
An efficient implementation of a large grammar of Polish

Marcin Woli ński

Instytut Podstaw Informatyki PAN
ul. Ordona 21, 01-237 Warszawa, Poland

wolinski@ipipan.waw.pl

Abstract
The paper presents a parser implementing MarekŚwidziński’s formal grammar of the Polish language. The grammar was written by
a linguist, without a computational implementation in mind, unlike most formal grammars. The aim of the work reported here is to
examine what the exact set of sentences accepted by the grammar is and what structures are assigned to them. For that reason, it was
crucial to remain as close to the original grammar as possible. The resulting program, namedŚwigra, goes far beyond a toy parser due
to the use of a morphological analyser and a broad range of linguistic phenomena covered byŚwidziński’s grammar. In this article
preliminary results of the parser evaluation are also provided.

1. Introduction
So far, there have been only a few parsers of Polish

and they usually do not cover a very large subset of the
language. As far as we know, working parsers of Polish ei-
ther build on Szpakowicz’s grammar (Szpakowicz, 1983),
which is rather small, or are based on non-formal gram-
mars adapted for a given project. An interesting compu-
tational description of a subset of Polish was provided by
(Przepiórkowski et al., 2001) but no efficient implementa-
tion was developed.

Świdziński’s grammar, presented in his book (Świdz-
iński, 1992, henceforth: GFJP), is probably the most ex-
tensive and most detailed formal grammar of Polish. Al-
though it is expressed as a collection of formal rewrite
rules, it was not intended for an implementation. And so,
although the grammar was written over 10 years ago, it
had no implementation beforéSwigra.

The domain ofŚwidziński’s research is the so-called
surface syntax of Polish, i.e., his grammar is free of any
references to semantics. His aim was to describe all syn-
tactic structures present in Polish, at least at the sentence
level, as the lower phrase level is more sketchy in his
grammar.

The goal of the work reported here is to implement this
large formal grammar written by a non-computer-scientist
and provide an evaluation of how close the description is
to theŚwidziński’s intentions. The work has been the sub-
ject of the author’s PhD thesis (Woliński, 2004).

The Świgra parser is based on earlier attempts to im-
plement GFJP (Bién et al., 2000). Compared to these,
it uses a new morphological analysis component and an
improved parsing strategy. To achieve an efficient imple-
mentation, it was necessary to reformulate some of the
grammar rules. Due to these changes,Świgra works with
different structures than GFJP. The output of the parser,
however, is presented in such a way that it pretends to be
generated by the originalŚwidziński’s grammar.

2. Morphological analysis
As is quite obvious for a language with rich inflec-

tion, the syntactic part of́Swigra does not work with raw
text but with wordforms resulting from a morphological

analysis. The morphological analyser used inŚwigra is
Morfeusz, a program developed by the author of this pa-
per, which uses linguistic data provided by prof. Z. Sa-
loni1. The program uses a tagset developed for the cor-
pus of Polish created at the Institute of Computer Science
PAS (the IPI PAN Corpus). The tagset is based on the
notion of a flexeme (proposed by Bień, 1991) — a set
of wordforms which is uniform with respect to inflection
(Przepiórkowski and Woliński, 2003; Wolínski, 2003).

Morfeuszassigns to each token a lemma and a tag.
More precisely, it tokenizes the input text and then assigns
to each token all possible morphological interpretations,
consisting of an identifier of the lexeme the form belongs
to, and a tag describing the flexeme within a given lexeme
and values of relevant grammatical categories.

More interestingly, the analysed text is not treated as a
list of (lists of) possible interpretations, but as a directed
acyclic graph (DAG, cf. Fig. 1). Nodes in the graph repre-
sent positions in the text (between tokens) and edges rep-
resent possible token interpretations. Edges are labelled
with triples consisting of a token, a lemma and a tag.
Edges of the DAG are represented as Prolog clauses.

In such a formulation of the parsing problem, a DAG
is accepted by the grammar if and only if there exists a
path in the graph labelled with a sequence of wordforms
that can be derived from the grammar’s starting symbol.

A similar idea is used by (Obrębski, 2002) but in his
work wordforms are represented as labelled nodes and
edges show a possible succession of nodes.

A graph is a convenient representation of ambiguities
resulting in the morphological analysis. In Polish, a word
segmentation itself can be ambiguous. For example the
sequence of lettersktoś can be interpreted either as one
token, a form of the lexemeSOMEBODY, or as a sequence
of the tokenkto (lexemeWHO) and the tokeńs, a special
form of the verbTO BE. This treatment is necessary to
obtain a meaningful interpretation for the following Polish
sentence:

1See http://nlp.ipipan.waw.pl/~wolinski/
morfeusz. The program is available for download and can be
used for non-commercial research purposes.



Ta


adj:sg:nom:f:pos

poza


prep:acc.inst nie


ppron3:sg:acc:n1.n2:ter: :praep

nie


ppron3:pl:acc:m2.m3.f.n1.n2.p2.p3:ter: :praep

wychodzi
́

fin:sg:ter:imperf.perf

!
!

interp

nie


qub

poza


prep:acc.inst

poza


subst:sg:nom:f

Figure 1: Morphological interpretations for the sentenceTa poza nie wychodzi.

(1) Ktoś
Who-be.2PRS

ty?
you?

‘Who are you?’

A DAG is also a natural way of representing contex-
tual dependencies between morphological interpretations
(encoding information that some interpretation of a token
is only possible if an adjacent token is interpreted in a par-
ticular way). A reasonable preliminary step for parsing
would be to use a rule-based tagger that partially disam-
biguates the text by removing only truly impossible se-
quences of interpretations.

This has not been done ińSwigra yet. However, a
simple contextual mechanism has been introduced. The
mechanism deals with Polish forms which can occur in
texts only after a preposition. An example isniego, a form
of the personal pronounon (he). The corresponding form
used in other contexts isjego. One of “postprepositional”
forms of the pronounona (she) isnie which can be also
interpreted as a negative particle (not). Unfortunately the
problem of “postprepositionality” has not been considered
by Świdziński. This leads to excessive structures assigned
by GFJP to many sentences involving negation.

Ideally, the problem should be dealt with in the gram-
mar but a quick partial solution is to contextually postpro-
cess results of the morphological analysis. The idea is to
change the input graph to put a “postprepositional” form
with the preceding preposition on a path that is separated
from other interpretations of the tokens.

An example is provided in Figure 1. It depicts a sen-
tence that has two possible readings:

(2) Ta
This

poza
pose

nie
not

wychodzi!
works

‘This pose doesn’t work!’

(3) Ta
This

poza
beyond

nie
them

wychodzi!
leaves

‘This goes beyond them!’

In the graph,nie interpreted as a postprepositional pro-
nounshe is coupled with the interpretation ofpozaas a
preposition ‘beyond’ (the upper path). In the lower path,
nie is interpreted only as a negative participle butpozais
allowed both as a preposition and a noun.

3. Syntactic analysis
The Świdziński’s grammar is expressed in a formal-

ism inspired by Colmerauer’s metamorphosis grammar
(Colmerauer, 1978), now more commonly known as Def-
inite Clause Grammar (Pereira and Warren, 1980).

Although the formalism is close to Definite Clause
Grammar available in Prolog implementations, the gram-
mar cannot be implemented in a straightforward manner
because of: missing rules of the lowest “preterminal”
level, a void recursion (cycles of nonterminal elements
which can be rewritten to each other), and an extensive
use of conditions referring to values which have not been
computed yet.

Moreover, rules describing an elementary sentence
needed thorough clarification to get any reasonable results.
This part of the grammar uses an extension of DCG that
allows for permuting phrases constituting the elementary
sentence, which is necessary due to the (relatively) free
word order of Polish.

Świgra uses a bottom-up parsing strategy, which for
Polish proved to be superior to the top-down strategy. The
parser builds a shared parse forest (Billot and Lang, 1989),
which is not only the result but also a means of avoiding
unnecessary recomputation. InŚwigra’s strategy, a rule
of the grammar may be called only as a consequence of
adding a new edge to the forest. Since the number of edges
in the parse forest isO(n2) (wheren is the size of the in-
put graph), this limits the computation time to polynomi-
nal, namelyO(nk+1), wherek is the length of the longest
right-hand side of a rule.

The key point for effectiveness is that rules are not in-
terpreted at the runtime by the parser but they are compiled
to Prolog clauses. This translation is somewhat similar
to that used in the commonly quoted BUP parser (Mat-
sumoto et al., 1983).

Thanks to the rule compilation, the parser proved to be
more efficient for GFJP than a naïve chart parser. A chart
parser has the computation time in the order ofO(n3), so
our algorithm is equally effective for grammars in Chom-
sky’s normal form (which have at most 2 elements at the
right hand side of a rule). In fact, we plan to extend our
algorithm so it converts the rules to the Chomsky’s nor-
mal form behind the scenes (as is commonly done in chart
parsers).

Our algorithm differs from chart parsing since no in-



wypowiedzenie (w1)

zr(os, nd, ter, ozn, żeń/poj, 3, nie, ni, np, 0) (r1)

ze(os, nd, ter, ozn, żeń/poj, 3, [np(mian)], nie, ni, np, br, 4) (e5)

fw(np(mian), 1 , nd, ter, żeń/poj, 3, nie, ni, np) (wy1)

knoatr(mian, żeń/poj, 3, nie, ni, np, rzecz, 5) (no27)

fpt(mian, żeń/poj, row, 2 , ni, np, zaim, 0) (pt1)

zaimprzym(ten, mian, żeń/poj) (jel6)

Ta 

knoink(mian, żeń/poj, 3, nie, ni, np, rzecz, 4) (no40)

formarzecz(mian, żeń/poj) (n rz)

poza 

ff(os, nd, ter, ozn, żeń/poj, 3, [np(mian)], 1 , nie, ni, np, br) (fi1)

kweneg(os, nd, ter, ozn, żeń/poj, 3, [np(mian)], 1 , nie, ni, np) (we21e)

partykula(nie) (jel2)

nie 

kweink(os, nd, ter, ozn, żeń/poj, 3, [np(mian)], 1 , ni, np) (we26)

formaczas1(n, os, nd, ter, ozn, żeń/poj, 3, [np(mian)], 1) (n cz4)

wychodzi ́

znakkonca(np) (int2)

! !

wypowiedzenie (w1)

zr(os, nd, ter, ozn, żeń/poj, 3, tak, ni, np, 0) (r1)

ze(os, nd, ter, ozn, żeń/poj, 3, [np(mian)], tak, ni, np, br, 4) (e5)

fw(np(mian), 0 , nd, ter, żeń/poj, 3, tak, ni, np) (wy4)

fw1(np(mian), 0 , nd, ter, żeń/poj, 3, tak, ni, np) (wy8)

zaimprzym(ten, mian, żeń/poj) (jel6)

Ta 

fl(nd, ter, żeń/poj, 3, tak, ni, np) (lu1)

fpm(poza, bier, tak, ni, np, os) (pm1)

przyimek(poza, bier) (jel3)

poza 

fno(bier, nmo/mno, 3, tak, ni, np, os, 0) (no1)

zaimos(bier, nmo/mno, 3) (n zo3)

nie 

ff(os, nd, ter, ozn, żeń/poj, 3, [np(mian)], 0 , tak, ni, np, br) (fi1)

formaczas1(n, os, nd, ter, ozn, żeń/poj, 3, [np(mian)], 0) (n cz4)

wychodzi ́

znakkonca(np) (int2)

! !

Figure 2: Two of parse trees for the sentenceTa poza nie wychodzi!

active edges are kept in the chart/forest. They are hidden
in the recursion stack and reclaimed when no longer used,
which provides for less memory requirements of the algo-
rithm.

Results of the syntactic analysis are presented as sets
of parse trees. For example Figure 2 depicts two of
the trees generated by the program for the ambiguous
sentence discussed in the previous section. These two
trees correspond to the intended readings presented in (2)
and (3). In the firstpoza is a noun (formarzecz) and
nie is the negative particle (partykula(nie)). In the sec-
ond sentencepoza is a preposition (przyimek) and nie
a personal pronoun (zaimos). In both cases the utterance

(wypowiedzenie) consists of a coordinated sentencezr
and final punctuationznakkonca. And the elementary
sentenceze consists of a finite phraseff and a required
phrasefw.

The trees are shown in a short form where dotted lines
represent collapsed non-branching paths in the tree. For
example between the coordinated sentence (zr) and the
elementary sentence (ze) there are three intermediate sen-
tential units in the grammar.

Each nonterminal is presented together with its at-
tributes, for example for the coordinated sentencezr the
values are: personalos (form of verb), imperfectivend,
present tenseter, indicative moodozn, feminineżeń, sin-



gularpoj, third person3, not negatedtak, without incor-
porationni, and not a questionnp. An additional value
for elementary sentenceze shows the types of required
phrases, in this case one nominal phrase in nominative
np(mian) (the subject).

4. Evaluation

The Świgra parser has been tested on 660 examples
provided byŚwidziński in his book. The set includes ex-
amples which are correct (should be accepted by GFJP
according toŚwidziński) and incorrect (should not be ac-
cepted). The main advantage of these examples is that
information on correctness has been provided byŚwidziń-
ski. The main disadvantage is that they are not extracted
from real-life texts.

The following table presents results of parsing these
sentences. The times and numbers of inferences are for
building the shared parse forest representing all parse
trees. The length of analysed sentences (including punctu-
ation) varies between 3 and 27 (over a half of them in the
range 7–16).

correct incorrect
acc. nacc. acc. nacc.

sentences 515 145
469 46 34 111
91% 9% 23% 77%

trees 10 14
time (s) 0.26 0.36 0.20 0.15
inferences 267905 273601 201369 183400

Table 1: Results of parsing 660 sentences. The per sen-
tence values for number of trees, time and number of infer-
ences are medians. Time measured on a 1.8 GHz Pentium
running Linux.

The longest time of an analysis is 302 seconds but 89%
of the sentences are analysed within 1 second. The largest
number of trees for a sentence is 2543013 (generated in 18
seconds).

It seems that almost all structures whichŚwidziński
intended to describe are actually accepted by the parser —
91% of correct sentences are accepted. However some-
what large is the number of 23% incorrect accepted sen-
tences. In many cases the problem is that the grammar ac-
cepts a sentence assigning it a completely different struc-
ture than intended býSwidziński. For example, one of the
shortest incorrect examples accepted by the grammar is:

(4) Ona
She

nie
not

czytała
read

książkę.
book.ACC

In the correct form of the sentence the book is in genitive
and not accusative case:

(5) Ona
She

nie
not

czytała
read

książki.
book.GEN

‘She wasn’t reading a book.’

In the interpretation provided býSwigra, the book is
treated as in the following example, where a noun in ac-
cusative acts as a time complement. Such complements
are described in GFJP as “free phrases”.

(6) Ona
She

nie
not

czytała
read

godzinę.
hour.ACC

‘She hasn’t been reading for an hour.’

Unfortunately, this is a limitation of the surface syntax —
without resorting to semantics, it is impossible to reject
sentence (4). The treatment of free phrases in GFJP allows
them to attach in various places in the sentence structure.
This often leads to accepting sentences of at least a doubt-
ful grammaticality.

One of the reasons for the large number of parse trees
produced by the program is morphological ambiguity. For
example, in some sentences the gender of noun phrases
can be limited to masculine but it is impossible to say
which of the three masculine values (personal, animate or
inanimate) should be used.́Swigra uses a technique at-
tributed to Colmerauer (Pulman, 1996) to represent such
a set of genders as a single Prolog term. Moreover, the
representation allows two terms to be unified only if the
sets have a non-empty intersection, and the result of uni-
fying them represents the intersection. In that way sets of
values can be introduced to a unification grammar without
modifying its rules. The experiments show that applying
the same technique to the values of the grammatical case
would lower the number of the resulting trees. However,
not all cases of the spurious ambiguity could be eliminated
in this way. A set of combinations of number, case and
gender is often attached to a single token (e.g., in case of
nouns and pronouns). The Colmerauer’s technique can be
applied to any finite set, so it would be possible to use it
for such combinations, but it would be necessary to mod-
ify the grammar rules to do that.

5. Perspectives
The parser should be seen as a work in progress. In

the current stage the program is close to the originalŚwi-
dziński’s grammar. We think that the grammar proved to
be consistent enough to be a good starting point for im-
provements. However its limitations and deficiencies can
clearly be seen. We now plan to start modifications of
the grammar to limit superfluous interpretations and add
missing features.

The most important extension of the grammar would
be to incorporate rules for numeral phrases and coordina-
tion within phrases (e.g., nominal, adjectival). Both fea-
tures are completely missing from GFJP. As for the lin-
guistic data used by the parser, a more complete valency
dictionary is needed, as well as a dictionary of multi-token
lexical units.

For the overgeneration of parse trees, the problem of
“free phrases” seems most important.

Świdziński’s grammar in its book form turned out to
be much too complex and opaque to have a substantial im-
pact on the linguistic audience. We hope that the existence
of Świgra will encourage linguists to study the grammar



which provides a deep insight into grammatical subtleties
of Polish.

6. References
Bień, Janusz, Krzysztof Szafran, and Marcin Woliński,

2000. Experimental parsers of Polish. In3. Eu-
ropäische Konferenz "Formale Beschreibung slavischer
Sprachen, Leipzig 1999", volume 75 of Linguistis-
che ArbeitsBerichte. Institut für Linguistik, Universität
Leipzig.

Bień, Janusz Stanisław, 1991.Koncepcja słown-
ikowej informacji morfologicznej i jej komputerowej
weryfikacji. Rozprawy Uniwersytetu Warszawskiego.
Wydawnictwa Uniwersytetu Warszawskiego.

Billot, Sylvie and Bernard Lang, 1989. The structure of
shared forests in ambiguous parsing. InMeeting of the
Association for Computational Linguistics.

Colmerauer, Alain, 1978. Metamorphosis grammar. In
Leonard Bolc (ed.),Natural Language Communication
with Computers, Lecture Notes in Computer Science
63. Springer-Verlag, pages 133–189.

Matsumoto, Yuji, Hozumi Tanaka, H. Hirakawa, Hideo
Miyoshi, and Hideki Yasukawa, 1983. BUP: a bottom-
up parser embedded in PROLOG.New Generation
Computing, 1:145–158.

Obrębski, Tomasz, 2002.Automatyczna analiza skład-
niowa języka polskiego z wykorzystaniem gramatyki
zależnościowej. Ph.D. thesis, Instytut Podstaw Infor-
matyki PAN, Warszawa.

Pereira, Fernando and David H. D. Warren, 1980. Definite
clause grammars for language analysis–a survey of the
formalism and a comparison with augmented transition
networks.Artificial Intelligence, 13:231–278.

Przepiórkowski, Adam, Anna Kupść, Małgorzata
Marciniak, and Agnieszka Mykowiecka, 2001.For-
malny opis języka polskiego. Teoria i implementacja.
Warszawa: Akademicka Oficyna Wydawnicza.

Przepiórkowski, Adam and Marcin Woliński, 2003. The
unbearable lightness of tagging: A case study in mor-
phosyntactic tagging of Polish. InProceedings of the
4th International Workshop on Linguistically Inter-
preted Corpora (LINC-03), EACL 2003.

Pulman, Stephen G., 1996. Unification encodings of
grammatical notations. Computational Linguistics,
22(3):295–327.

Szpakowicz, Stanisław, 1983.Formalny opis składniowy
zdań polskich. Wydawnictwa Uniwersytetu Warsza-
wskiego.

Świdziński, Marek, 1992.Gramatyka formalna języka
polskiego. Rozprawy Uniwersytetu Warszawskiego.
Warszawa: Wydawnictwa Uniwersytetu Warsza-
wskiego.

Woliński, Marcin, 2003. System znaczników morfosyn-
taktycznych w korpusie IPI PAN.Polonica, XXII–
XXIII:39–55.

Woliński, Marcin, 2004.Komputerowa weryfikacja gra-
matyki Świdzińskiego. Ph.D. thesis, Instytut Podstaw
Informatyki PAN, Warszawa.


