AUTOR: Stefanie Tellex AFILIACJA: MIT i Brown University TYTUŁ: Natural Language and Robotics STRESZCZENIE: Natural language can be a powerful, flexible way for people to interact with robots. A particular challenge for designers of embodied robots, in contrast to disembodied methods such as phone-based information systems, is that natural language understanding systems must map between linguistic elements and aspects of the external world, thereby solving the so-called "grounded language" problem. This talk describes a probabilistic framework for robust interpretation of grounded natural language, called Generalized Grounding Graphs (G^3). The G^3 framework leverages the structure of language to define a probabilistic graphical model that maps between elements in the language and aspects of the external world. It can compose learned word meanings to understand novel commands that may have never been seen during training. Taking a probabilistic approach enables the robot to employ information theoretic dialog strategies, asking targeted questions to reduce uncertainty about different parts of a natural language command. This approach points the way toward more general models of grounded language understanding, which will lead to robots capable of building world models from both linguistic and non-linguistic input, following complex grounded natural language commands, and engaging in fluid, flexible dialog with their human partners. NOTKA BIOGRAFICZNA: Stefanie Tellex is a Research Scientist at the MIT Computer Science and Artificial Intelligence Laboratory at MIT and an adjunct assistant professor in the Brown University Department of Computer Science (starting full-time in fall of 2013). She completed her Ph.D. at the MIT Media Lab in 2010, where she developed models for the meanings of spatial prepositions and motion verbs. She has published at SIGIR, HRI, AAAI, IROS, and ICMI, winning Best Student Paper at SIGIR and ICMI. Her research interests include probabilistic graphical models, human-robot interaction, and grounded language understanding.