</lex>

<tok>

<orth>nie</orth>

<lex><base>nie</base><ctag>qub</ctag></lex>

pronominal interpretations of nie omitted here

</tok>

<tok>

<orth>było</orth>

<lex>

<base>być</base>

<ctag>praet:sg:n:imperf</ctag>

</lex>

</tok>

</syntok>

Listing 1: An example output of the negation rule on p. 85

Other action specifications currently in use include:

• aff(<num>): creates interpretations of non-negated verbs (by adding aff to interpreta-
tions of the verbal segment);

• copy(<num>): copies interpretations of one of the tokens immediately within the word.

Additionally, it is possible to create a new interpretation and a new base form (lemma). For
example, the following rule will create, for a sequence like mimo tego, że or Mimo że ‘in spite
of, despite’, a syntactic word with the base form mimo że and the conjunctive interpretation.

Match: [orth~"[Mm]imo"] [orth~"to|tego"]?

(ns [orth~","])? [orth~%{\.z}e%]

Synt: word("conj","mimo %{\.z}e%")

Morph: leave(1,prep), leave(2,subst)

Syntactic Group

Any specification of an action aimed at creating a syntactic group has the form group(<type>

,<synh>,<semh>), where <type> is the categorial type of the group (e. g., PG), while <synh>

and <semh> are references to appropriate token specifications in the Match part. For example,
the next rule may be used to create a numeral group, syntactically headed by the numeral and
semantically headed by the noun.

86

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Adam Przepiórkowski

Left: [pos~~prep]

Match: [pos~~num] [pos~~adj]* [pos~~subst]

Synt: group(NumG,2,4)

Of course, the rules should be constructed in such a way that references <synh> and <semh>

refer to specifications of single tokens, e. g., [case~~nom] or [pos~~num], but not [case~~nom]+
or ([pos~~subst] | [synh=[pos~~subst]]); otherwise the rules parser should signal an error.

2.6 Input and Output: Example

The prototype tool implementing the specification above currently takes as input the version of
the XML Corpus Encoding Standard (XCES, Ide et al., 2000) assumed in the IPI PAN Corpus
(Przepiórkowski, 2004). The rules operate sequentially, so the input to one rule may be the
output of another rule.

Rules may modify the input in one of two ways. Specifications in Morph may delete certain
interpretations of certain tokens; this fact is marked by the attribute disamb:sh="0" added to
<lex> elements representing these interpretations. For example, the result of the application of
the first example rule (p. 82) to the following input sequence of two tokens Po co ‘why, what
for’, lit. ‘for what’ in listing 2 should have the effect as in listing 3.1

<tok id="tA5">

<orth>Po</orth>

<lex disamb="1">

<base>po</base>

<ctag>prep:acc</ctag>

</lex>

<lex><base>po</base><ctag>prep:loc</ctag></lex>

</tok>

<tok id="tA6">

<orth>co</orth>

<lex><base>co</base><ctag>conj</ctag></lex>

<lex><base>co</base><ctag>prep:acc</ctag></lex>

<lex><base>co</base><ctag>qub</ctag></lex>

<lex><base>co</base><ctag>subst:sg:nom:n</ctag></lex>

<lex disamb="1">

<base>co</base>

<ctag>subst:sg:acc:n</ctag>

</lex>

</tok>

Listing 2: Input to the rule shown on p. 82

The disamb="1" specification comes from the tagger used to annotate the IPI PAN Corpus
of Polish, but any input attributes of <lex> are copied to output, so the output may look as

1 Note that this rule is not optimal, as it should also reject the prep:acc interpretation of co.

87

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

A Preliminary Formalism for Simultaneous Rule-Based Tagging and Partial Parsing

<tok id="tA5">

<orth>Po</orth>

<lex disamb="1">

<base>po</base>

<ctag>prep:acc</ctag>

</lex>

<lex disamb:sh="0">

<base>po</base>

<ctag>prep:loc</ctag>

</lex>

</tok>

<tok id="tA6">

<orth>co</orth>

<lex disamb:sh="0">

<base>co</base>

<ctag>conj</ctag>

</lex>

<lex><base>co</base><ctag>prep:acc</ctag></lex>

<lex disamb:sh="0">

<base>co</base>

<ctag>qub</ctag>

</lex>

<lex disamb:sh="0">

<base>co</base>

<ctag>subst:sg:nom:n</ctag>

</lex>

<lex disamb="1">

<base>co</base>

<ctag>subst:sg:acc:n</ctag>

</lex>

</tok>

Listing 3: Simplified output of the rule shown on p. 82

follows, which reflects a disagreement between the previous tagger and the decision of the rule:
<lex disamb="1" disamb:sh="0">...</lex>.

The other way in which a rule may modify the input consists of grouping syntactic entities
according to specifications in Synt. For example, the specification group(PG,1,2) applied to
the above sequence Po co will result in adding a <group> element as shown in listing 4.

The values of attributes synh and semh are values of corresponding ids of the syntactic head
and the semantic head. Another example, of the result of a word(...) specification in the Synt

part, is given in listing 1 (page 85).

88

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Adam Przepiórkowski

<group synh="tA5" semh="tA6" type="PG">

<tok id="tA5">

<orth>Po</orth>

<lex disamb="1">

<base>po</base><ctag>prep:acc</ctag>

</lex>

<lex disamb:sh="0">

<base>po</base><ctag>prep:loc</ctag>

</lex>

</tok>

<tok id="tA6">

<orth>co</orth>

<lex disamb:sh="0">

<base>co</base>

<ctag>conj</ctag>

</lex>

<lex><base>co</base><ctag>prep:acc</ctag></lex>

<lex disamb:sh="0">

<base>co</base>

<ctag>qub</ctag>

</lex>

<lex disamb:sh="0">

<base>co</base>

<ctag>subst:sg:nom:n</ctag>

</lex>

<lex disamb="1">

<base>co</base>

<ctag>subst:sg:acc:n</ctag>

</lex>

</tok>

</group>

Listing 4: Fuller output of the rule shown on p. 82

3 Conclusion

The starting point of this paper was the observation that morphosyntactic disambiguation
rules and partial parsing rules often encode the same linguistic knowledge. While many par-
tial parsers expect a fully disambiguated input and some are interleaved with morphosyntactic
disambiguators, we are not aware of any partial (or shallow) parsing systems accepting mor-
phosyntactically ambiguous input and disambiguating it with the same rules that are used for
parsing. This paper proposes a formalism for writing such partial parsing/morphosyntactic
disambiguation rules.

The work presented here is to some extent work in progress. The exact syntax and semantics
of the formalism still evolve, and currently only a prototype implementation of a tagger/parser
based on such rules is available. Although the ultimate test of the usefulness of this approach
will be the quality of the partial treebank of Polish to be annotated with the use of this formalism

89

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

A Preliminary Formalism for Simultaneous Rule-Based Tagging and Partial Parsing

(Przepiórkowski, 2006), we hope to have convinced the reader about the initial viability of the
idea of simultaneous rule-based disambiguation and partial parsing.

Bibliography

Grover, Claire and Tobin, Richard (2006): “Rule-Based Chunking and Reusability”. In: Proceedings of
the Fifth International Conference on Language Resources and Evaluation (LREC 2006).

Hajič, Jan; Krbec, Pavel; Květoň, Pavel; Oliva, Karel and Petkevič, Vladimir (2001): “Serial Combina-
tion of Rules and Statistics”. In: Proceedings of ACL ’01. pp. 260–267.

Hinrichs, Erhard W. and Trushkina, Julia (2002): “Forging Agreement: Morphological Disambiguation
of Noun Phrases”. In: Proceedings of TLT 2002. Sozopol, Bulgaria, pp. 78–95.

Ide, Nancy; Bonhomme, Patrice and Romary, Laurent (2000): “XCES: An XML-based Standard for
Linguistic Corpora”. In: Proc. of the Ling. Resources and Evaluation Conference. Athens, pp. 825–830.

Janus, Daniel and Przepiórkowski, Adam (2006): “POLIQARP 1.0: Some technical aspects of a linguis-
tic search engine for large corpora”. In: The Proceedings of Practical Applications of Linguistic Corpora
2005, edited by Waliński, J.; Kredens, K. and Goźdź-Roszkowski, S. Frankfurt/Main: Peter Lang.

Karlsson, F.; Voutilainen, A.; Heikkilä, J. and Anttila, A. (editors) (1995): Constraint Grammar: A
Language-Independent System for Parsing Unrestricted Text. Berlin: de Gruyter.

Müller, Frank Henrik (2006): A Finite State Approach to Shallow Parsing and Grammatical Functions
Annotation of German. Ph.D. thesis, Universität Tübingen. Pre-final Version of March 11, 2006.

Neumann, Günter; Braun, Christian and Piskorski, Jakub (2000): “A Divide-and-Conquer Strategy for
Shallow Parsing of German Free Texts”. In: Proceedings of ANLP 2000. Seattle, pp. 239–246.

Neumann, Günter and Piskorski, Jakub (2002): “A Shallow Text Processing Core Engine”. Journal of
Computational Intelligence 18 (3): pp. 451–476.

Oliva, Karel and Petkevič, Vladimir (2002): “Morphological and Syntactic Tagging of Slavonic Lan-
guages”. A lecture at Empirical Linguistics and NLP, Sozopol, Bulgaria, September 2002.

Piasecki, Maciej (2006): “Hand-Written and Automatically Extracted Rules for Polish Tagger”. In:
Proceedings of Text, Dialogue and Speech (TSD) 2006.

Przepiórkowski, Adam (2004): The IPI PAN Corpus: Preliminary version. Warsaw: Institute of Computer
Science, Polish Academy of Sciences.

Przepiórkowski, Adam (2006): “On Heads and Coordination in a Partial Treebank”. In: Proceedings of
TLT 2006, edited by Hajič, Jan and Nivre, Joakim. Prague, pp. 163–174.

Rudolf, Michał (2004): Metody automatycznej analizy korpusu tekstów polskich. Warsaw: Uniwersytet
Warszawski, Wydział Polonistyki.

Schiehlen, Michael (2002): “Experiments in German Noun Chunking”. In: Proceedings of the 19th
International Conference on Computational Linguistics (COLING 2002). Taipei.

90

