
♠: Shallow Parsing and Disambiguation Engine

Adam Przepiórkowski, Aleksander Buczyński

Polish Academy of Sciences, Institute of Computer Science
ul. Ordona 21, 01-237 Warsaw, Poland
{adamp,olekb}@ipipan.waw.pl

Abstract
This article presents a formalism and a beta version of a new tool for simultaneous morphosyntactic disambiguation and shallow parsing.
Unlike in the case of other shallow parsing formalisms, the rules of the grammar allow for explicit morphosyntactic disambiguation
statements, independently of structure-building statements, which facilitates the task of the shallow parsing of morphosyntactically
ambiguous or erroneously disambiguated input.

óń

1. Introduction
Two observations motivate the work described here.

First, morphosyntactic disambiguation and shallow pars-
ing inform each other and should be performed in par-
allel, rather than in sequence. Second, morphosyntactic
disambiguation and shallow parsing rules often implicitly
encode the same linguistic intuitions, so a formalism is
needed which would allow to encode disambiguation and
structure-building instructions in a single rule.

The aim of this paper is to present a new formalism and
tool, called Shallow Parsing and Disambiguation Engine,
abbreviated to “SPADE”1 and further to “♠” (Unicode
character 0x2660). The formalism is essentially a cascade
of regular grammars, where (currently) each regular gram-
mar is expressed by a — perhaps very complex — sin-
gle rule. The rules specify, both, morphosyntactic disam-
biguation/correction operations and structure-building op-
erations, but, unlike in pure unification-based formalisms,
these two types of operations are decoupled, i.e., a rule
may be adorned with instructions to the effect that a struc-
ture is built even when the relevant unification fails.

After a brief presentation of some related work in §2.,
we present the formalism in §3. and its implementation
in §4., with §5. concluding the paper.

2. Background and Related Work
Syntactic parsers differ in whether they assume mor-

phosyntactically disambiguated or non-disambiguated in-
put: deep parsing systems based on unification usually al-
low for ambiguous input, while shallow (or partial) parsers
usually expect fully disambiguated input. Some partial
parsing systems (e.g., Neumann et al. 2000, Marimon and
Porta 2000, Aït-Mokhtar et al. 2002, Schiehlen 2002) al-
low for the interweaving of disambiguation and parsing.

Karlsson et al. 1995 present a unified formalism for
disambiguation and dependency parsing. Since depen-
dency parsing in that approach is fully reductionistic, i.e.,
it assumes that all words have all their possible syntactic
roles assigned in the lexicon and it simply rejects some of

1Not to be confused with the other SPADE parsing sys-
tem: Sentence-level PArsing for DiscoursE, http://www.
isi.edu/licensed-sw/spade/.

these roles, that formalism is basically a pure disambigua-
tion formalism. In contrast, the formalism described be-
low is constructive: it groups constituents into larger con-
stituents.

Previous work that comes closest to our aims is re-
ported in Nenadić and Vitas 1998a,b and Nenadić 2000,
where INTEX local grammars (Silberztein, 1994), nor-
mally used for disambiguation, are the basis for a system
that recognises various kinds of noun phrases and handles
agreement within them. However, it is not clear whether
these extensions lead to a lean formalism comparable to
the formalism presented below.

3. Formalism
3.1. The Basic Format

In the simplest case, each rule consists of up to 4 parts
marked as Left, Match, Right and Eval:

Left:
Match: [pos~~"prep"][base~"co|kto"]
Right:
Eval: unify(case,1,2); group(PG,1,2)

The rule means: 1) find a sequence of two tokens2

such that the first token is an unambiguous preposition
([pos~~prep]), and the second token is a form of the
lexeme CO ‘what’ or KTO ‘who’ ([base~"co|kto"]);
2) if there exist interpretations of these two tokens
with the same value of case, reject all interpreta-
tions of these two tokens which do not agree in case
(cf. unify(case,1,2)); 3) if the above unification did
not fail, mark thus identified sequence as a syntactic group
(group) of type PG (prepositional group), whose syntac-
tic head is the first token (1) and whose semantic head is
the second token (2; cf. group(PG,1,2)). Left and

2A terminological note is in order, although its full mean-
ing will become clear only later: by segment we understand the
smallest interpreted unit, i.e., a sequence of characters together
with their morphosyntactic interpretations (lemma, grammatical
class, grammatical categories); syntactic word is a non-empty se-
quence of segments and/or syntactic words marked as an entity by
actions like nword and mword; token is a segment or a syntactic
word; syntactic group (in short: group) is a non-empty sequence
of tokens and/or syntactic groups, marked as an entity by the ac-
tion group; syntactic entity is a token or a syntactic group.



Right parts of a rule, specifying the context of the match,
may be empty; in such a case they may be omitted.

Note that, unlike in typical unification-based for-
malisms, unification and grouping are decoupled here. In
particular, it is possible to reverse the order of group and
unify in the rule above: in this case the rule will always
mark the match as a group and only subsequently unify
case values, if possible. This feature of the formalism is
useful, e.g., for dealing with systematic deficiencies of the
morphological analyser used.

3.2. Matching (Left, Match, Right)
The contents of parts Left, Match and Right

have the same syntax and semantics. Each of them
may contain a sequence of the following specifica-
tions: 1) token specification, e.g., [pos~~"prep"]
or [base~"co|kto"]; these specifications adhere
to segment specifications of the Poliqarp (Janus and
Przepiórkowski, 2007) corpus search engine as spec-
ified in Przepiórkowski 2004; in particular, a spec-
ification like [pos~~"subst"] says that all mor-
phosyntactic interpretations of a given token are nom-
inal (substantive), while [pos~"subst"] means that
there exists a nominal interpretation of a given to-
ken; 2) group specification, extending the Poliqarp
query language as proposed in Przepiórkowski 2007,
e.g., [semh=[pos~~"subst"]] specifies a syntac-
tic group whose semantic head is a token whose all
interpretations are nominal; 3) one of the following
specifications: ns: no space; sb: sentence begin-
ning; se: sentence end; 4) an alternative of such se-
quences in parentheses, e.g., ([pos~~"subst"] |
[synh=[pos~~"subst"]] se). Additionally, 5)
each such specification may be modified with one of the
three regular expression quantifiers: ?, * and +.

An example of a possible value of Left, Match or
Right might be:

[pos~~"adv"] ([pos~~"prep"] [pos~"subst"]
ns? [pos~"interp"]? se | [synh=[pos~~"prep"]])

The meaning of this specification is: find an adverb fol-
lowed by a prepositional group, where the prepositional
group is specified as either a sequence of an unambiguous
preposition and a possible noun at the end of a sentence, or
an already recognised prepositional group.

3.3. Conditions and Actions (Eval)
The Eval part contains a sequence of Prolog-like pred-

icates evaluating to true or false; if a predicate evaluates
to false, further predicates are not evaluated and the rule is
aborted. Almost all predicates have side effects, or actions.
In fact, many of them always evaluate to true, and they are
‘evaluated’ solely for their side effects. In the following,
we will refer to those predicates which may have side ef-
fects as actions, and to those which may evaluate to false
as conditions.

There are two types of actions: morphosyntactic and
syntactic. While morphosyntactic actions delete some in-
terpretations of specified tokens, syntactic actions group
entities into syntactic words (consecutive segments which

syntactically behave like single words, e.g., multi-segment
named entities, etc.) or syntactic groups.

Natural numbers in predicates refer to tokens matched
by the specifications in Left, Match and Right. These
specifications are numbered from 1, counting from the first
specification in Left to the last specification in Right.
For example, in the following rule, there should be case
agreement between the adjective specified in the left con-
text and the adjective and the noun specified in the right
context (cf. unify(case,1,4,5)), as well as case
agreement (possibly of a different case) between the ad-
jective and noun in the match (cf. unify(case,2,3)).

Left: [pos~~"adj"]
Match: [pos~~"adj"][pos~~"subst"]
Right: [pos~~"adj"][pos~~"subst"]
Eval: unify(case,2,3); unify(case,1,4,5)

The exact repertoire of predicates still evolves, but cur-
rently the following are defined:

agree(<cat> ...,<tok>,...) — a condition
checking if the grammatical categories (<cat> ...) of
tokens specified by subsequent numbers (<tok>,...)
agree. It takes a variable number of arguments: the initial
arguments, such as case or gender, specify the gram-
matical categories that should simultaneously agree, so
the condition agree(case gender,1,2) is stronger
than the sequence of conditions: agree(case,1,2),
agree(gender,1,2). Subsequent arguments of
agree are natural numbers referring to entity specifica-
tions that should be taken into account when checking
agreement.

unify(<cat> ...,<tok>,...) — a condition
(and, simultaneously, an action) which checks agreement,
just as agree, but also deletes interpretations that do not
agree.

delete(<cond>,<tok>,...) — delete all inter-
pretations of specified tokens matching the specified con-
dition (for example delete(case~"gen|acc",1)).

leave(<cond>,<tok>,...) — leave only the
interpretations matching the specified condition.

add(<tag>,<base>,<tok>) — add to the spec-
ified token the interpretation <tag> with the base form
<base>.

nword(<tag>,<base>) — create a new syntac-
tic word comprising of all tokens matched by the Match
specification, and assign it the given tag and base form.

In both cases, <tag> may be a simple complete tag,
e.g., conj for a conjunction or adj:pl:acc:f:sup
for a superlative degree feminine accusative plu-
ral form of an adjective, but it may also be a
specification of a number of tags. For example,
add(subst:number*:gen:m3, procent,
1) will add 2 (one for each number) nominal genitive
inanimate masculine interpretations to the token referred
by 1, in both cases with the base form PROCENT ‘per
cent’. Moreover, the sequence <tag>,<base> may be
repeated any number of times, so, e.g., the abbreviation fr.
may be turned into a syntactic word representing any of
the 2×7 number/case values of the noun FRANK ‘franc’
(the currency), or any of the 2×7×5 number/case/gender



values of the (positive degree) adjective FRANCUSKI
‘French’:

Match: [orth~"fr"] ns [orth~"\."]
Eval: nword(subst:number*:case*:m3,frank,

adj:number*:case*:gender*:pos,francuski)

mword(<tag_fragment>,<tok>) — create a
new syntactic word comprising of all tokens matched by
the Match specification, by copying all interpretations of
the token <tok>, adding tag_fragment to each inter-
pretation of that token in an appropriate way.3 The original
interpretations are not modified, if <tag_fragment> is
empty, as in the following rule, which turns the three to-
kens of „Rzeczpospolita” (i.e., „, Rzeczpospolita and ”)
into a single word with exactly the same interpretations
(and base form) as Rzeczpospolita (the name of a Polish
newspaper):

Match: [orth~"„"] ns? [] ns? [orth~"”"]
Eval: mword(,3)

For both mword and nword, the orthographic form of
the newly created syntactic word is always a simple con-
catenation of all orthographic forms of all tokens immedi-
ately contained in that syntactic word, taking into account
information about space or its lack between consecutive
tokens.

group(<type>,<synh>,<semh>) — create a
new syntactic group with syntactic head and semantic head
specified by numbers. The <type> is the categorial
type of the group (e.g., PG), while <synh> and <semh>
are references to appropriate token specifications in the
Match part. For example, the following rule may be used
to create a numeral group, syntactically headed by the nu-
meral and semantically headed by the noun:4

Left: [pos~~"prep"]
Match: [pos~~"num"] [pos~~"adj"]*

[pos~~"subst"]
Eval: group(NumG,2,4)

Of course, rules should be constructed in such a way
that references <synh> and <semh> refer to specifi-
cations of single entities, e.g., ([pos~~"subst"]
| [synh=[pos~~"subst"]]) but not, say,
[case~~"nom"]+

In all these predicates, a reference to a token spec-
ification takes into account all tokens matched by that
specification, so, e.g., in case 1 refers to the speci-
fication [pos~~adj]*, the action unify(case,1)
means that all the adjectives matched must be rid of all
interpretations whose case is not shared by all of them.

Moreover, the numbers in all predicates are interpreted
as referring to tokens; when a reference is made to a syn-
tactic group, the action is performed on the syntactic head

3The exact semantics of this action is currently both complex
and unstable, hence, we refrain from describing it here in detail
for brevity.

4A rationale for distinguishing these two kinds of heads is
given in Przepiórkowski (2007).

of that group. For example, assuming that the follow-
ing rule finds a sequence of a nominal segment, a multi-
segment syntactic word and a nominal group, the action
unify(case,1) will result in the unification of case
values of the first segment, the syntactic word as a whole
and the syntactic head of the group.

Match: ([pos~~"subst"]|[synh=[pos~~"subst"]])+
Eval: unify(case,1)

The only exception to this rule is the semantic head
parameter in the group action; when it references a syn-
tactic group, the semantic, not syntactic, head is inherited.

4. Implementation
Since the formalism described above is novel and to

some extent still evolving, its implementation had to be not
only reasonably fast, but also easy to modify and maintain.
This section briefly presents such an implementation.

4.1. Input and Output
The parser implementing the specification above cur-

rently takes as input the version of the XML Corpus En-
coding Standard assumed in the IPI PAN Corpus of Polish
(http://korpus.pl/; Przepiórkowski 2004). Rules
may modify the input in two possible ways. First, mor-
phosyntactic actions may reject certain interpretations of
certain tokens; such rejected interpretations are marked
by the attribute disamb_sh="0" added to <lex> ele-
ments representing these interpretations. Second, syntac-
tic actions modify the input by adding <syntok> and
<group> elements, marking syntactic words and groups.

For example, the rule given at the top of §3.1. above
may be applied to the following input sequence (slightly
simplified in irrelevant aspects; e.g., the token co actually
has 3 more interpretations, apart from the two given be-
low) of two tokens Po co ‘why, what for’, lit. ‘for what’,
where Po is a preposition which either combines with an
accusative argument or with a locative argument, while co
is ambiguous between, inter alia, a nominative/accusative
noun:

<tok id="tA5">
<orth>Po</orth>
<lex><base>po</base>

<ctag>prep:acc</ctag></lex>
<lex><base>po</base>

<ctag>prep:loc</ctag></lex>
</tok>
<tok id="tA6">
<lex><base>co</base>

<ctag>subst:sg:nom:n</ctag></lex>
<lex><base>co</base>

<ctag>subst:sg:acc:n</ctag></lex>
</tok>

The result should have the following effect (bits added by
the rule are emphasised):

<group type="PG"
synh="tA5" semh="tA6">

<tok id="tA5">
<orth>Po</orth>



<lex><base>po</base>
<ctag>prep:acc</ctag></lex>

<lex disamb_sh="0"><base>po</base>
<ctag>prep:loc</ctag></lex>

</tok>
<tok id="tA6">
<lex disamb_sh="0"><base>co</base>

<ctag>subst:sg:nom:n</ctag>
</lex>
<lex><base>co</base>

<ctag>subst:sg:acc:n</ctag></lex>
</tok>
</group>

4.2. Algorithm Overview
During the initialisation phase, the parser loads the ex-

ternal tagset specification and the rules, and converts the
latter to a set of compiled regular expressions and ac-
tions/conditions. Then, input files are parsed one by one
(for each input file a corresponding output file containing
parsing results is created).

To reduce memory usage, parsing is done by chunks
defined in the input files, such as sentences or paragraphs.
In the remainder of the paper we assume the chunks are
sentences.

The parser concurrently maintains two representations
for each sentence: 1) an object-oriented syntactic entity
tree, used for easy manipulation of entities (for example,
for disabling certain interpretations or creating new syn-
tactic words) and preserving all necessary information to
generate the final output; 2) a compact string for quick reg-
exp matching, containing only the information important
for the rules which have not been applied yet.

4.2.1. Tree Representation
The entity tree is initialised as a flat (one level deep)

tree with all leaves (segments and possibly special entities,
like no space, sentence beginning, sentence end) connected
directly to the root. Application of a syntactic action means
inserting a new node (syntacting word or group) to the tree,
between the root and some of the existing nodes. As the
parsing proceeds, the tree changes its shape: it becomes
deeper and narrower.

Morphosyntactic actions do not change the shape of
the tree, but also reduce the string representation length
by deleting from that string certain interpretations. The in-
terpretations are preserved in the tree to produce the final
output, but are not relevant to further stages of parsing.

4.2.2. String Representation
The string representation is a compromise between

XML and binary representation, designed for easy, fast and
precise matching, with the use of existing regular expres-
sion libraries.5 The representation describes the top level

5Two alternatives to this approach were considered: 1) build-
ing a custom finite state automata on binary representation: our
previous experience shows that while this may lead to an ex-
tremely fast search engine, it is at the same time costly to main-
tain; 2) operating directly on XML files: the strings to search
would be longer, and matching would be more complex (espe-
cially for requirements including negation); a prototype of this
kind was written in Perl and parsing times were not acceptable.

IPI PAN tag fixed length tag
adj:pl:acc:f:sup UBDD0C0000000
conj B000000000000
fin:pl:sec:imperf bB00B0A000000
subst:pl:nom:m1 NBAA000000000

Table 1: Examples of tag conversion between human-
readable and inner positional tagset.

of the current state of the sentence tree, including only
the information that may be used by rule matching. For
each child of the tree root, the following information is
preserved in the string: type (token / group / special) and
identifier (for finding the entity in the tree in case an ac-
tion should be applied to it). The ensuing part of the string
depends on the type of the child: for a token, it is ortho-
graphic forms and a list of interpretations; for a group —
number of heads of the group and lists of interpretations
for the syntactic and semantic head.

Because the tagset used in the IPI PAN Corpus is in-
tended to be human-readable, the morphosyntactic tags are
fairly descriptive and, as a result, they are rather long. To
facilitate and speed up pattern matching, each tag is con-
verted to a relatively short string of fixed width. In the
string, each character corresponds to one morphological
category from the tagset (first part of speech, then num-
ber, case, gender, etc.) as, for example, in the Czech posi-
tional tag system (Hajič and Hladká, 1997). The characters
— upper- and lowercase letters, or 0 (zero) for categories
non-applicable to a given part of speech — are assigned
automatically, on the basis of the external tagset definition
read at initialisation. A few possible correspondences are
presented in Table 1.

4.2.3. Matching (Left, Match, Right)
The conversion from the Left, Match and Right

parts of the rule to a regular expression over the string
representation is fairly straightforward. Two exceptions
— regular expressions as morphosyntactic category values
and the distinction between existential and universal quan-
tification over interpretations — are described in more de-
tail below.

First, the rule might be looking for a token whose
grammatical category is described by a regular expre-
sion. For example, [gender~~"m."] should match
personal masculine (also called virile; m1), animal
masculine (m2), and inanimate masculine (m3) tokens;
[pos~~"ppron[123]+|siebie"] should match all
pronouns (ppron12, i.e., first or second person per-
sonal pronouns, ppron3, i.e., third person personal pro-
nouns, or forms of the reflexive/reciprocal pronoun SIEBIE,
which happens to have a separate grammatical class in the
IPI PAN Corpus, called siebie); [pos!~~"adj.*"]
should match all segments except for (various classes of)
adjectives; etc. Because morphosyntactic tags are con-
verted to fixed length representations, the regular expres-
sions also have to be converted before compilation.

To this end, the regular expression is matched against
all possible values of the given category. Since, after con-



version, every value is represented as a single character, the
resulting regexp can use square bracket notation for char-
acter classes to represent the range of possible values.

The conversion can be done only for attributes with val-
ues from a well-defined, finite set. Since we do not want
to assume that we know all the text to parse before the
compilation of the rules, we assume that the dictionary
is infinite. The assumption makes it difficult to convert
requirements with negated orth or base (for example
[orth!~"[Nn]ie"]). As for now, such requirements
are not included in the compiled regular expression, but
instead handled by special predicates in the Eval part.

Second, a segment may have many interpretations
and sometimes a rule may apply only when all the in-
terpretations meet the specified condition (for example
[pos~~"subst"]), while in other cases one match-
ing interpretation should be enough to trigger the rule
([pos~"subst"]).

In the string interpretation, < and > were chosen as
convenient separators of interpretations and entities, be-
cause they should not appear in the input data (they
have to be escaped in XML). In particular, each fixed
length tag representation is preceded by <. Assum-
ing that nominal subst tags are translated into fixed
length string starting with an N, the universal specifi-
cation [pos~~"subst"] will be translated into the
regular expression (<N[^<>]+)+, while the existential
specification [pos~"subst"] will be translated into
(<[^<>]+)*(<N[^<>]+)(<[^<>]+)*.

Of course, a combination of existential and uni-
versal requirements is a valid requirement as well, for
example: [pos~~"subst" case~"gen|acc"]
(all interpretations noun, at least one of them in
genitive or accusative case) should translate to:
(<N[^<>]+)*(<N.[BD][^<>]+)(<N[^<>]+)
(if genitive and accusative translate to B and D).

4.2.4. Conditions and Actions (Eval)
As described in §3.3., when a match is found, the parser

evaluates a sequence of predicates connected to the given
rule. Each predicate may be a condition with no side ef-
fects involved, a morphosyntactic action or a syntactic ac-
tion. The parser executes the sequence until it encounters a
predicate which evaluates to false (for example, unification
of cases fails).

The actions affect both the tree and the string repre-
sentation of the parsed sentence. The tree is updated in-
stantly (the cost of update is constant or linear with respect
to match length), but the string update (cost linear to sen-
tence length) is delayed until it is really needed (at most
once per rule).

4.3. Efficiency
The system described above has been implemented in

Java. When given a set of over 90 rules of varying com-
plexity, ♠ processed a 12MB XML file containing over 56
thousand words in about 42 seconds, which gives the av-
erage of about 1340 words per second (as measured on a
contemporary Intel Core2Duo T7200 laptop). In the pro-
cess, almost 6800 syntactic words and over 5600 syntactic

groups were marked. While parsing times increase with
the size of the grammar, they are still acceptable, given the
intended use of the system for the off-line shallow parsing
of a corpus.

5. Conclusion
The system presented above, ♠, is perhaps unique in

allowing the grammar developer to encode morphosyntac-
tic disambiguation and shallow parsing instructions in the
same unified formalism, possibly in the same rule. The for-
malism is more flexible than either the usual shallow pars-
ing formalisms, which assume disambiguated input, or the
usual unification-based formalisms, which couple disam-
biguation (via unification) with structure building. While a
rule set is currently prepared for the parsing of the IPI PAN
Corpus of Polish, ♠ is fully language-independent and we
hope it will also be useful in the processing of other lan-
guages.

References
Aït-Mokhtar, Salah, Jean-Pierre Chanod, and Claude Roux, 2002.

Robustness beyond shallowness: incremental deep parsing.
Natural Language Engineering, 8:121–144.

Hajič, Jan and Barbara Hladká, 1997. Probabilistic and rule-
based tagger of an inflective language - a comparison. In Pro-
ceedings of the ANLP’97. Washington, DC.

Janus, Daniel and Adam Przepiórkowski, 2007. Poliqarp: An
open source corpus indexer and search engine with syntactic
extensions. In Proceedings of ACL 2007 Demo Session.

Karlsson, Fred, Atro Voutilainen, J. Heikkilä, and A. Anttila
(eds.), 1995. Constraint Grammar: A Language-Independent
System for Parsing Unrestricted Text. Berlin: Mouton de
Gruyter.

Marimon, Montserrat and Jordi Porta, 2000. PoS disambiguation
and partial parsing bidirectional interaction. In Proceedings
of the Third International Conference on Language Resources
and Evaluation, LREC 2000. Athens, Greece: ELRA.

Nenadić, Goran, 2000. Local grammars and parsing coordination
of nouns in Serbo-Croatian. In Proceedings of Text, Dialogue
and Speech (TSD) 2000. Springer-Verlag.

Nenadić, Goran and Duško Vitas, 1998a. Formal model of
noun phrases in Serbo-Croatian. BULAG, 23. Presses de
l’Université de Franche-Comté, Besançon, France.

Nenadić, Goran and Duško Vitas, 1998b. Using local grammars
for agreement modeling in highly inflective languages. In Pro-
ceedings of Text, Dialogue and Speech (TSD) 1998.

Neumann, Günter, Christian Braun, and Jakub Piskorski, 2000.
A divide-and-conquer strategy for shallow parsing of German
free texts. In Proceedings of ANLP-2000. Seattle, Washington.

Przepiórkowski, Adam, 2004. The IPI PAN Corpus: Prelimi-
nary version. Warsaw: Institute of Computer Science, Polish
Academy of Sciences.

Przepiórkowski, Adam, 2007. On heads and coordination in va-
lence acquisition. In Alexander Gelbukh (ed.), Computational
Linguistics and Intelligent Text Processing (CICLing 2007),
Lecture Notes in Computer Science. Berlin: Springer-Verlag.

Schiehlen, Michael, 2002. Experiments in German noun chunk-
ing. In Proceedings of the 19th International Conference on
Computational Linguistics (COLING 2002). Taipei.

Silberztein, Max, 1994. INTEX: a corpus processing system. In
Fifteenth International Conference on Computational Linguis-
tics (COLING ’94). Kyoto, Japan.


