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Abstract. This paper deals with the task of definition extraction with
the training corpus suffering from the problems of small size, high noise
and heavy imbalance. A previous approach, based on manually con-
structed shallow grammars, turns out to be hard to better even by such
robust classifiers as SVMs, AdaBoost and simple ensembles of classifiers.
However, a linear combination of various such classifiers and manual
grammars significantly improves the results of the latter.

1 Introduction

Machine learning (ML) methods gave a new stimulus to the field of Natural
Language Processing and are largely responsible for its rapid development since
the early 1990ies. Their success is undisputed in the areas where relatively large
collections of manually annotated and balanced data of reasonably good quality
are available; a prototypical such area is part-of-speech tagging.

Matters are less clear when only small amounts of noisy and heavily im-
balanced training data are available; in such cases knowledge-intensive manual
approaches may still turn out to be more effective. One such task is definition
extraction, which may be approximated by the task of classifying sentences into
those containing definitions of terms and those not containing such definitions.
Previous approaches to this task usually rely on manually constructed shallow
or deep grammars, perhaps with additional filtering by ML methods.

In this paper we deal with the task of extracting definitions from instructive
texts in Slavic, as described in Przepiórkowski et al. 2007b. The aim of definition
extraction here is to support creators and maintainers of eLearning instructive
texts in the preparation of a glossary: an automatically extracted definition is
presented to the maintainer who may reject it or, perhaps after some editing,
accept it for the inclusion in the glossary. It follows from this intended application
that recall is more important than precision here: it is easy to manually reject
false positives while it is difficult to manually find false negatives not presented
by the definition extraction system.

The approach described in Przepiórkowski et al. 2007b eschews Machine
Learning and relies on manually constructed grammars of definitions. The aim
of the work presented here is to examine to what extent the same task may be



carried out with the use of ML classifiers. In particular, we adopt the Polish data
set of Przepiórkowski et al. 2007a consisting of 10830 sentences, 546 of which
are definition sentences (i.e., they are or contain definitions). Obviously, this is
a relatively small data set on which to train classifiers. Moreover, the classes are
heavily imbalanced, with the ratio of definitions to non-definitions ≈ 1:19.

To complicate matters further, it is often not clear even for humans whether
a given sentence contains a definition or not: whenever a sentence describes a
certain characteristic of a notion, the annotator must decide whether this charac-
teristic is definitional or just one of many traits of the notion. Correspondingly,
the inter-annotator agreement reported in Przepiórkowski et al. 2007a is very
low: when measured as Cohen’s κ it is equal to 0.31 (the value of 1 would indi-
cate perfect agreement, the value of 0 — complete randomness).

In the rest of the paper we first (§2) briefly present the manual grammar
approach of Przepiórkowski et al. 2007a. In the following two sections (§§3–4)
we report on the experiments of applying ML classifiers and homogeneous en-
sembles of classifiers to the same data, with results uniformly worse than those
of manually constructed grammars. However, the ensuing section (§5) demon-
strates that a combination of ML classifiers and linguistic grammars, while still
not fully satisfactory, significantly improves on the results of either approach.
Sections presenting some comparisons, suggesting future work and drawing con-
clusions end the paper (§§6–7).

2 Manual Grammars

As described in Przepiórkowski et al. 2007a, a rather simple shallow grammar of
Polish definitions, containing 48 rules (some of them consisting of rather complex
regular expressions) was developed on the basis of a development corpus of 5218
sentences (containing 304 definitions4) and fine tuned on a thematically different
corpus of 2263 sentences (with 82 definitions). The whole grammar development
process took less than 2 weeks of intensive work. The resulting grammar, called
GR′, and a relatively sophisticated baseline grammar B3, looking for copula and
similar clues for definitions, were then tested on an unseen corpus containing
3349 sentences (with 172 definitions). The results, in terms of precision (P),
recall (R), the standard F-measure (F1), as well as two F-measures giving twice
(F2) and five times (F5; cf. Saggion 2004) more weight to recall, are presented
in Table 1(a).5

Using the same grammars, we evaluated them on the whole corpus (hence,
also on parts of the corpus which were seen during grammar development),
obtaining the results in Table 1(b). Thus, any classifier with F2 higher than 36,
4 Note that these are definitions, not definition sentences: one sentence may contain a
number of definitions and, although rarely, a definition may be split into a number
of sentences.

5 We follow Przepiórkowski et al. 2007a,b in using F2 as the main measure summarising
the quality of the approach, but with an eye on F5. Also, we adopt their formula for
Fα as equal to (1+α)·P·R

α·P+R
.



(a) testing corpus (b) whole corpus
P R F1 F2 F5 P R F1 F2 F5

B3 10.54 88.46 18.84 25.54 39.64 9.12 89.56 16.55 22.73 36.26
GR′ 18.69 59.34 28.42 34.39 43.55 18.08 67.77 28.54 35.37 46.48

Table 1. Evaluation of B3 and GR′ on (a) the testing corpus and on (b) the whole
corpus

when measured with the standard 10-fold cross-validation (10CV) procedure on
the whole corpus, would clearly improve on these results.

3 Single Classifiers

In the experiments reported here we assumed a relatively simple feature space:
a sentence is represented by a vector of binary features, where each feature
represents an n-gram, present or not in a given sentence. More specifically, after
some experiments we adopted as features unigrams, bigrams and trigrams of
base forms, parts of speech and grammatical cases. We chose those n-grams
which were most frequent in definitions or in non-definitions. Given the 9 n-
gram types (e.g., single base forms, bigrams of base forms, trigrams of cases,
etc.), for each type we selected 100 most frequent n-grams of this type. As a
result, each sentence is represented by a binary vector of length 781.6

For the experiments we used the WEKA tool (Witten and Frank, 2005) and
its implementation of simple decision trees (ID3 and C4.5), Naïve Bayes (NB)
classifiers, a simple lazy learning classifier IB1, as well as the currently more
popular classifiers AdaBoost (AdaBoostM1 with Decision Stumps; AB+DS) and
Support Vector Machines (nu-SVC; cf. http://www.cs.iastate.edu/~yasser/
wlsvm/). Because of the very high prevalence of one class, we experimented with
different ratios of subsampling, in each case using all definitions: 1:1 (equal num-
ber of definitions and non-definitions), 1:5 (5 non-definitions for each definition),
1:10 and 1:all (≈ 1:19, i.e., no subsampling). All experiments followed the gen-
eral 10-fold cross-validation (10CV) methodology, with the corpus split randomly
into 10 buckets of roughly the same size in such a way that each bucket contains
roughly the same number of definitions (a balanced random split). The results
are presented in Table 2.

As was expected, SVM and AdaBoost turned out to be the best classifiers for
the task at hand, as measured by F2. However, even the best classifier, based on
Support Vector Machines with the 1:5 ratio of subsampling, turned out to give
results significantly worse than the manual grammar GR′. Moreover, somewhat
surprisingly, different ratios of subsampling turned out to be optimal for different
types of classifiers: for AdaBoost the best ratio was 1:1, for C4.5, ID3, IB1 and
SVM it was 1:5, while for Naïve Bayes it turned out to be 1:all (no subsampling).
6 The length is shorter than 900 because the numbers of grammatical classes, cases
and bigrams of cases are smaller than 100 each.



Classifier Ratio P R F1 F2 F5 Comments
NB 1:1 9.50 60.07 16.41 21.66 31.84

1:5 10.53 54.58 17.65 22.79 32.16
1:10 10.75 51.83 17.80 22.79 31.66
1:all 10.94 49.82 17.94 22.80 31.28

C4.5 1:1 8.25 59.89 14.50 19.41 29.31
1:5 14.81 30.04 19.84 22.37 25.65
1:10 19.48 16.48 17.86 17.37 16.92
1:all 32.35 10.07 15.36 13.07 11.38

ID3 1:1 8.66 66.85 15.33 20.63 31.53
1:5 12.79 37.91 19.12 22.91 28.56
1:10 14.78 26.00 18.85 20.75 23.08
1:all 15.65 17.77 16.64 17.00 17.37

IB1 1:1 9.68 50.73 16.26 21.02 29.73
1:5 15.94 26.19 19.82 21.57 23.66
1:10 20.00 18.86 19.42 19.23 19.04
1:all 21.85 14.28 17.28 16.15 15.16

nu-SVC 1:1 11.79 69.05 20.14 26.37 38.16 nu=0.5
1:5 20.75 37.55 26.73 29.57 33.08 nu=0.2
1:10 27.11, 27.66 27.38 27.47 27.56 nu=0.1
1:all 33.33 16.67 22.22 20.00 18.18 nu=0.05

AB+DS 1:1 11.59 68.32 19.82 25.97 37.63 1000 iterations
1:5 28.13 23.44 25.57 24.82 24.11 1000 iterations

Table 2. Performance of the classifiers for different ratio of positive to negative exam-
ples evaluated on the whole corpus with balanced random split

4 Homogeneous Ensembles

In the next stage of experiments, homogeneous ensembles of classifiers were con-
structed. Experiments were conducted with the 6 types of classifiers with the
best subsampling (cf. the numbers in bold in Table 2), plus additional subsam-
pling ratios of IB1, SVM and AdaBoost which gave promising results in other
experiments, not reported here for lack of space. In case of Naïve Bayes, the
best performance was obtained without subsampling, although the results were
only insignificantly better than 1:5 and 1:10 subsampling, with the subsam-
pling configurations performing better in ensembles. For this reason NB without
subsampling was not considered further. The summary of the best remaining
ensembles, in comparison with the two grammars, is presented in Table 3. For
each of these 9 classifiers, homogeneous ensembles (i.e., collections of classifiers
of the same type) were constructed consisting of 1, 3, 5, 9 and 15 classifiers, with
the final decision reached via simple voting. In most cases, with the exception of
one type of IB1 and one type of AdaBoost, ensembles of 15 or 9 classifiers gave
best results. Note that, again, SVM and AdaBoost gave best results and, again,
while the ensemble of 9 SVMs (with 1:5 subsampling) reached F2 close to that
of GR′ (31.49 vs. 34.39/35.37), no classifier surpassed the manual approach in
terms of the two F-measures favouring recall.



Classifier P R F1 F2 F5

9 × nu-SVC (1:5) 24.11 37.18 29.25 31.49 34.10
9 × AdaBoost 1000 it. (1:1) 13.24 72.34 22.39 29.08 41.48
15 × ID3 (1:5) 24.73 29.30 26.82 27.60 28.43
15 × NB (1:10) 10.75 52.01 17.81 22.81 31.71
9 × C4.5 (1:5) 24.07 24.91 24.48 24.62 24.76
15 × IB1 (1:5) 17.80 24.54 20.63 21.79 23.08
9 × nu-SVC (1:10) 30.79 26.56 28.52 27.83 27.18
1 × AdaBoost 1000 it. (1:5) 28.13 23.44 25.57 24.82 24.11
1 × IB1 (1:10) 20.00 18.86 19.42 19.23 19.04
Grammar B3 9.12 89.56 16.55 22.73 36.26
Grammar GR′ 18.08 67.77 28.54 35.37 46.48

Table 3. Performance of the selected classifiers and the grammars evaluated on the
whole corpus (10CV)

At this point, much more time had been spent on ML experiments than the
“less than two weeks” spent by Przepiórkowski et al. 2007a on the development
of manual grammars for the same task. Of course, this does not warrant the
conclusion that definition extraction should be approached linguistically rather
than statistically, as many factors play a role here, including the level of exper-
tise in grammar writing, the experience in constructing classifiers, the assumed
feature space, the exact character of the data, etc. Nevertheless, it seems that
in case of small, noisy, imbalanced data, a manual “linguistic” approach may be
a viable alternative to the dominant statistical machine learning paradigm.

5 Linear Combination of Grammars and Ensembles

If simple homogeneous ensembles of common classifiers do not give better results
than manual grammar, perhaps they can be combined with the grammars to
improve their results? Various such modes of combination are possible and, in a
different paper, we describe some promising results of a sequential combination
of the baseline grammar B3 and ML classifiers (Degórski et al., 2008).

In this section we present the results of a linear combination of the 9 en-
sembles of classifiers introduced in the previous section, each treated as a single
classifier here, with the two grammars: B3 and GR′.

In order to assign weights to particular classifiers, let us first introduce some
notation. Let D+(x) mean that x is a definition, D−(x) — that x is not a
definition, D+

i (x) — that x is classified as a definition by the classifier i, D−i (x)
— that x is classified as a non-definition by the classifier i, and finally, TPi, etc.
are the numbers of true positives, etc., according to the classifier i.

We can estimate the probability p+
i (x) that a given sentence x is really a

definition, if the classifier i says that it is a definition, in the following way:

p+
i (x) = p(D+(x)|D+

i (x)) =
p(D+(x) ∧ (D+

i (x)))
p(D+

i (x))
≈ TPi

TPi + FPi



Similarly, given that the classifier says that x is not a definition, the probability
of x actually being a definition is:

p−i (x) = p(D+(x)|D−i (x)) =
p(D+(x) ∧ (D−i (x)))

p(D−i (x))
≈ FNi

FNi + TNi

Let us then define di(x) as follows:

di(x) =


TPi

TPi+FPi
, if x is classified as definition

FNi

FNi+TNi
, if x is classified as non-definition

Assuming that each of the N classifiers votes for the definitory status of x
with the strength proportional to the estimated probability given above, the
decision of the whole ensemble of N classifiers may be calculated as:

d(x) =
∑N

i=1 di(x)
N

If d(x) > δ, the linear combination classifies x as a definition, otherwise — as a
non-definition.

What is the best value of the cut-off point δ? The examination of different
values close to the estimated probability that a sentence is a definition (cf. Ta-
ble 4) shows that for δ = 0.08, F2 reaches almost the value of 39, significantly
higher than either the F2 for the grammar GR′ alone or the best F2 for pure
ML classifiers.7

It is interesting to what extent the improvement is the effect of combining
various types of ML classifiers, and to what extent the presence of grammars B3
and GR′ affects the results. To this end, final experiments were performed, where
three linear combinations of classifiers were trained on the part of the corpus
seen when developing the grammars (cf. §2) and tested on the remaining unseen
portion of the data.8 These combinations are: the 9 ML classifiers (9ML), 9 ML
classifiers and B3 (9ML+B3), and finally all 11 classifiers (9ML+B3+GR′). The
best results of these combinations (i.e., for the best cut-off points) are presented
in Table 5 and they clearly indicate the crucial role played by the full grammar
GR′ in such heterogeneous ensembles.9

7 In fact, in some of the other experiments, with weights assigned in less principled
ways, F2 exceeded 39. Moreover, this value is also higher than F2 for the unanimous
voting combination of B3 and GR′, where F2 = 37.28, as measured on the whole
corpus.

8 This way of evaluation is unfavourable both to the grammars (they are tested on data
unseen during their development) and to ML classifiers (they are trained on a smaller
part of the corpus than in case of 10CV). When tested on the whole corpus, with
10CV, the best F2 results for 9ML, 9ML+B3 and 9ML+B3+GR′ were, respectively,
35.80, 35.75 and, as already reported, 38.90. Note that the first two results, for
combinations without GR′, are still lower than the results for the combination of B3
and GR′ mentioned in the previous footnote.

9 But note that here the result of 9ML+B3+GR′ is only slightly better than that of
GR′ alone as tested on the same data; cf. Table 1(a).



δ P R F1 F2 F5

0.05 12.53 84.25 21.81 28.97 43.11
0.06 17.63 71.79 28.31 35.48 47.49
0.07 21.32 61.72 31.69 37.82 46.90
0.08 25.17 53.48 34.23 38.90 45.04
0.09 27.08 46.52 34.23 37.54 41.55
0.10 30.61 39.74 34.58 36.15 37.86
0.11 32.66 32.60 32.63 32.62 32.61
0.12 36.97 28.57 32.23 30.91 29.70
0.13 40.64 25.46 31.31 29.08 27.15

Table 4. Performance of the linear combination of classifiers for various values of δ as
evaluated on the whole corpus (10CV)

classifier δ P R F1 F2 F5

9ML 0.07 18.16 40.11 25.00 28.59 33.38
9ML+B3 0.07 18.56 41.21 25.60 29.30 34.25
9ML+B3+GR′ 0.06 17.19 57.14 26.43 32.20 41.19

Table 5. The effect of grammars on the performance of the linear combination of
classifiers, evaluated on the testing corpus

6 Comparisons and Future Work

We are not aware of other work of similar scope comparing and combining ma-
chine learning and linguistic approaches to definition extraction, or to other
NLP tasks based on small, noisy and heavily imbalanced data, although there
is a rich literature on combining inductive and manual approaches to tagging,
where a similar synergy effect is usually observed. Previous work on definition
extraction, mainly for English and other Germanic languages, usually consists of
a simple sequential combination of grammatical parsing and ML filtering. Often
only precision or only recall is cited, so it is difficult to directly compare our
approach to these other approaches.

There are very many possible improvements to the work reported here, start-
ing from the selection of features, through the selection of classifiers for the linear
combination, to the better assignment of weights to particular (homogeneous en-
sembles of) classifiers. Moreover, in other work (Degórski et al., 2008) we describe
a sequential combination of the baseline grammar B3 and ML classifiers which
achieves results comparable to GR′, but without the need for the development of
a grammar more sophisticated than B3. A rather different approach worth purs-
ing seems to be the employment of random forests (Breiman, 2001). Although
basic random forests have already been applied in NLP with satisfactory results
(Xu and Jelinek, 2004), balanced random forests (Chen et al., 2004), particularly
well suited in heavily imbalanced classification tasks, still remain to be explored
(see Kobyliński and Przepiórkowski 2008).



7 Conclusion

In the days of the — fully deserved — dominance of inductive methods, any
solutions involving the manual coding of linguistic knowledge must be explicitly
justified. We have shown that, in case of a task relying on very low-quality
(small, noisy, imbalanced) training data, manual methods still rival statistical
approaches. On the other hand, even in such difficult tasks, ML may be very
useful, not as a replacement of hand-coded grammars, but as a support for
them: our combination of linguistic grammars and homogeneous ensembles of
various classifiers achieves results significantly higher than either of the two
pure approaches. We conclude that, while firing linguists may initially increase
the performance of a system, perhaps a few of them should be retained in a
well-balanced heterogeneous NLP team.
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