
The WSD Development Environment

Rafał Młodzki and Adam Przepiórkowski

Institute of Computer Science, Polish Academy of Sciences
rmlodzki@gmail.com, adamp@ipipan.waw.pl

Abstract
In this paper we present the Word Sense Disambiguation Development Environment (WSDDE), a platform for testing various Word
Sense Disambiguation (WSD) technologies, as well as the results of first experiments in applying the platform to WSD in Polish. The
current development version of the environment facilitates the construction and evaluation of WSD methods in the supervised Machine
Learning (ML) paradigm using various knowledge sources. Experiments were conducted on a small manually sense-tagged corpus of
13 Polish words. The usual groups of features were implemented including bag-of-words, parts-of-speech, words with their positions,
etc. (with different settings), in connection with popular ML algorithms (including Naive Bayes, Decision Trees and Support Vector
Machines). The aim was to test to what extent standard approaches to the English WSD task may be adopted to free word order and rich
inflection languages such as Polish. In accordance with earlier results in the literature, the initial experiments suggest that these standard
approaches are relatively well-suited for Polish. On the other hand, contrary to earlier findings, the experiments also show that adding of
some features beyond bag-of-words increases the average accuracy of the results.

Keywords: word sense disambiguation, machine learning, feature selection, Polish

1. Introduction
The Word Sense Disambiguation (WSD) task consists

of choosing the most appropriate sense of a word from all
its senses in a given context. For example in the context:

(K1) Chodzi mi o to, aby język giętki
Powiedział wszystko, co pomyśli głowa.
Juliusz Słowacki1

the word “język” is used in the meaning “tongue”, and in
the context:

(K2) W języku słowackim da się powiedzieć
mniej więcej tyle, co w języku polskim.2

the most appropriate sense for język is “language”.
Accurate WSD could be of great importance for numer-

ous tasks in Natural Language Processing (NLP), such as
text categorization, information retrieval or machine trans-
lation. The adjective “accurate” is essential (Agirre and
Edmonds, 2006). So far the best accuracy has been ob-
tained (English) within the supervised Machine Learning
(ML) paradigm.

Despite the above and the fact that WSD in English
dates back to the 1950s, hardly any work on this subject
has been reported for Polish (one exception is the pre-
liminary analysis in Baś et al. 2008). Moreover, there
is currently no publicly available sense-tagged corpus of
Polish of a decent size. Both these issues are addressed
in the National Corpus of Polish project (Pol. Narodowy
Korpus Języka Polskiego; NKJP; http://nkjp.pl/;

1Roughly:
Let my nimble tongue (język)
represent the Mind.
Juliusz Słowacki

2In the Slovak language (język) one can express as much as,
more or less, in Polish.

Przepiórkowski et al. 2008, 2009)3, where the necessary
resources and tools are to be created. The remainder of this
paper presents the first step in this direction: the WSD De-
velopment Environment (WSDDE) and initial experiments
in applying this platform to WSD in Polish, for the time
being using a small sense-tagged corpus from Baś et al.
2008.

2. WSD Development Environment
The environment is a bundle of a number of resources,

applications, procedures and scripts which facilitate the de-
velopment and evaluation of WSD methods. The overall
scheme of the environment is depicted in Figure 1. There
are several possible scenarios of how to use the environ-
ment.

Figure 1: The scheme of the WSDDE

In the simplest scenario the user creates a single WSD
method by specifying various settings to be described in

3See also Przepiórkowski and Bański 2009 in these proceed-
ings.



detail below (e.g., the source and number of training ex-
amples, the size of the bag-of-words window, the partic-
ular Machine Learning algorithm, feature filtering meth-
ods, etc.) and runs the application. On the basis of these
settings, an appropriate WSD method will be prepared,
trained and evaluated. The results can be saved in the
database. The settings are divided into parameters of fea-
ture generators (e.g., the size of the bag-of-words window)
and those that are not directly connected with the genera-
tion of features (e.g., an ML algorithm).

Another scenario is to create many WSD methods at
once. One way to achieve this is to underspecify some set-
tings in the configuration file. For example, the user can
set {1, 5, 10, 20, 40} as the size of the bag-of-words win-
dow. The application will generate all the possible meth-
ods combined from all the settings (i.e., one method where
this size is 1, another method where the size is 5, etc.). If
the number of possible methods is too large, then a random
sample is created. Another way to do this is to choose some
WSD methods (e.g., the best 5% among the ones evaluated
so far and stored in the database) and generate other WSD
methods that differ from those in one or two parameters.
All the results saved in the database can be analysed from
different points of view with prepared SQL queries (part of
WSDDE). The results reported in § 3. have been obtained
with these queries.

2.1. Corpora

This group of settings informs the corespondent WSD
manager which corpus is to be used to train and test the
WSD method. The WSDDE contains a tool for import-
ing sense-tagged corpora in text format. Since there are
not many such corpora, it also contains a tool for creat-
ing sense-tagged-like corpora from the IPI PAN Corpus
(http://korpus.pl/; Przepiórkowski 2004) using
the technique of pseudowords (Gale et al., 1992; Schütze,
1992).4 The user can also specify the number of examples
within the training and test sets. There is a possibility to
choose the cross-validation method instead of evaluating
WSD methods on a test set.

2.2. Feature Generation

The feature generator uses user settings and contexts
from the training set to generate a group of features spe-
cific to it and then is used to compute feature values for all
the contexts. Due to the open architecture of WSDDE, it is
easy to implement one’s own feature generators or override
the existing ones (by changing the number of parameters or
their semantics). In the current version of the system, the
user can choose from the following built-in feature gener-
ators: thematic feature generator, structural feature gener-
ator I/II and keyword generator.

4The idea of this technique is as follows. Two monose-
mous words A and B are fused into one artificial bisemous
(psuedo)word AB with senses A and B, and all occurrences of
words A and B in the corpus are replaced with the pseudoword
AB. By knowing which original word occurred in which AB po-
sition, we know the senses of all occurrences of AB.

2.2.1. Thematic Feature Generator (TFG)
This generator is the source of features which could

characterise the domain or general topic of a given con-
text. This is achieved by checking whether certain words
are present in the wide context (e.g., up to 50 positions
to the left or the right from the disambiguated word). It
seems that the occurrence of a word in such a distant po-
sition cannot indicate anything but the general topic of a
context, hence the name of the generator. The behaviour
of the generator is currently controlled by three basic pa-
rameters:

1. The size of the bag-of-words window: this parame-
ter determines the size of the text window the words
are taken from. Its value is an integer in the range of
0–100, where values within the range 20–50 are most
common.

2. Lemmatisation indicates whether it is the ortho-
graphic word form (0) or the base form (lemma; 1)
that is considered. The lemmatisation is provided by
the TaKIPI tagger (Piasecki, 2007)5.

3. Binary indicates whether feature values are binary
(presence or absence; 0) or continuous (frequencies;
1).

Depending on the settings of these parameters, the gen-
erated features indicate the presence or the frequency of
particular word forms or lemmata in the text window of a
given size.

For example, if the training set consists only of two
contexts K1 and K2 given in § 1., and the only generator is
the thematic feature generator with parameters set respec-
tively to (10,1,1) (i.e., window size 10, lemma frequencies
as features), then a fragment of the feature vector for język
could be depicted as in Table 1.

giętki głowa słowacki powiedzieć polski
K1 1 1 1 1 0
K2 0 0 1 1 1

Table 1: Some features and feature vectors for the topical
feature generator and training set {K1, K2}

This generator, like any other in WSDDE, can be easily
modified; for example, lemmatisation could be replaced by
stemming or asymmetrical text windows could considered
for bag-of-words.

2.2.2. Structural Feature Generator I (SFG1)
This generator produces features which can describe

some structural properties of the disambiguated word,
namely, the presence of particular words on a particular
position in the close proximity to the disambiguated word.
A small context (window up to the size of 5) is consid-
ered. The behaviour of the generator is controlled by three
parameters:

1. The size of the window: this parameter determines
the size of the text window considered and, hence, the

5See also Karwańska and Przepiórkowski 2009.



size of the feature vector. Its value is an integer in the
range of 0–5, where values 0–3 are most common.

2. Lemmatisation indicates whether orthographic or
base forms are considered.

3. Binary indicates whether feature values are binary or
continuous.

For example, if the training set consists only of two
contexts K1 and K2, and the only generator is the structural
feature generator I with parameters set to (2,1,1), then the
part of the feature vector could be depicted as in Table 2.

w-1 słowackim+1 da+2 ,-2 aby-1 giętki+1
K1 0 0 0 1 1 1
K2 1 1 1 0 0 0

Table 2: Some features and feature vectors for the struc-
tural feature generator I and training set {K1, K2}

2.2.3. Structural Feature Generator II (SFG2)
This generator also generates features describing struc-

tural properties, but it works at the part of speech (POS)
level: it checks which parts of speech occur in which posi-
tion in the close proximity of the disambiguated word. The
behaviour of the generator is controlled by three parame-
ters:

1. The size of the window. This parameter determines
the size of the window the parts of speech are taken
from. Its value is an integer in the range of 0–5 where
values around 0–3 are most common.

2. Tagset indicates which tagset is used. One can
choose between the original fine-grained IPI PAN
Tagset (Przepiórkowski and Woliński, 2003a,b)6 and
a coarse-grained tagset consisting of 5 main parts of
speech.

3. Binary indicates whether feature values are binary or
continuous.

For example, if the training set consists only of two
contexts K1 and K2 and the only generator is the structural
feature generator II with parameters set to (2,basic,1), then
the feature vector could be depicted as in Table 3.

prep-1 adj+1 verb+2 interp-2
K1 0 1 1 1
K2 1 1 1 0

Table 3: Some features and feature vectors for structural
feature generator II and training set {K1, K2}

2.2.4. Keyword Feature Generator (KFG)
The keyword feature generator creates features related

to the disambiguated word itself. In the current version,
it generates the following features: the particular ortho-
graphic form of the word, its part of speech, and whether it
starts with a capital letter.

6See also Przepiórkowski 2009.

język języku loc nom sg capitalized
K1 1 0 0 1 1 0
K2 0 1 1 0 1 0

Table 4: Features and feature vectors for the keyword fea-
ture generator and training set {K1, K2}

2.2.5. Other Feature Generators
Apart from the above basic feature generators, some

more experimental generators are available, including the-
matic feature generator II based on the WordNet hierarchy
and structural feature generator III based on a naive attempt
to recognise some grammatical relations (e.g., the closest
noun is treated as the subject, etc.).

2.3. Feature Selection
These settings determine how to select features. One

can use all the feature selection algorithms from the
WEKA package (or one’s own, if they are compatible with
WEKA interfaces). Generally, feature selection based on
feature ranking works much faster than feature selection
based on subsets. It is possible to use the second filter af-
ter the first one, e.g., at first one makes feature selection
with feature ranking, e.g., 200 features remain, and then
one makes feature selection on these remaining 200 fea-
tures based on feature subsets.

2.4. Machine Learning Algorithms
This setting indicates which ML algorithms should be

used. All classifiers from the WEKA package (Witten and
Frank, 2005) are available. By default they are run with
default parameters. It is also possible to add additional
classifiers.

2.5. Runtime
This setting informs the controller about the maximum

time and memory size for learning and evaluation of the
given method.

2.6. Reports
These settings concern the whole experiment (not a sin-

gle WSD method) and indicate what kind of reports —
based on prepared SQL queries — should be produced.

3. Experiments
In order to compare the results with the literature, we

based the experiments on the toy corpus used in Baś et al.
2008 — the only previous article about Polish WSD known
to us. As a starting point we used the settings of the best
WSD method from the cited article: NaiveBayes as the ML
algorithm, the size of a bag-of-word window equal to 20,
lemmatisation turned on both for bag-of-word and word-
with-its-position (WWIP) features. We also used — as in
Baś et al. 2008 — leave-one-out cross-validation as the
evaluation method. On the other hand, feature selection
was always based only on the current training set (with-
out the left-one-out example). This more standard evalu-
ation procedure resulted in a smaller accuracy score: on



the average about 10% (sic!). Also the algorithm of fea-
ture selection was different — first we took 200 features7

with the highest information gain (InfoGain in WEKA),
and then we used subset feature selection (CfsSubsetEval
in WEKA) on this set in order to filter out features which
were mutually correlated. Feature selection was carried
out for all the features (not only for bag-of-words features,
as in the cited article).

The WSD method described above (NaiveBayes,
bag-of-words 20, no POS-features, no WWIP-features)
achieved a 74% accuracy on that corpus (unweighted av-
erage over all WSD tasks). Next we carried out an ex-
periment which aim was to evaluate WSD methods with
settings differing slightly from what was mentioned above
(the baseline). They differ in the use of structural feature
generator I and II (POSs and WWIPs), the keyword fea-
ture generator and in the parameters of the thematic feature
generator (the size of the window).

We obtained the following results (see Table 5):
by adding extra features (generated by SFG1(2,1,1),
SFG2(2,basic,1) and KFG()) accuracy was improved by
about 2% (up to 76%). By resizing the bag-of-words
window up to 30 (using only features from the thematic
feature generator) it was possible to obtain a 77% accu-
racy (+3% compared to the baseline). Adding extra fea-
tures (SFG1(2,1,1), SFG2(2,basic,1), KFG()) to that re-
sized window resulted in more than 80% accuracy, which
is about 6% more than the baseline. A further resizing of
the bag-of-words window yielded 78% for bag-of-words
features and 82% for bag-of-words features with additional
features. A bigger size of bag-of-words does not lead
to significant improvements. ML algorithms other than
NaiveBayes had a much lower accuracy (DecisionTrees)
or worked much much slower (SVM).

bag-of-words
size

extra features accuracy

20 74
20 SFG2(2,basic,1),

SFG1(2,1,1),
KFG()

76

30 77
30 SFG2(2,basic,1),

SFG1(2,1,1),
KFG()

80

40 78
40 SFG2(2,basic,1),

SFG1(2,1,1),
KFG()

82

50 78
50 SFG2(2,basic,1),

SFG1(2,1,1),
KFG()

81

Table 5: The results of the experiment

The share of features generated by particular generators
in the feature vector is shown in Table 6.

7This number is a compromise between quality and efficiency,
established during previous experiments.

Feature Generator percent
Thematic 81

Structural I 7
Structural II 6

Keyword 6

Table 6: Constitution of feature vector in relation to feature
generators (average over all cases when all build-in feature
generators were used)

4. Conclusions
The first obvious conclusion is that the bigger a bag-

of-word window is used, the more considerable level of
accuracy is achieved.

As far as the extra features and their impact on the re-
sults are concerned, it is possible to explain the difference
(a few percent) in comparison to the cited article by dif-
ferences in feature selection (described above) and the use
of the keyword feature generator. In the present article we
use feature selection for all the features, whereas in the
cited article it was only used for the bag-of-words features
and all the other features were simply added without filtra-
tion, which could have been a source of noise. The use of
the keyword feature generator resulted in the improvement
in the WSD task for POWÓD (‘reason’ or ‘plaintiff’) from
88% to 96%: the genitive of POWÓD ‘reason’ is powodu,
whereas the genitive of POWÓD as ‘plaintiff’ is powoda8.
Also plural forms of plaintiff (e.g., powodzi) are rather un-
common. Features generated by the keyword feature gen-
erator are rather useless in WSD of English, but for Polish
with its rich inflection it may have some importance.

The above confirms that the standard approach which
was used for WSD in English also works quite well for
Polish. Accuracy at the level of about 80% is relatively
high, given such a basic approach and considering the
small number of examples in training sets (less than 100
per sense); previous experiments on pseudowords (Table
7) have shown that accuracy grows significantly with the
growth of the number of examples up to 500 examples per
sense.

Of course, results obtained on the basis of such a small
corpus are not very reliable. We deliberately do not present
more detailed results, nor do we use more advanced fea-
tures, in order to avoid presenting results which might be
dubious. We wait until a large high-quality sense-tagged
corpus for Polish is available within the framework of
NKJP.

References
Agirre, E. and Edmonds, P., editors (2006). Word Sense

Disambiguation: Algorithms and Applications, vol-
ume 33 of Text, Speech and Language Technology.
Springer, Dordrecht.

Baś, D., Broda, B., and Piasecki, M. (2008). Towards
Word Sense Disambiguation of Polish. In Proceedings
of the International Multiconference on Computer Sci-

8Note that genetivus seems to be the most frequent case in
Polish (Przepiórkowski, 2005).



number of ex-
amples

accuracy time

25 54,3 148,21
50 61,29 142,74
100 64,41 208,14
200 76,76 303,85
300 80,39 441,95
400 81,33 682
500 82,45 996,81
600 83,23 1171,64
700 83,83 1600,9
800 84,36 1885,36
900 84,42 2614,07
1000 84,92 2919,66
1100 84,53 3066,28
1200 84,99 4124,69
1300 85,37 4429,55
1400 85,07 5549,63
1500 84,54 6230,39
1600 84,91 7008,87
1700 85,77 7927,07
1800 85,56 9229,4
1900 85,92 9986,21
2000 85,8 10293,14

Table 7: The size of training sets, accuracy and time of
computations for corpus of 2-pseudowords generated in
WSDDE

ence and Information Technology (IMCSIT 2008): Com-
putational Linguistics – Applications (CLA’08), pages
73–78, Wisła, Poland. PTI.

Gale, W. A., Church, K. W., and Yarowsky, D. (1992).
Work on statistical methods for word sense disambigua-
tion. In AAAI Fall Symposium on Probabilistic Ap-
proaches to Natural Language, pages 54–60, Cam-
bridge.

Karwańska, D. and Przepiórkowski, A. (2009). On
the evaluation of two Polish taggers. In S. Goźdź-
Roszkowski, editor, The proceedings of Practical Appli-
cations in Language and Computers PALC 2009, Frank-
furt am Main. Peter Lang. Forthcoming.

Piasecki, M. (2007). Polish tagger TaKIPI: Rule based
construction and optimisation. Task Quarterly, 11(1–2),
151–167.

Przepiórkowski, A. (2004). The IPI PAN Corpus: Pre-
liminary version. Institute of Computer Science, Polish
Academy of Sciences, Warsaw.

Przepiórkowski, A. (2005). The IPI PAN Corpus in num-
bers. In Z. Vetulani, editor, Proceedings of the 2nd Lan-
guage & Technology Conference, pages 27–31, Poznań,
Poland.

Przepiórkowski, A. (2009). A comparison of two mor-
phosyntactic tagsets of Polish. In V. Koseska-Toszewa,
L. Dimitrova, and R. Roszko, editors, Representing
Semantics in Digital Lexicography: Proceedings of
MONDILEX Fourth Open Workshop, pages 138–144,
Warsaw.

Przepiórkowski, A. and Bański, P. (2009). Which XML
standards for multilevel corpus annotation? In Pro-
ceedings of the 4th Language & Technology Conference,
Poznań, Poland. Forthcoming.

Przepiórkowski, A. and Woliński, M. (2003a). A flexemic
tagset for Polish. In Proceedings of Morphological Pro-
cessing of Slavic Languages, EACL 2003, pages 33–40,
Budapest.

Przepiórkowski, A. and Woliński, M. (2003b). The unbear-
able lightness of tagging: A case study in morphosyntac-
tic tagging of Polish. In Proceedings of the 4th Interna-
tional Workshop on Linguistically Interpreted Corpora
(LINC-03), EACL 2003, pages 109–116.

Przepiórkowski, A., Górski, R. L., Lewandowska-
Tomaszczyk, B., and Łaziński, M. (2008). Towards the
National Corpus of Polish. In Proceedings of the Sixth
International Conference on Language Resources and
Evaluation, LREC 2008, Marrakech. ELRA.

Przepiórkowski, A., Górski, R. L., Łaziński, M., and
Pęzik, P. (2009). Recent developments in the Na-
tional Corpus of Polish. In J. Levická and R. Garabík,
editors, Proceedings of Slovko 2009: Fifth Interna-
tional Conference on NLP, Corpus Linguistics, Cor-
pus Based Grammar Research, 25–27 November 2009,
Smolenice/Bratislava, Slovakia, Brno. Tribun.

Schütze, H. (1992). Context space. In AAAI Fall Sympo-
sium on Probabilistic Approaches to Natural Language,
pages 113–120, Cambridge.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann, San Francisco, 2nd edition. http://www.cs.
waikato.ac.nz/ml/weka/.


