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Abstract. We propose a novel machine learning approach to the task
of identifying definitions in Polish documents. Specifics of the problem
domain and characteristics of the available dataset have been taken into
consideration, by carefully choosing and adapting a classification method
to highly imbalanced and noisy data. We evaluate the performance of a
Random Forest-based classifier in extracting definitional sentences from
natural language text and give a comparison with previous work.

1 Introduction

Natural Language Processing (NLP) tasks often involve heavily imbalanced data,
with a dominating “uninteresting” class and a minority “interesting” class. One
such task is that of definition extraction, where a set of sentences is to be clas-
sified into definitional and non-definitional sentences. There may be as many as
20 non-definition sentences for any single definition sentence in an instructive
text, but it is the latter class that a definition extraction system is interested in.

The usual Machine Learning (ML) classifiers, ranging from naïve bayesian
methods, through decision trees, perceptrons and various lazy learners, to the
currently very popular classifiers based on Support Vector Machines (SVMs) and
on Adaboost, do not work well in such cases, even when trained with subsam-
pling (of uninteresting examples) or oversampling (of the interesting examples).
The problem is that such classifiers attempt to minimise the overall error rate,
rather than concentrating on the interesting class. In case of a dataset with a
1:20 ratio of interesting to uninteresting cases, it is difficult to beat a classifier
uniformly assigning each new item to the uninteresting class: such a classifier
reaches the overall accuracy higher than 95%, but at the cost of misclassifying
all the interesting cases!

The problem of heavily imbalanced data has already been addressed in the
ML community, where most solutions consist either in the assignment of a high
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cost to the misclassification of the minority class or in subsampling and/or over-
sampling. A novel approach to the problem has been proposed in Chen et al.
2004 and it consists in a modification of the Random Forest (Breiman, 2001)
classifier.

Random Forest (RF) is a homogeneous ensemble of unpruned decision trees
(e.g., CART, C4.5), where — at each node of the tree — a subset of all attributes
is randomly selected and the best attribute on which to further grow the tree
is taken from that random set. Additionally, Random Forest is an example of
the bagging (bootstrap aggregating) method, i.e., each tree is trained on a set
bootstrapped1 from the original training set. Decisions are reached by simple
voting.

Balanced Random Forest (BRF; Chen et al. 2004) is a modification of RF,
where for each tree two bootstrapped sets of the same size, equal to the size of
the minority class, are constructed: one for the minority class, the other for the
majority class. Jointly, these two sets constitute the training set.

The aim of this paper is to demonstrate that BRF is a technique well-suited
to the difficult problem of definition extraction and, by extension, other NLP
tasks. When trained on the dataset of Polish instructive texts introduced in
Przepiórkowski et al. (2007b,a), BRF-based classifiers give better results than
manual definition extraction grammars (Przepiórkowski et al., 2007a), the usual
ML classifiers, even when sequentially combined with some a priori linguistic
knowledge (Degórski et al., 2008), or a linear combination of such ML classifiers
and complete manual grammars (Przepiórkowski et al., 2008).

In what follows we first introduce the attribute space assumed here (§2), then
describe the used classification approach (§3) and present the results of our
experiments (§4). Finally, we outline work conducted previously in the field (§5)
and conclude with possibilities of further research (§6).

2 Feature Selection

Employing any machine learning approach to unstructured data requires that
data is represented in the form of feature values, either binary, numeric or nom-
inal. We use a relatively straightforward approach of n-gram representation of
the sentences in the available document set. Each sentence is represented by a
vector of binary values, where each value indicates whether a particular n-gram
is present in the corresponding sentence. The n-grams consist of base forms of
words, their parts of speech and grammatical cases that appear in the greatest
number of sentences in all documents. We individually count the occurrences
of each of the n-grams in sentences marked as definitions and non-definitions.
Both lists are then combined and a number of most common entries is selected
to form a dictionary of features used for sentence description.

1 That is, examples in such a bootstrapped training set are uniformly and randomly
drawn with replacement from the original training set. As a result, some examples
will be repeated while other will not make it to the bootstrapped set.
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Even by limiting the length of generated n-grams to n ≤ 3 and having a
choice of three distinct n-gram types: base word form (further denoted as base),
part of speech of the word (ctag) and its grammatical case (case), we face a
problem of many possible dictionary configurations, selecting from the set of
31 + 32 + 33 = 39 possibilities. Including too many n-gram types would result
in a an extremely large attribute space, while including too few in reducing the
potential classification accuracy. We approached the problem by measuring the
average value of the χ2 statistic of each of the possible n-gram types with respect
to the class attribute. This was performed on a training set consisting of all the
available documents, on the basis of 100 n-grams for each of the 39 types. Table 1
presents a list of the 20 n-gram types with the highest average χ2 value.

Table 1. Top 20 values of the χ2 statistic of possible n-gram permutations

rank n-gram average χ2 rank n-gram average χ2

1 base 21.04 11 base base ctag 16.70
2 ctag ctag case 18.91 12 ctag base ctag 16.29
3 ctag base 18.53 13 ctag ctag base 14.77
4 base case 18.45 14 ctag case 14.69
5 base ctag 17.92 15 ctag ctag ctag 14.63
6 base base 17.81 16 base ctag case 14.52
7 base base case 17.73 17 base base base 14.33
8 ctag base case 17.43 18 ctag 13.88
9 ctag ctag 17.11 19 ctag case ctag 13.65

10 ctag base base 16.73 20 base ctag ctag 13.59

Unfortunately, just taking a number of attributes from the top of this list
does not guarantee the best possible selection of n-gram types. This is because
certain attribute pairs may be statistically dependent and introducing both of
them into the dictionary would result in noise, instead of meaningful data for
the classifier. Having experimented with different attribute configurations, we
have chosen the following heuristic procedure of attribute selection: we take one
attribute at a time from the sorted list, starting from the top, and reject these
n-grams of length n = 3, for which another trigram with one of the same feature
types has already been selected. The resulting set of 10 selected n-gram types is
presented in Table 2.

Table 2. The selected set of n-gram types

no. n-gram no. n-gram

1 base 6 base base
2 ctag ctag case 7 ctag ctag
3 ctag base 8 ctag case
4 base case 9 base base base
5 base ctag 10 ctag
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For comparison purposes, we also present here the results of experiments on a
dataset from the work of Degórski et al. 2008, where the set of n-grams has been
selected in a different manner and using a different set of attributes. Specifically,
this dataset, referenced later as the “baseline dataset”, has been created by using
the 100 most common uniform unigrams, bigrams and trigrams of base forms,
parts of speech and cases (i.e., base, base-base, . . . , ctag-ctag-ctag).

3 Classifying Imbalanced Data

As noted earlier, the available dataset of definitional and non-definitional sen-
tences is highly imbalanced and consists of 10830 sentences, 546 of which contain
— or are a part of — definitions. Consequently, any successful classification-based
approach to extraction of definitions from this data must take into consideration
— either explicitly or implicitly — the difference in training samples from both
categories.

The most common way of dealing with imbalanced data is introducing ap-
propriately weighted costs for specific classes or sampling the available training
set. Balanced Random Forest is an approach where equalizing the influences
of classes is not performed externally to classification algorithm by evaluating
weights, but is integrated in the very process. Here, for the task of extracting def-
initions from a set of documents by sentence classification, we use the following
algorithm, based on Chen et al. 2004:

– split the training corpus into definitions and non-definitions; let us assume
that there are nd definitions and nnd non-definitions, where nd < nnd;

– construct k trees, each in the following way:
• draw a bootstrap sample of size nd of definitions, and a bootstrap sample

of the same size nd of non-definitions;
• learn the tree (without pruning) using the CART algorithm, on the basis

of the sum of the two bootstrap samples as the training corpus, but:
• at each node, first select at random m features (variables) from the set

of all M features (m < M ; selection without replacement), and only
then select the best feature (out of these m features) for this node; this
random selection of m features is repeated for each node;

– the final classifier is the ensemble of the k trees and decisions are reached by
simple voting.

We have chosen the value of m to be equal to
√

M in all the experiments.
As Random Forest is a well known classifier and widely covered in the liter-

ature, it also allows having a greater insight into the results produced by the
BRF approach. RFs have been verified to be suitable both for large and highly
dimensional data, as is the case in natural language processing. They also pro-
vide means of estimating the classification error rate without performing a full
cross-validation procedure and for estimating variable importance and variable
interactions. In our current experiments we have not performed such estima-
tions, as we are more interested in selecting the optimal set of n-gram types,
than comparing the importance of particular features.
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4 Experimental Results

We use several statistical parameters to describe and compare the results of the
proposed classification approach: recall and precision are the most commonly
calculated information retrieval performance measures. We assume the sentences
marked as definitions to be the set of relevant documents in the retrieval task:

precision =
|{definitions} ∩ {retrieved sentences}|

|{retrieved sentences}| (1)

recall =
|{definitions} ∩ {retrieved sentences}|

|{definitions}| (2)

For a single-valued performance indicator, we use the F-measure, both in the
form used in the previous papers on Polish definition extraction (marked as
Fα) and in the more common sense (marked as Fβ). For F1 we just use F1 (as
Fα=1 = Fβ=1):

Fα =
(1 + α) · precision · recall

α · precision + recall
(3)

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
(4)

Finally, we also calculate the area under the ROC curve (AUC), which is another
single-valued measure of retrieval accuracy, but not tied to a single probability
threshold value, like the F-measure. Still, because in the task of definition ex-
traction we are more interested in maximizing the recall value (in other words:
minimizing the false negative rate), we compare all further experiment results
on the basis of Fα=2 and Fβ=2 values.

Our initial experiments aimed at verifying whether any additional prepro-
cessing of the available data, commonly applied to text classification problems,
would result in improving the accuracy of definition extraction. Firstly, we have
included the information about the relative position of an n-gram in a sentence
into the feature vector. By dividing the sentences into three equal parts and
counting the n-gram occurrences in each of the parts separately, we have in-
creased the attribute space three times, but achieved no increase in performance
(Table 3). We may speculate that the positional information introduced too
much noise, as the available dataset was too small to benefit from the signifi-
cantly larger feature space.

Similarly, there was no gain in definition extraction accuracy after includ-
ing the information about the actual number of occurrence counts of particular
n-grams in the analyzed sentences. This may also be explained by a relatively
small size of the available dataset and sparseness of the feature vector. The cal-
culated numbers of occurrences were negligibly small and provided no additional
information to the classifier.

Finally, applying a stop-list of most common words and filtering non-alpha-
numeric characters from the documents also proved to reduce both the value of
Fα=2 and Fβ=2 measures. Thus, neither of the attribute modifications and data
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Table 3. The influence of additional preprocessing steps on classification accuracy.
Ten-fold cross-validation results, with 100 iterations of random trees generation.

dataset precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

base 18.1% 66.1% 28.4% 35.1% 45.9% 43.2% 60.0% 82.4%
n-gram position 16.2% 63.9% 25.9% 32.3% 42.9% 40.2% 57.4% 81.2%

n-gram occurrence 17.2% 65.0% 27.2% 33.7% 44.4% 41.8% 58.7% 81.4%
base form stoplist 17.3% 63.0% 27.2% 33.5% 43.7% 41.2% 57.2% 81.4%

preprocessing steps mentioned above have been used in further experiments. A
detailed comparison of each of the approaches has been presented in Figure 2a.

In an effort to determine the optimal size of feature space for classification,
we have conducted a series of experiments with an increasing number of n-grams
used for sentence representation (Table 4 and Figure 1a). On the basis of the
results, we have decided to use 100 n-grams of each type in further experiments,
as increasing their number above that threshold does not seem to have any
positive influence on the classification accuracy. By choosing that number, we
obtained a training set consisting of 10830 instances and 929 attributes (as there
are less than 100 different n-grams of the type ctag).

Table 4. The influence of the number of used n-grams of each type on classifica-
tion accuracy. Ten-fold cross-validation results, with 100 iterations of random trees
generation.

n-grams precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

10 14.4% 57.7% 23.1% 28.8% 38.5% 36.0% 51.7% 76.6%
20 17.2% 63.7% 27.1% 33.5% 43.9% 41.4% 57.7% 81.7%
30 18.7% 65.4% 29.0% 35.6% 46.1% 43.6% 59.6% 82.7%
40 19.1% 66.8% 29.7% 36.4% 47.1% 44.5% 61.0% 82.6%
50 19.3% 67.9% 30.1% 37.0% 47.9% 45.2% 62.0% 83.1%
60 19.3% 67.2% 29.9% 36.7% 47.5% 44.9% 61.3% 82.9%
70 19.1% 66.8% 29.8% 36.5% 47.2% 44.6% 61.0% 83.2%
80 19.7% 67.2% 30.4% 37.2% 47.9% 45.3% 61.5% 83.7%
90 19.8% 69.4% 30.8% 37.8% 49.0% 46.2% 63.3% 84.5%

100 20.1% 70.1% 31.2% 38.3% 49.6% 46.8% 64.0% 83.8%
110 19.6% 68.1% 30.4% 37.3% 48.2% 45.6% 62.2% 84.1%
120 19.6% 67.8% 30.4% 37.3% 48.1% 45.5% 61.9% 84.1%

As the accuracy of Random Forest classification depends heavily on the num-
ber of generated random trees used in voting, we have conducted the exper-
iments both on the current dataset and on the baseline dataset provided by
Degórski et al. 2008 for several different numbers of iterations (Tables 5 and 6,
Figure 1b). We have performed ten-fold cross-validation experiments instead of
counting the out-of-bag error of the bagging classifier, so as to make the results
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Fig. 1. 1a Performance of classification with respect to the number of used n-grams,
1ba comparison between classification performance using the baseline dataset and the
current dataset for different number of iterations

as closely comparable with those of Degórski et al. 2008 as possible. The de-
tailed comparison of both sets, with respect to BRF classification accuracy for
the number of iterations which proved to give the best results for each of the
sets, is presented in Figure 2b.
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Fig. 2. ROC curve of classification: 2a using additional data preprocessing steps, 2b
using the baseline dataset and the current dataset

As may be seen from the results of the consecutive experiments, increasing
the number of generated random trees improves the accuracy of definitional
sentences classification only up to a certain point. Above that threshold the
performance reaches a plateau and no further iterations are necessary.

While the use of Balanced Random Forest classification method alone signif-
icantly improves the definition extraction performance over other pure machine
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Table 5. Ten-fold cross-validation results of the baseline dataset classification

iterations precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

100 15.1% 63.0% 24.4% 30.6% 41.2% 38.6% 56.2% 80.6%
200 16.1% 64.3% 25.8% 32.2% 42.9% 40.3% 57.7% 81.3%
300 16.2% 63.8% 25.9% 32.3% 42.8% 40.2% 57.3% 81.6%
400 16.5% 63.6% 26.2% 32.6% 43.1% 40.5% 57.3% 81.6%
500 16.8% 64.1% 26.6% 33.1% 43.7% 41.0% 57.9% 81.7%
600 16.7% 63.9% 26.5% 32.9% 43.5% 40.9% 57.7% 81.7%
700 16.9% 63.6% 26.7% 33.1% 43.5% 40.9% 57.5% 81.8%
800 17.0% 64.1% 26.9% 33.4% 43.9% 41.3% 58.0% 81.9%
900 16.9% 63.6% 26.7% 33.1% 43.5% 40.9% 57.5% 81.9%

1000 16.9% 64.0% 26.8% 33.2% 43.7% 41.1% 57.8% 81.9%

Table 6. Ten-fold cross-validation results of the current dataset classification

iterations precision recall F1 Fα=2 Fα=5 Fβ=2 Fβ=5 AUC

100 20.1% 70.1% 31.2% 38.3% 49.6% 46.8% 64.0% 83.8%
200 20.5% 68.7% 31.5% 38.5% 49.3% 46.7% 63.0% 84.4%
300 20.6% 68.7% 31.7% 38.7% 49.5% 46.8% 63.0% 84.5%
400 21.0% 69.2% 32.2% 39.2% 50.0% 47.4% 63.6% 84.6%
500 21.1% 68.9% 32.3% 39.3% 50.0% 47.4% 63.4% 84.7%
600 21.2% 68.9% 32.5% 39.4% 50.1% 47.5% 63.4% 84.7%
700 21.4% 69.0% 32.6% 39.6% 50.3% 47.7% 63.6% 84.7%
800 21.3% 69.0% 32.5% 39.5% 50.3% 47.7% 63.6% 84.8%
900 21.1% 68.7% 32.3% 39.2% 49.9% 47.3% 63.2% 84.8%

1000 21.2% 68.7% 32.4% 39.3% 50.0% 47.4% 63.2% 84.8%

learning based approaches (e.g., as reported by Degórski et al. 2008), it is worth
pointing out that a careful feature selection is an equally important step. We
achieve an over 18% increase in accuracy, as indicated by the Fα=2 measure, by
describing the sentences with a more representative set of attribute types.

5 Previous Work

To the best of our (and Google’s) knowledge, there is no previous NLP work tak-
ing advantage of the Balanced variety of RFs. Apparently, the first NLP appli-
cations of the plain Random Forests are those reported in Nielsen and Pradhan
2004, for PropBank-style (Kingsbury and Palmer, 2002) role classification, and
in Xu and Jelinek 2004 (followed by a series of papers by the same authors, cul-
minating in Xu and Jelinek 2007), where they are used in the classical language
modelling task (predicting a sequence of words) for speech recognition and give
better results than the usual n-gram based approaches.
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On the other hand, there is some substantial previous work on definition ex-
traction, as this is a subtask of many applications, including terminology extrac-
tion (Pearson, 1996), the automatic creation of glossaries (Klavans and Muresan,
2000, 2001), question answering (Miliaraki and Androutsopoulos, 2004;
Fahmi and Bouma, 2006), learning lexical semantic relations (Malaisé et al.,
2004; Storrer and Wellinghoff, 2006) and the automatic construction of on-
tologies (Walter and Pinkal, 2006). Despite the current dominance of the ML
paradigm in NLP, tools for definition extraction are invariably language-
specific and involve shallow or deep processing, with most work done
for English (Pearson, 1996; Klavans and Muresan, 2000, 2001) and other
Germanic languages (Fahmi and Bouma, 2006; Storrer and Wellinghoff, 2006;
Walter and Pinkal, 2006), as well as French (Malaisé et al., 2004).

When ML methods are used, it is in combination with linguistic processing.
For example, Fahmi and Bouma 2006 applied a robust wide-coverage parser of
Dutch to select candidate definition sentences, which were then subject to an ML
classifier. They experimented with three classifiers (Naïve Bayes, SVM and Max-
imum Entropy) and a number of possible feature configurations and obtained
the best results for the Maximum Entropy classifier and feature configurations,
which included some syntactic features.

For Polish, first attempts at constructing definition extraction systems are de-
scribed — in the context of other Slavic languages — in Przepiórkowski et al.
2007b, and improved results are presented in Przepiórkowski et al. 2007a. In that
work definitions were identified on the basis of a manually constructed partial
grammar (a cascade of regular grammars over morphosyntactically annotated
XML-encoded texts), with the best grammar giving the precision of 18.7% and
recall of 59.3%, which amounts to Fα=2 = 34.4%. Przepiórkowski et al. 2007a
note that these relatively low results are at least partially due to the inherent dif-
ficulty of the task: the inter-annotator agreement measured as Cohen’s κ is only
0.31 (the value of 1 would indicate perfect agreement, the value of 0 — complete
randomness). The same dataset was used in the experiments reported here.

An approach more directly comparable to ours is presented in Degórski et al.
2008. The general idea is analogous to that of Fahmi and Bouma 2006: first
candidate definition sentences are selected via linguistic methods and then they
are classified using ML methods. What is novel in Degórski et al. 2008 is the
very basic character of the linguistic knowledge (a small low-precision collection
of n-grams typical for definitions, including the copula, sequences corresponding
to that is and i.e., etc.), and the use of ensembles of classifiers in the second
stage. The best results reported there, the precision of 19.9%, recall of 69.2%,
and Fα=2 = 38.0%, are significantly better than those of Przepiórkowski et al.
2007a, but still, despite some use of a priori language-specific knowledge, worse
than the pure ML results reported here.

6 Conclusions and Future Work

Our currently reported results seem to restore hope in the machine learning
approach to the vaguely specified task of definition extraction from a small set of
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text documents. It is usually the case that the smaller, less structured and more
noisy the available training data, the lesser is the advantage of such methods over
hand-crafted rules and grammars, utilizing linguistic knowledge. Thus, achieving
better results in such circumstances by a pure machine learning approach seems
to justify the necessary work on feature and classification method selection.

It would still be interesting to combine the current classification method with
manually constructed grammars, similarly as in Degórski et al. 2008, to see if
such a sequential processing scheme would further improve the definition extrac-
tion performance. On the basis of the experiments described there, we might ex-
pect a considerable increase in retrieval precision, at the cost of a slight decrease
in recall.
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