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Abstract—The article discusses methods of improving the
ways of applying Balanced Random Forests (BRFs), a machine
learning classification algorithm, used to extract definitions from
written texts. These methods include different approachesto
selecting attributes, optimising the classifier prediction threshold
for the task of definition extraction and initial filtering by a very
simple grammar.

I. I NTRODUCTION

T HE paper deals with extracting definitions from relatively
unstructured instructive texts (textbooks, learning mate-

rials in eLearning, etc.) in a morphologically rich, relatively
free word order, determinerless language (Polish). The same
methods could easily be used for other similar languages with-
out or with only minor changes, though. The work reported
here is a continuation of work carried out within the recently
finishedLanguage Technology for eLearningproject (LT4eL;
http://www.lt4el.eu/).

The aim of the paper is to show how the results of previous
attempts, presented in [1], can be improved by choosing the
optimal threshold of classifier’s prediction, with respectto
the task of definition extraction, as well as to show that
these improved results are close to optimal, in the sense that
preliminary filtering by a simple grammar does not improve
them significantly, as it was the case in experiments described
in [2]. Attempts to use a different set of attributes will also be
mentioned.

We used the same corpus of instructive texts as in [1]
and [2]. It was automatically annotated morphosyntactically
and then manually annotated for definitions, and contains over
30000 tokens, almost 11000 sentences and 558 definitions.
These were divided by annotators into 6 types, depending on
the most recognisable marker of being a definition:

• copula verb (e.g. catis a domestic animal. . . )
• other verbs (e.g. wedefinea cat as a domestic animal. . . )
• punctuation (e.g. cat: a domestic animal. . . )
• layout (e.g. defined phrase in bold, large font, the defini-

tion in smaller font in the next line)
• pronoun
• other

We performed the experiments on two corpora: the whole
set (described above) and its copula-type subset (the same

sentences, but only 173 definitions). The experiments for other
languages, conducted by other members of the LT4eL project,
have shown that copula definitions have the highest probability
of being successfully extracted by means of machine learning
methods.

Note that the number of definitions in both sets is not
exactly equal to the number of what we later calldefinitional
sentences. Manually annotated definitions may begin or end in
the middle of a sentence, and span multiple sentences. How-
ever, the ML methods operate on sentence level: a definitional
sentence in this context is a sentence that has a nonempty
intersection with at least one definition. For instance, in the
whole set there are 546 definitional sentences.

The rest of the paper is organized as follows. In Section II
we describe the classification method used for definition ex-
traction. In Section III we discuss the possibilities of choosing
representative attributes of words for the task of definition
extraction. In Section IV we present differences in the achieved
results, with respect to chosen methodology of interpreting
classifier’s outcome. In Section V we present the influence of
manually constructed grammars on the accuracy of our defini-
tion extraction approach. Finally, we present the previouswork
done in the field in Section VI and conclude in Section VII.

II. BRF ALGORITHM

Random Forest (RF; [3]) is a homogeneous ensemble of
unpruned decision trees (e.g., CART, C4.5; [4]), where—at
each node of the tree—a subset of all attributes is randomly
selected and the best attribute on which to further grow the tree
is taken from that random set. Additionally, Random Forest
is an example of the bagging (bootstrap aggregating) method,
i.e., each tree is trained on a set bootstrapped from the original
training set. Decisions are reached by simple voting.

Balanced Random Forest (BRF; [5]) is a modification of
RF, where for each tree two bootstrapped sets of the same
size, equal to the size of the minority class, are constructed:
one for the minority class, the other for the majority class.
Jointly, these two sets constitute the training set.

Similarly as in [1], for the task of extracting definitions
from a set of documents by sentence classification, we use the
following version of the BRF algorithm:
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• split the training corpus intond definitions andnnd non-
definitions; the input data is heavily imbalanced, sond ≪
nnd;

• constructk trees, each in the following way:

– draw a bootstrap sample of sizend of definitions,
and a bootstrap sample of the same sizend of non-
definitions,

– learn the tree (without pruning) using the CART
algorithm, on the basis of the sum of the two
bootstrap samples as the training corpus, but:

– at each node, first select at randomm features
(variables) from the set of allM features (m ≪ M ;
selection without replacement), and only then select
the best feature (out of thesem features) for this
node; this random selection ofm features is repeated
for each node;

• the final classifier is the ensemble of thek trees and
decisions are reached by simple voting.

We have chosen the value ofm to be equal to
√

M in all
the experiments, although other sufficiently small values of m

could be used, as discussed in [3].
Up to k = 800 random trees were generated in each exper-

iment. We always quote the results for the best-performing
number of iterations in a given configuration (corpus, at-
tributes, optimisation and filtering). The best-performing num-
ber varied between 300 and 700 for different configurations.

III. C HOOSING THE ATTRIBUTES

In [1], a set of 10 permutations ofn-gram types was used for
document representation as machine learning attributes (Ta-
ble I). The set was carefully chosen by a half-statistical, half-
heuristic method (having in mind theχ2 statistic value with
respect to the class attribute and statistical independence of the
attributes). In these experiments 100 most commonn-grams
of each of the 10 types were used for document representation,
resulting in a dataset of ca. 900 binary attributes (fewer than
100 values forctag unigrams exist) and 10830 instances.
Data instances correspond to document sentences, while the
values of binary attributes indicate whether a particularn-gram
appears in the sentence.

TABLE I
THE PREVIOUSLY USED SET OFn-GRAM TYPES.

no. n-gram no. n-gram
1 base 6 base base
2 ctag ctag case 7 ctag ctag
3 ctag base 8 ctag case
4 base case 9 base base base
5 base ctag 10 ctag

In our current experiments we have tried a slightly different
method. For each of the possible 39 permutations of 1-grams,
2-grams and 3-grams of available features:base(base word
form), case(grammatical case) andctag (part of speech of the
word), we generate up to 100 most frequentn-grams. As not
for all permutations 100 differentn-grams exist, the final set
has around 3750 attributes.

In each iteration of 10-fold cross-validation we proceed as
follows:

• in the training set (90% of the corpus):

1) order the attributes according to the value of theχ2

statistic with respect to the class attribute,
2) select the top 900 attributes (those fitting the exam-

ple class best),
3) train the Balanced Forest classifier on the set;

• in the test set (10% of the corpus):

4) reject all attributes not on the top 900 list,
5) apply the classifier.

The number of attributes was not chosen arbitrarily. Previ-
ous experiments (cf. Table 4 in [1]) have shown that increasing
the number ofn-grams of each of the selected types over
100 does not improve the classification results. That is the
reason why in that method (with 10n-gram types, and not all
types had 100n-grams) about 900 attributes were used. For
comparability, in the new method we used a similar number
of attributes – chosen differently though.

The experiments were performed on the whole set of
definitions (as in [1]), and also on a version of the corpus
in which only the copula definitions were marked. We have
used the two known versions of the F measures to assess the
results:

Fα =
(1 + α) · (precision· recall)

α · precision+ recall

Fβ =
(1 + β2) · (precision· recall)

β2 · precision+ recall

The new method gave promising results for the copula
definitions:

TABLE II
COMPARISON OF ATTRIBUTE SELECTION METHODS, COPULA DEFINITIONS

attributes precision recall Fα=1 Fα=2 Fβ=2 Fα=5

preselected 16.50 84.40 27.60 35.59 46.30 50.06
χ2 17.60 81.70 28.96 36.90 47.27 50.84

Unfortunately it turned out to be disappointing when applied
to all definitions:

TABLE III
COMPARISON OF ATTRIBUTE SELECTION METHODS, ALL DEFINITIONS

attributes precision recall Fα=1 Fα=2 Fβ=2 Fα=5

preselected 21.37 69.04 32.64 39.60 47.74 50.33
χ2 20.60 65.20 31.31 37.87 45.50 47.91

This leads to a conclusion that the more general method of
choosingn-gram types for the task of definition extraction may
still perform better than direct selection of specificn-grams
in each classification iteration. The advantage of perform-
ing a purely statistical attribute selection lies in eliminating
any preconceived notions about the role of certain wordn-
gram types in discriminating definitional sentences from non-
definitional. On the other hand, a preselected set ofn-gram
types may be used without any further data analysis for
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document representation in other, similar problems, maybe
even different languages.

IV. OPTIMISING THE THRESHOLD

The task of extracting definitions from an annotated corpus
of documents was defined by the LT4eL project mentioned
above, which focused on facilitating the construction and
retrieval of learning objects (instructive material) in eLearning
with the help of language technology. The results of automatic
definition extraction were to be presented to the author or
the maintainer of a learning object as candidates for the glos-
sary of this learning object.

The intended use determines the appropriate approach. It is
obviously easier to reject wrong definition candidates thanto
go back to the text and search for missed good definitions
manually, so in this application recall was more important
than precision. In [1] this assumption was exploited at the
evaluation level only.Fα=2 andFβ=2 were taken into account
when comparing the approaches and datasets, to acknowledge
the preference for recall. The classifier’s prediction threshold
of being a definition was set arbitrarily to 0.5 there. As Bal-
anced Forest algorithm takes care of weighting the imbalanced
number of examples of both classes (definitions and non-
definitions), this approach does not favour any class, so the
ratio of correctly classified examples to all examples was
maximised.

However, it is worth noting that this is not exactly what
we need here. Favouring recall over precision, we would like
to focus more on the correctly classified positive examples,at
the inevitable cost of misclassifying some of the negative ones.
On the other hand, exactly how many times the recall is more
important than precision in this case is an empirical issue.
Answering this question would require user case evaluation
experiments and as such is out of the scope of this article.

We have focused on maximising theF2 measure, in two
known approaches to its calculation, supposing recall is twice
as important as precision.1 Note that thisintended biastowards
recall has nothing to do with the imbalance of the classes in
the training data (definitions vs. non-definitions). Thus, instead
of maximising the ratio of correctly classified examples, we
maximise the values of bothF2 measures by selecting the
classification threshold appropriately. This means we may
favour one of the classes over another, if this leads to an
increase of the value of the chosen measure.

For the results, cf. Table IV and Table V. There is a clear
improvement in terms of the chosen measures that can be
explained by the accompanying four figures. The peaks of the
graphs, especially those representing F-measures on the copula

1There are different views in literature on how this should bedone. For
instance, [6] usesFβ , which is in fact the same formula asFα, but giving
quadratic importance to the parameter instead of linear:Fα=4 = Fβ=2.
Something that could be interpreted as third version is usedfor instance in
[7], but at a closer look it turns out to be effectively equivalent to Fα –
used also in [2] and some medical papers – but encoding the intended result
differently: F0.5 is used to denote a measure giving equal weights to precision
and recall (asFα=1), andF0.75 is said to value recall three times more than
precision (asFα=3).

definition subcorpora, are located quite far to the right from 0.5
(that is, the default value used when there is no optimisation).
However, we have to be well aware of the needs: fine-tuning
the threshold value to one measure might also make the results
with regard to other measures worse. On the other hand, both
measures tend to peak close to each other (and not always
close to 0.5). That may suggest that in case of an unknown
corpus it is better to optimise with regard to a similar measure
than not to optimise at all—as the graph for this corpus might
peak far away from 0.5. The question what is a similar measure
and what is not remains open though, and we will not attempt
to address it in this paper.
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Fig. 1. F-measures values with respect to the chosen threshold on the dataset
with all definitions and preselected set of attributes
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Fig. 2. F-measures values with respect to the chosen threshold on the dataset
with copula definitions only and preselected set of attributes

V. A PPLYING A MANUALLY CREATED GRAMMAR

As described in [2], applying a very simple partial grammar
before the classifiers such as Naïve Bayes, decision trees ID3
and C4.5, AdaBoostM1 with Decision Stump, Support Vector
Machines and lazy classifier IB1 significantly improves the
results. In that approach all sentences rejected by the grammar
are unconditionally marked as non-definitions, and only those
accepted by the grammar may be marked as definitions in the
Machine Learning stage.
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TABLE IV
GAIN IN F-MEASURES FROM OPTIMISING THE THRESHOLD, ALL DEFINITIONS

preselected attributes χ2 attributes
threshold precision recall Fα=2 Fβ=2 precision recall Fα=2 Fβ=2

no optimisation 21.37 69.04 39.60 47.74 20.60 65.20 37.87 45.50
optimised forFα=2 27.80 57.69 42.47 47.48 26.38 55.13 40.44 45.26
optimised forFβ=2 22.30 68.50 40.52 48.43 23.48 60.99 39.80 46.22

TABLE V
GAIN IN F-MEASURES FROM OPTIMISING THE THRESHOLD, COPULA DEFINITIONS ONLY

preselected attributes χ2 attributes

threshold precision recall Fα=2 Fβ=2 precision recall Fα=2 Fβ=2

no optimisation 16.50 84.40 35.59 46.30 17.60 81.70 36.90 47.27
optimised forFα=2 25.42 67.78 43.58 50.84 31.78 60.56 46.52 51.27
optimised forFβ=2 22.68 77.22 42.86 52.14 28.26 65.00 45.35 51.59
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Fig. 3. F-measures values with respect to the chosen threshold on the dataset
with all definitions andχ2 attribute selection
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Fig. 4. F-measures values with respect to the chosen threshold on the dataset
with copula definitions only andχ2 attribute selection

Even such a primitive grammar (that could also be described
as a set of pattern-matching rules) rejected a significant part
of potential false positives, i.e. those sentences that would be
mistakenly marked as definitions by the classifiers. Thus, a sig-
nificant relative increase of precision (for different classifiers
from 36% up to 72%) was observed, accompanied only by a
minor decrease of recall (between 3.4% and 7.5%). In terms
of Fα=2 measure, the increase was between 21% and 40%.

TABLE VI
THE RESULTS OF THE SIMPLE PARTIAL GRAMMAR BY ITSELF

corpus precision recall Fα=2 Fβ=2

whole 9.10 89.60 22.69 32.36
copula 3.30 99.40 9.28 14.57

In case of the Balanced Random Forest classifier the gain
turned out to be much smaller, up to 3.4%—cf. Table VII.
Note that we look at the relative gain, not the absolute values
of precision, recall and F-measures, because those numbers
are not directly comparable: in [2] the experiments were not
performed as a ten-fold cross-validation, but on a separate
training and test subcorpora.

TABLE VII
GAIN OF APPLYING A SIMPLE GRAMMAR BEFORE THE CLASSIFIERS, ALL

DEFINITIONS

Fα=2 Fα=2 Fβ=2 Fβ=2

pre-filtering standard optimised standard optimised

no 39.60 42.47 47.74 48.43
yes 40.95 43.09 48.62 49.30
relative gain 3.4% 1.5% 1.8% 1.8%

Balanced Random Forest classifier, especially with thresh-
old optimisation, is inherently good enough not to require the
initial pre-filtering by the grammar. We conclude that there
is not that many potential false positives to be removed. This
is clear when we look at the results for copula definitions in
Table VIII.

TABLE VIII
GAIN OF APPLYING A SIMPLE GRAMMAR BEFORE THE CLASSIFIERS,

COPULA DEFINITIONS

Fα=2 Fα=2 Fβ=2 Fβ=2

pre-filtering standard optimised standard optimised

no 35.59 43.58 46.30 52.14
yes 36.35 43.67 47.07 52.29
relative gain 2.1% 0.2% 1.7% 0.3%

VI. PREVIOUS WORK

There is a substantial previous work on definition extraction,
as this is a subtask of many applications, including terminol-



ŁUKASZ DEGÓRSKI ET. AL: DEFINITION EXTRACTION: IMPROVING BALANCED RANDOM FORESTS 357

ogy extraction [8], the automatic creation of glossaries [9],
[10], question answering [11], [12], learning lexical semantic
relations [13], [14] and the automatic construction of ontolo-
gies [15]. Despite the current dominance of the ML paradigm
in NLP, tools for definition extraction are invariably language-
specific and involve shallow or deep processing, with most
work done for English and other Germanic languages, as well
as French.

For Polish, first attempts at constructing definition extrac-
tion systems are described—in the context of other Slavic
languages—in [16], and improved results are presented in
[17]. [2] describes improvements achieved by using a simple
manually created grammar.

The first NLP applications of the plain Random Forests are
apparently those reported in [18] and in [19], where they are
used in the classical language modelling task (predicting a
sequence of words) for speech recognition and give better
results than the usualn-gram based approaches.

The use of Balanced Random Forests for definition extrac-
tion in textual datasets was proposed in [1].

VII. C ONCLUSION

For definition extraction, the Balanced Random Forest clas-
sification method may be further improved by optimising the
threshold above which we classify a given sentence as a
definition. With this improvement, the algorithm does not gain
much more from initial filtering of the data by a very simple,
high-recall hand-crafted grammar, as it was in case of other
ML classifiers we experimented with; however, the gain, being
small, is always positive, so it may be worth trying, when the
best possible result is desired, even at the cost of complicating
the algorithm and lengthening the execution time. The same
applies to using a more advanced set of attributes that are
selected for each training set separately instead of using a
preselected single set.
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