Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References

Definition Extraction with Balanced Random Forests

Łukasz Kobyliński¹ Adam Przepiórkowski^{2,3}

¹Institute of Computer Science, Warsaw University of Technology, L.Kobylinski@elka.pw.edu.pl

²Institute of Computer Science, Polish Academy of Sciences, adamp@ipipan.waw.pl

³Institute of Informatics, University of Warsaw

GoTAL 2008 — 25 August 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction ●○○	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Introdu	iction				

Context: Language Technology for eLearning (LT4eL):

- an FP6 STReP European Project ended 31 May 2008,
- http://www.lt4el.eu/,
- **project aim**: develop multilingual language technology tools for improving the retrieval of learning material.

Task:

- given an instructive text,
- find passages in this text which seem to define technical terms;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- such passages are presented to text creator or maintainer,
- who may:
 - reject them,
 - include them in the glossary (after minor editing).

Introduction ●○○	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References	
Introduction						

Context: Language Technology for eLearning (LT4eL):

- an FP6 STReP European Project ended 31 May 2008,
- http://www.lt4el.eu/,
- **project aim**: develop multilingual language technology tools for improving the retrieval of learning material.

Task:

- given an instructive text,
- find passages in this text which seem to define technical terms;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

such passages are presented to text creator or maintainer,

• who may:

- reject them,
- include them in the glossary (after minor editing).

Introduction ●○○	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References	
Introduction						

Context: Language Technology for eLearning (LT4eL):

- an FP6 STReP European Project ended 31 May 2008,
- http://www.lt4el.eu/,
- **project aim**: develop multilingual language technology tools for improving the retrieval of learning material.

Task:

- given an instructive text,
- find passages in this text which seem to define technical terms;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- such passages are presented to text creator or maintainer,
- who may:
 - reject them,
 - include them in the glossary (after minor editing).

Empirical background: a collection of various e-learning materials in Polish:

	#
tokens	300 636
sentences	10830
definitional sentences	546

Evaluation:

- approximate definitions by definitional sentences,
- precision and recall at sentence level,
- recall more important than precision, so summarised by F_2 (formula for F_2 given later),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• 10-fold cross-validation (in case of ML methods).

Empirical background: a collection of various e-learning materials in Polish:

	#
tokens	300 636
sentences	10830
definitional sentences	546

Evaluation:

- approximate definitions by definitional sentences,
- precision and recall at sentence level,
- recall more important than precision, so summarised by F₂ (formula for F₂ given later),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• 10-fold cross-validation (in case of ML methods).

Introduction ○○●	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Introdu	ction (contd.)			

Difficult:

- $\bullet\,$ rather small empirical basis: <11K sentences, incl. <550 definitional,
- very ill-defined task: Cohen's $\kappa = 0.31$ (but $\kappa_{max} = 0.425$; cf. Przepiórkowski *et al.* 2007),
- very imbalanced: the ratio of definitions to non-definitions $\approx 1:20.$

Looks like a task perhaps best approached symbolically (rather than statistically)...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction ○○●	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Introdu	ction (contd.)			

Difficult:

- $\bullet\,$ rather small empirical basis: <11K sentences, incl. <550 definitional,
- very ill-defined task: Cohen's $\kappa = 0.31$ (but $\kappa_{max} = 0.425$; cf. Przepiórkowski *et al.* 2007),
- very imbalanced: the ratio of definitions to non-definitions $\approx 1:20.$

Looks like a task perhaps best approached symbolically (rather than statistically)...

Definition extraction grammars

- a cascade of regular grammars
- based on the recognition of copula expressions and other indicators of definitions,
- included subgrammars for NPs, PPs, etc.,
- implemented using lxtransduce (Tobin, 2005), a component of LTXML2 (University of Edinburgh),
- around 2 weeks of intensive work:
 - developed on the basis of a development subcorpus (5 218 sentences),
 - tuning on the basis of a held-out subcorpus (2263),
- evaluation on the basis of unseen testing data (3349).

Results:
$$\frac{|| \mathbf{P} || \mathbf{R} || \mathbf{F}_{\alpha=1} || \mathbf{F}_{\alpha=2} || \mathbf{F}_{\alpha=5}}{\mathbf{GR}' || \mathbf{18.7\%} || \mathbf{59.3\%} || \mathbf{28.4} || \mathbf{34.4} || \mathbf{43.6}}$$
where $\mathbf{F}_{\alpha} = \frac{(1+\alpha) \cdot (\mathbf{P} \cdot \mathbf{R})}{(\alpha \cdot \mathbf{P} + \mathbf{R})}$

Definition extraction grammars

- a cascade of regular grammars
- based on the recognition of copula expressions and other indicators of definitions,
- included subgrammars for NPs, PPs, etc.,
- implemented using lxtransduce (Tobin, 2005), a component of LTXML2 (University of Edinburgh)
- around 2 weeks of intensive work:
 - developed on the basis of a development subcorpus (5 218 sentences),
 - tuning on the basis of a held-out subcorpus (2263),
- evaluation on the basis of unseen testing data (3349).

Results:
$$\frac{|| \mathbf{P} || \mathbf{R} || \mathbf{F}_{\alpha=1} || \mathbf{F}_{\alpha=2} || \mathbf{F}_{\alpha=5}}{\mathbf{GR'} || \mathbf{18.7\%} || \mathbf{59.3\%} || \mathbf{28.4} || \mathbf{34.4} || \mathbf{43.6}}$$
where $\mathbf{F}_{\alpha} = \frac{(1+\alpha) \cdot (\mathbf{P} \cdot \mathbf{R})}{(\alpha \cdot \mathbf{P} + \mathbf{R})}$

Definition extraction grammars

- a cascade of regular grammars
- based on the recognition of copula expressions and other indicators of definitions,
- included subgrammars for NPs, PPs, etc.,
- implemented using lxtransduce (Tobin, 2005), a component of LTXML2 (University of Edinburgh),
- around 2 weeks of intensive work:
 - developed on the basis of a development subcorpus (5 218 sentences),
 - tuning on the basis of a held-out subcorpus (2263),
- evaluation on the basis of unseen testing data (3349).

Definition extraction grammars

- a cascade of regular grammars
- based on the recognition of copula expressions and other indicators of definitions,
- included subgrammars for NPs, PPs, etc.,
- implemented using lxtransduce (Tobin, 2005), a component of LTXML2 (University of Edinburgh),
- around 2 weeks of intensive work:
 - developed on the basis of a development subcorpus (5 218 sentences),
 - tuning on the basis of a held-out subcorpus (2263),
- evaluation on the basis of unseen testing data (3349).

Definition extraction grammars

- a cascade of regular grammars
- based on the recognition of copula expressions and other indicators of definitions,
- included subgrammars for NPs, PPs, etc.,
- implemented using lxtransduce (Tobin, 2005), a component of LTXML2 (University of Edinburgh),
- around 2 weeks of intensive work:
 - developed on the basis of a development subcorpus (5 218 sentences),
 - tuning on the basis of a held-out subcorpus (2263),
- evaluation on the basis of unseen testing data (3 349).

Results:
$$\frac{||\mathbf{P}|| \mathbf{R} || \mathbf{F}_{\alpha=1} || \mathbf{F}_{\alpha=2} || \mathbf{F}_{\alpha=5}}{\mathbf{GR}' || \mathbf{18.7\%} || \mathbf{59.3\%} || \mathbf{28.4} || \mathbf{34.4} || \mathbf{43.6}}$$
where $\mathbf{F}_{\alpha} = \frac{(1+\alpha) \cdot (\mathbf{P} \cdot \mathbf{R})}{(\alpha \cdot \mathbf{P} + \mathbf{R})}$

Introduction 000	Approaches ○●○	OO	OCOCO	Improvements 000	References		
Machine Learning?							

Fact: $F_{\alpha=2} = 34.4$ is pathetic.

Maybe **Machine Learning** (ML) approaches more suitable after all?

Degórski et al. 2008b:

- use a simple, linguistically lean grammar to select definition candidates (small precision, very high recall; $F_{\alpha=2} = 25.5$),
- apply ML methods to the result:
 - homogeneous ensembles of classifiers of the same type, for various types of ML methods tested (Decision Trees, Naïve Bayes, SVM, AdaBoost, lazy learning),
 - best results for ID3 (better than for C4.5): $F_{\alpha=2} = 37.95$,
- the use of simple grammar crucial.

Fact: $F_{\alpha=2} = 34.4$ is pathetic.

Maybe **Machine Learning** (ML) approaches more suitable after all?

Degórski et al. 2008b:

- use a simple, linguistically lean grammar to select definition candidates (small precision, very high recall; F_{α=2} = 25.5),
- apply ML methods to the result:
 - homogeneous ensembles of classifiers of the same type, for various types of ML methods tested (Decision Trees, Naïve Bayes, SVM, AdaBoost, lazy learning),
 - best results for ID3 (better than for C4.5): $F_{\alpha=2} = 37.95$,
- the use of simple grammar crucial.

Fact: $F_{\alpha=2} = 34.4$ is pathetic.

Maybe **Machine Learning** (ML) approaches more suitable after all?

Degórski et al. 2008b:

- use a simple, linguistically lean grammar to select definition candidates (small precision, very high recall; $F_{\alpha=2} = 25.5$),
- apply ML methods to the result:
 - homogeneous ensembles of classifiers of the same type, for various types of ML methods tested (Decision Trees, Naïve Bayes, SVM, AdaBoost, lazy learning),
 - best results for ID3 (better than for C4.5): $F_{\alpha=2} = 37.95$,
- the use of simple grammar crucial.

Przepiórkowski et al. 2008:

- use the same simple grammar, the full grammar, and various homogeneous ensembles of classifiers,
- combine them linearly into a single heterogeneous classifier;
- the best result: $F_{\alpha=2} = 38.9$ (compare to the previous $F_{\alpha=2} = 34.4$ and $F_{\alpha=2} = 37.95$);
- again, the use of the grammars crucial.

Here:

- use a novel ML technique (balanced random forests; BRFs),
- no grammars at all!,
- the best result: $F_{\alpha=2} = 39.6$,
- to some extent improvement due to a more careful attribute selection procedure.

Przepiórkowski et al. 2008:

- use the same simple grammar, the full grammar, and various homogeneous ensembles of classifiers,
- combine them linearly into a single heterogeneous classifier;
- the best result: $F_{\alpha=2} = 38.9$ (compare to the previous $F_{\alpha=2} = 34.4$ and $F_{\alpha=2} = 37.95$);
- again, the use of the grammars crucial.

Here:

- use a novel ML technique (balanced random forests; BRFs),
- no grammars at all!,
- the best result: $F_{\alpha=2} = 39.6$,
- to some extent improvement due to a more careful attribute selection procedure.

Przepiórkowski et al. 2008:

- use the same simple grammar, the full grammar, and various homogeneous ensembles of classifiers,
- combine them linearly into a single heterogeneous classifier;
- the best result: $F_{\alpha=2} = 38.9$ (compare to the previous $F_{\alpha=2} = 34.4$ and $F_{\alpha=2} = 37.95$);
- again, the use of the grammars crucial.

Here:

- use a novel ML technique (balanced random forests; BRFs),
- no grammars at all!,
- the best result: $F_{\alpha=2} = 39.6$,
- to some extent improvement due to a more careful attribute selection procedure.

Introduction 000	Approaches 000	Balanced Random Forests ●○	BRFs for definition extraction	Improvements 000	References
Randor	n Fores	ts			

- an ensemble of decision trees (ensemble, i.e., final decisions reached by voting),
- unpruned;
- random (1):
 - at each node of a tree
 - a subset of attributes is randomly selected
 - from which the best attribute to further grow the tree is calculated;
- random (2; bagging, i.e., bootstrap aggregating):
 - for each tree,
 - bootstrap (randomly select with replacing) a multiset (bag) of training examples,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000	Approaches	Balanced Random Forests ●○	BRFs for definition extraction	Improvements 000	References	
Random Forests						

- an ensemble of decision trees (ensemble, i.e., final decisions reached by voting),
- unpruned;
- random (1):
 - at each node of a tree
 - a subset of attributes is randomly selected
 - from which the best attribute to further grow the tree is calculated;
- random (2; bagging, i.e., bootstrap aggregating):
 - for each tree,
 - bootstrap (randomly select with replacing) a multiset (bag) of training examples,

Introduction 000	Approaches	Balanced Random Forests ●○	BRFs for definition extraction	Improvements 000	References	
Random Forests						

- an ensemble of decision trees (ensemble, i.e., final decisions reached by voting),
- unpruned;
- random (1):
 - at each node of a tree
 - a subset of attributes is randomly selected
 - from which the best attribute to further grow the tree is calculated;
- random (2; bagging, i.e., bootstrap aggregating):
 - for each tree,
 - bootstrap (randomly select with replacing) a multiset (bag) of training examples,

Introduction 000	Approaches 000	Balanced Random Forests ●○	BRFs for definition extraction	Improvements 000	References
Randor	n Fores	ts			

- an ensemble of decision trees (ensemble, i.e., final decisions reached by voting),
- unpruned;
- random (1):
 - at each node of a tree
 - a subset of attributes is randomly selected
 - from which the best attribute to further grow the tree is calculated;
- random (2; bagging, i.e., bootstrap aggregating):
 - for each tree,
 - bootstrap (randomly select with replacing) a multiset (bag) of training examples,

Introduction 000	Approaches 000	Balanced Random Forests ●○	BRFs for definition extraction	Improvements 000	References
Randon	n Forest	ts			

- an ensemble of decision trees (ensemble, i.e., final decisions reached by voting),
- unpruned;
- random (1):
 - at each node of a tree
 - a subset of attributes is randomly selected
 - from which the best attribute to further grow the tree is calculated;
- random (2; bagging, i.e., bootstrap aggregating):
 - for each tree,
 - bootstrap (randomly select with replacing) a multiset (bag) of training examples.

Introduction 000	Approaches 000	Balanced Random Forests ●○	BRFs for definition extraction	Improvements 000	References
Randor	n Fores	ts			

- an ensemble of decision trees (ensemble, i.e., final decisions reached by voting),
- unpruned;
- random (1):
 - at each node of a tree
 - a subset of attributes is randomly selected
 - from which the best attribute to further grow the tree is calculated;
- random (2; bagging, i.e., bootstrap aggregating):
 - for each tree,
 - bootstrap (randomly select with replacing) a multiset (bag) of training examples,
 - of the size of the original training set.

Introduction 000	Approaches	Balanced Random Forests ○●	BRFs for definition extraction	Improvements 000	References
Balance	ed Rand	om Forests			

- for each tree, instead of bootstrapping a bag of examples from the whole training set:
- separate the training set into positive and negative examples,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- bootstrap two multisets of the same size (the size of the smaller set of training examples),
- combine them into a training multiset for the tree.

- for each tree, instead of bootstrapping a bag of examples from the whole training set:
- separate the training set into positive and negative examples,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- bootstrap two multisets of the same size (the size of the smaller set of training examples),
- combine them into a training multiset for the tree.

- for each tree, instead of bootstrapping a bag of examples from the whole training set:
- separate the training set into positive and negative examples,

- bootstrap two multisets of the same size (the size of the smaller set of training examples),
- combine them into a training multiset for the tree.

- for each tree, instead of bootstrapping a bag of examples from the whole training set:
- separate the training set into positive and negative examples,

- bootstrap two multisets of the same size (the size of the smaller set of training examples)
- combine them into a training multiset for the tree.

- for each tree, instead of bootstrapping a bag of examples from the whole training set:
- separate the training set into positive and negative examples,

- bootstrap two multisets of the same size (the size of the smaller set of training examples),
- combine them into a training multiset for the tree.

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If *M* is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- How many trees in an ensemble? Best results for about 700-800.
- What attributes?

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If M is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• How many trees in an ensemble? Best results for about 700-800.

• What attributes?

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If *M* is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

- How many trees in an ensemble? Best results for about 700–800.
- What attributes?

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If *M* is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

• How many trees in an ensemble? Best results for about 700–800.

• What attributes?

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If *M* is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

- How many trees in an ensemble? Best results for about 700-800.
- What attributes?

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If *M* is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

- How many trees in an ensemble? Best results for about 700-800.
- What attributes?

- Which decision tree construction algorithm? CART (Classification and Regression Trees), as usual in Random Forests.
- If *M* is the total number of attributes, how many attributes to select randomly at each node? Here $m = \sqrt{M}$ (but this does not matter much; cf. Breiman 2001).

- How many trees in an ensemble? Best results for about 700-800.
- What attributes?

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	ites for	RREc			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that *n*-gram in the sentence. (No improvement for frequencies.)

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).
- 1 ≤ *n* ≤ 3

- <base, base, case>
- < <ctag, case>

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	tes for	RRFs			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that n-gram in the sentence. (No improvement for frequencies.)

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).
- 1 ≤ *n* ≤ 3

- <base, base, case>
- < <ctag, case>

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	tes for	BRFs			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that *n*-gram in the sentence. (No improvement for frequencies.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).
- 1 ≤ *n* ≤ 3

- <base, base, case>
- < <ctag, case>

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	tes for	BRFs			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that *n*-gram in the sentence. (No improvement for frequencies.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).
- $1 \le n \le 3$

- <base, base, case>
- ctag, case>

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	tes for	BRFs			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that *n*-gram in the sentence. (No improvement for frequencies.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).

• $1 \le n \le 3$

- <base, base, case>
- < <ctag, case>

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	tes for	BRFs			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that *n*-gram in the sentence. (No improvement for frequencies.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).

• $1 \le n \le 3$

- <base, base, case>
- < <ctag, case>

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements 000	References
Attribu	tes for	BRFs			

Attributes chosen for definition extraction:

- each attribute corresponds to an *n*-gram,
- and its binary value indicates the presence or absence of that *n*-gram in the sentence. (No improvement for frequencies.)

n-grams of what?

- base forms (lemmata),
- parts of speech (POSs, here called ctags),
- grammatical cases (this is Polish!).

• $1 \le n \le 3$

- <base, base, case>
- ctag, case>

Attributes for BRFs (contd.)

There are $3^1 + 3^2 + 3^3 = 39$ possible types of *n*-grams.

10 selected on the basis of:

- their informativeness (measured by the average χ^2 statistic for 100 most common *n*-grams of each type) w.r.t. the definition/non-definition distinction,
- rejection of longer *n*-gram types statistically dependent on shorter *n*-gram types.

n-gram types selected:

no.	<i>n</i> -gram type	no.	<i>n</i> -gram type
1	<base/>	6	<base, base=""></base,>
2	<ctag, case="" ctag,=""></ctag,>	7	<ctag, ctag=""></ctag,>
3	<ctag, base=""></ctag,>		<ctag, case=""></ctag,>
4	<base, case=""></base,>	9	<base, base="" base,=""></base,>
5	<base, ctag=""></base,>	10	<ctag></ctag>
			◆□▶ ◆檀≯ ◆園≯ ◆園≯

Attributes for BRFs (contd.)

There are $3^1 + 3^2 + 3^3 = 39$ possible types of *n*-grams.

10 selected on the basis of:

- their informativeness (measured by the average χ^2 statistic for 100 most common *n*-grams of each type) w.r.t. the definition/non-definition distinction,
- rejection of longer *n*-gram types statistically dependent on shorter *n*-gram types.

no.	<i>n</i> -gram type	no.	<i>n</i> -gram type
1	<base/>	6	<base, base=""></base,>
2	<ctag, case="" ctag,=""></ctag,>	7	<ctag, ctag=""></ctag,>
3	<ctag, base=""></ctag,>		<ctag, case=""></ctag,>
4	<base, case=""></base,>	9	<base, base="" base,=""></base,>
5	<base, ctag=""></base,>	10	<ctag></ctag>

n-gram types selected:

Attributes for BRFs (contd.)

There are $3^1 + 3^2 + 3^3 = 39$ possible types of *n*-grams.

10 selected on the basis of:

- their informativeness (measured by the average χ^2 statistic for 100 most common *n*-grams of each type) w.r.t. the definition/non-definition distinction,
- rejection of longer *n*-gram types statistically dependent on shorter *n*-gram types.

n-gram types selected:

no.	<i>n</i> -gram type	no.	<i>n</i> -gram type
1	<base/>	6	<base, base=""></base,>
2	<ctag, case="" ctag,=""></ctag,>	7	<ctag, ctag=""></ctag,>
3	<ctag, base=""></ctag,>	8	<ctag, case=""></ctag,>
4	<base, case=""></base,>	9	<base, base="" base,=""></base,>
5	<base, ctag=""></base,>	10	<ctag></ctag>
			◆□▶ ◆□▶ ◆臣▶ ◆臣

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),
- for 10 830 instances (sentences).

 Introduction
 Approaches
 Balanced Random Forests
 BRFs for definition extraction
 Improvements
 References

 Attributes for BRFs (contd.)

Which *n*-grams of each type?

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),
- for 10 830 instances (sentences).

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• for 10 830 instances (sentences).

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),
- for 10 830 instances (sentences).

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),

• for 10 830 instances (sentences).

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),

• for 10 830 instances (sentences).

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams).
- for 10 830 instances (sentences).

- For each *n*-gram type,
- separately for definitions and non-definitions,
- find the frequencies of various *n*-grams of that type,
- merge the two lists ordered by relative frequency,
- take the first 100 different *n*-grams from that list;
- altogether 929 different attributes (10 *n*-gram types × 100 *n*-grams, but there are fewer than 100 <*ctag*> unigrams),
- for 10 830 instances (sentences).

Introduction	Approaches	Balanced Random Forests	BRFs for definition extraction	Improvements	References
000	000	00	○○○○●	000	
Results					

Best results:

	Р	R	$F_{\alpha=2}$
new att	ributes:		
BRFs (700 trees)	21.4%	69.0%	39.6
old att			
previous best: hybrid	25.2%	53.5%	38.9
(Przepiórkowski <i>et al.</i> , 2008)			
previous best: linguistic	18.7%	59.3%	34.4
(Przepiórkowski <i>et al.</i> , 2007)			
BRFs (800 trees)	17.0%	64.1%	33.4
previous best: pure ML	20.4%	38.5%	29.7
(SVM; Degórski <i>et al.</i> 2008b)			

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements •••	References
BRFs a	and grar	nmars			

Linguistic insights are useful, after all?

Here: $F_{\alpha=2} = 39.60$.

Degórski et al. 2008a:

- additional filtering by the naïve grammar: F_{α=2} = 40.95 (relative gain of 3.4%);
- additional fine-tuning of BRFs: $F_{\alpha=2} = 42.47$,
- additional fine-tuning and filtering: F_{α=2} = 43.09 (relative gain of 1.5%).

Linguistic insights are useful, after all?

Here: $F_{\alpha=2} = 39.60$.

Degórski et al. 2008a:

- additional filtering by the naïve grammar: F_{α=2} = 40.95 (relative gain of 3.4%);
- additional fine-tuning of BRFs: $F_{\alpha=2} = 42.47$,
- additional fine-tuning and filtering: F_{α=2} = 43.09 (relative gain of 1.5%).

Linguistic insights are useful, after all?

Here: $F_{\alpha=2} = 39.60$.

Degórski et al. 2008a:

- additional filtering by the naïve grammar: F_{α=2} = 40.95 (relative gain of 3.4%);
- additional fine-tuning of BRFs: $F_{\alpha=2} = 42.47$,
- additional fine-tuning and filtering: $F_{\alpha=2} = 43.09$ (relative gain of 1.5%).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements ○●○	References
Conclu	sions				

- careful procedure of *n*-gram selection significantly improves the results,
- independently, Balanced Random Forest is a significantly better classifier than classifiers commonly used in NLP, including SVM and AdaBoost,
- filtering by an additional simplistic grammar of little help.

This task is typical of many NLP tasks (excluding POS tagging!):

- small data size,
- noisy,
- heavily imbalanced.

Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements ○●○	References
Conclu	sions				

- careful procedure of *n*-gram selection significantly improves the results.
- independently, Balanced Random Forest is a significantly better classifier than classifiers commonly used in NLP, including SVM and AdaBoost,
- filtering by an additional simplistic grammar of little help.

This task is typical of many NLP tasks (excluding POS tagging!):

- small data size,
- noisy,
- heavily imbalanced.

Conclus	sions				
Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements	References

- careful procedure of *n*-gram selection significantly improves the results,
- independently, Balanced Random Forest is a significantly better classifier than classifiers commonly used in NLP, including SVM and AdaBoost.
- filtering by an additional simplistic grammar of little help.

This task is typical of many NLP tasks (excluding POS tagging!):

- small data size,
- noisy,
- heavily imbalanced.

Conclus	sions				
Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements	References

- careful procedure of *n*-gram selection significantly improves the results,
- independently, Balanced Random Forest is a significantly better classifier than classifiers commonly used in NLP, including SVM and AdaBoost,
- filtering by an additional simplistic grammar of little help.

This task is typical of many NLP tasks (excluding POS tagging!):

- small data size,
- noisy,
- heavily imbalanced.

Conclus	sions				
Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements	References

- careful procedure of *n*-gram selection significantly improves the results,
- independently, Balanced Random Forest is a significantly better classifier than classifiers commonly used in NLP, including SVM and AdaBoost,
- filtering by an additional simplistic grammar of little help.

This task is typical of many NLP tasks (excluding POS tagging!):

- small data size,
- noisy,
- heavily imbalanced.

Conclus	sions				
Introduction 000	Approaches 000	Balanced Random Forests 00	BRFs for definition extraction	Improvements ○●○	References

- careful procedure of *n*-gram selection significantly improves the results,
- independently, Balanced Random Forest is a significantly better classifier than classifiers commonly used in NLP, including SVM and AdaBoost,
- filtering by an additional simplistic grammar of little help.

This task is typical of many NLP tasks (excluding POS tagging!):

- small data size,
- noisy,
- heavily imbalanced.

Introduction	Approaches	Balanced Random Forests	BRFs for definition extraction	Improvements	References
				000	

Thank you for your attention!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction	Approaches	Balanced Random Forests	BRFs for definition extraction	Improvements	References

Breiman, L. (2001). Random forests. *Machine Learning*, **45**, 5–32.

Chen, C., Liaw, A., and Breiman, L. (2004). Using random forest to learn imbalanced data. Technical Report 666, University of California, Berkeley.

http://www.stat.berkeley.edu/tech-reports/666.pdf.

- Degórski, Ł., Kobyliński, Ł., and Przepiórkowski, A. (2008a). Definition extraction: Improving balanced random forests. In Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT 2008): Computational Linguistics – Applications (CLA'08), Wisła, Poland. PTI.
- Degórski, Ł., Marcińczuk, M., and Przepiórkowski, A. (2008b). Definition extraction using a sequential combination of baseline grammars and machine learning classifiers. In *Proceedings of the Sixth International Conference on Language Resources and Evaluation, LREC 2008,* Marrakech. ELRA.
- Przepiórkowski, A., Degórski, Ł., and Wójtowicz, B. (2007). On the evaluation of Polish definition extraction grammars. In Z. Vetulani, editor, *Proceedings of the 3rd Language & Technology Conference*, pages 473–477, Poznań, Poland.

Introduction	Approaches	Balanced Random Forests	BRFs for definition extraction	Improvements	References

Przepiórkowski, A., Marcińczuk, M., and Degórski, Ł. (2008). Dealing with small, noisy and imbalanced data: Machine learning or manual grammars? In P. Sojka, I. Kopeček, and K. Pala, editors, *Text, Speech* and Dialogue: 9th International Conference, TSD 2008, Brno, Czech Republic, September 2008, Lecture Notes in Artificial Intelligence, Berlin. Springer-Verlag. Forthcoming.

Tobin, R. (2005). Lxtransduce, a replacement for fsgmatch. University of Edinburgh. http://www.cogsci.ed.ac.uk/~richard/ltxml2/lxtransduce-manual.html.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00