
Tagset conversion with decision trees

Bartosz Zaborowski1 and Adam Przepiórkowski1,2

1 Institute of Computer Science, Polish Academy of Sciences
2 University of Warsaw

bartosz.zaborowski@ipipan.waw.pl
adamp@ipipan.waw.pl

Abstract. This paper addresses the problem of converting part of
speech – or, more generally, morphosyntactic – annotations within a
single language. Conversion between tagsets is a difficult task and, typ-
ically, it is either expensive (when performed manually) or inaccurate
(lossy automatic conversion or re-tagging with classical taggers). A sta-
tistical method of annotation conversion is proposed here which achieves
high accuracy, provided the source annotation is of high quality. The
paper also presents an evaluation of an implementation of the converter
when applied to a pair of Polish tagsets.

Keywords: morphosyntactic annotation, part of speech tagsets, deci-
sion trees

1 Introduction

Most annotated corpora use various types of tags to encode additional informa-
tion along words. Depending on the language and requirements they can be just
parts-of-speech (POS-tags) or they can contain more complex morphosyntactic
information. The sets of tags used in various corpora usually differ. They quite
often differ even for corpora of the same language. Unfortunately, various Nat-
ural Language Processing tools tend to be tied to specific tagsets, or, at least,
they require some effort and high quality resources to be able to switch to some
other tagset. For these reasons sometimes there is a need to convert a corpus
from one tagset to another. Usually, the conversion has to be automatic, since
manual (re-)annotation is expensive. As in the general tagging problem, high
quality results are expected, which makes the task of tagset conversion difficult.

There are two usual approaches to the automatic conversion of a corpus from
one tagset to another. The first, very common, is to use a state-of-the-art tagger,
train it on a large corpus tagged with the target tagset and then apply it to the
source corpus. When the source corpus is tagged manually, the method is lossy
in the sense that it does not make any use of these initial gold standard tags.
The second common approach is to manually write a set of rules converting
particular tags. Potentially it can be a very accurate method. However, this
accuracy is very expensive. Additionally, the more the tagsets differ, the more
difficult it is to write the rules.

2 Bartosz Zaborowski and Adam Przepiórkowski

The rule-based approach was deeply explored by Daniel Zeman (e.g. [13]),
who proposed a rule-based conversion method involving an interset, a common
tagset for different tagsets and languages. This paper explores the statistical
approach.

2 Definition of the task

Let us precisely define the task. Given a corpus tagged simultaneously with two
different tagsets, the task is to train statistical conversion methods such that,
given a word – or a segment3 – and its context tagged with one tagset, the
converter finds the best fitting tag from the other tagset. In this article the first
tagset (the one which a given text is tagged with) will be called the source tagset,
and the other – the target tagset. Similarly, a source tag for a given word will be
a tag taken from the source tagset and a target tag for this word will be a tag
from the target corpus for this word.

3 Baseline approach

The simplest tagger, frequently used as a bootstrap or a baseline, is the unigram
tagger. For a slightly different task from tagging, namely tagset conversion, we
can modify the unigram tagger to make use of the information derived from
source tags. Instead of computing frequencies of tags for each word from the
training corpus, the algorithm computes frequencies of target tags for each source
tag. On the basis of this information, the baseline algorithm assigns to a given
word the most frequent target tag for the source tag of this word. If the source
tag does not appear in the training corpus, the most frequent target tag in the
whole training corpus is assigned.

4 Improvements

This section describes and discusses possible ways to improve the correctness
of the algorithm. All ideas were tested on a conversion from the IPIPAN Cor-
pus tagset ([6]) to the National Corpus of Polish (NKJP) tagset ([10]).4 These
tagsets are compared in [5]; see also Appendix B. Experiments were performed
on parts of the Enhanced Corpus of Frequency Dictionary of Contemporary
Polish ([3]), which is manually annotated with tags from both tagsets. Unless
stated differently, experiments were performed on a small part of the corpus,

3 The term word is understood here as a maximal sequence of letters, digits and some
punctuation marks (e.g., hyphens), i.e., “from space to space”; on the other hand,
segment is the bit of text that’s assigned a morphosyntactic tag. Usually the two
are the same, but Polish tagsets assume that some words consist of a number of
segments (compare with English don’t sometimes split for tagging to do and n’t).

4 These tagsets are also described at http://www.korpus.pl/en/cheatsheet/ and
http://nkjp.pl/poliqarp/help/en.html.

Tagset conversion with decision trees 3

consisting of about 30,000 segments from scientific texts. It will be called the
development subcorpus. The experiments generally consisted in performing a
10-fold cross-validation on this subcorpus.

Most of the concepts described in this section can be adapted to various types
of tagsets, not only positional (cf. section 4.3).The only requirement is that there
exists a deterministic method to extract from tags different kinds of information
represented in the source and target tagsets.

4.1 Choice of classifier

The baseline algorithm described in the previous section can be seen as a 1R
classification algorithm ([2]) in the case when there is only a single attribute (the
source tag) and a class attribute (the target tag) and thus the selection of the best
attribute is trivial. The 1R algorithm gives quite good results for typical data.
However, it is commonly known that there exist a number of more complex clas-
sification algorithms which achieve better results using more than one attribute.
As a starting point for comparison between various classifying algorithms we
decided to use a small set of attributes which intuitively may contain additional
information, and thus, improve the performance. The selected attributes are: a
positionally encoded source tag of the word immediately preceding the given
word, a positionally encoded source tag of the word and a positionally encoded
source tag of the word immediately following the given word. The class attribute
remains the same (a plain target tag). In the case of the current tagsets we get
a class and a set of 3 ∗ 13 attributes, most of which are NULL (lack of value of
grammatical categories of words which do not have those categories and do not
inflect for them). The positional encoding and the context are discussed in more
detail in the following two sections.

A number of experiments were performed using different classifiers from the
WEKA ([11]) data-mining library. Due to performance reasons, a rough classifier
selection was performed on a smaller subcorpus of approx. 5K segments (a part
of the 30K development corpus).

The actual number of classifying algorithms tested amounted to 45 (all the
available and applicable classifiers from WEKA, except for meta-classifiers), with
over 400 different configurations. The best performing and simultaneously rel-
atively fast four classifiers were: DecisionTable, PART, J48 and J48graft. They
achieved from 89.0% to 90.2% of correctness in a reasonable computing time of
at most a few minutes. After the second, more fine-grained comparison on the
whole 30K development corpus, the J48 algorithm was chosen. Actually, since
the J48 is a java implementation of the C4.5 ([7]) algorithm, and due to perfor-
mance reasons, in later experiments we used an improved version of the original
native implementation: the C5.0.

4.2 Context

The use of context is one of the most obvious improvements in tagging. It is
also one of the most intuitive improvements with regard to the task of tagset

4 Bartosz Zaborowski and Adam Przepiórkowski

conversion. However, it is never known in advance how large the context should
be for the best results on a particular language and tagset. Hence, we performed
a number of experiments using various context sizes and independently changing
the left context size and the right context size starting from zero (no context
at all) up to 3 preceding/following segments. Like in the previous subsection,
the only information available for the classifier were positionally encoded source
tags for each word of the context. For the 30K development subcorpus results
varied slightly from 91.9% to 92.4%. Not all context configurations improved
the performance in comparison to the empty context which scored somewhere in
the middle (92.1%). Larger right contexts tended to give worse results, as they
probably introduced too much information noise. The best configuration found
was: the right context of one segment and the left context consisting of three
segments.

It is worth noting that some of the ideas described in the following sections
interfere with the attributes used in these experiments. The final best configu-
ration with all those changes is described in Section 4.7.

4.3 Positional tags

Both tagsets assumed here are positional. Since both contain a large number of
tags, it is likely that not enough instances of each tag will be found to successfully
train any statistical methods. Even in the relatively large corpus (>300K tokens)
described in the evaluation section, not all of over one thousand possible source
tags appear even once. It gets even more complicated when there is a need to
extract rules from the context – there sometimes are thousands or even millions
of bi-grams or trigrams to cover every possible combination of tags representing
a simple relation between words. To overcome this problem, source tags are split
into multiple attributes: one attribute for the grammatical class and a separate
attribute for each of the grammatical categories represented in the tagset.

Surprisingly, this idea is only partially profitable. The positional encoding of
tags for words in the context is clearly more profitable in terms of the correctness.
However switching back to the full-tag for the currently tagged word (preserving
positional encoding of the context) produces better results. Especially, when the
context set to empty, positional encoding of the currently tagged word causes
the converter to perform worse. It turns out that separating tags deprives the
classifier of useful knowledge about relations between grammatical categories.
Furthermore, we observed the same bad influence on performance when the
target tags were split and each grammatical category was classified separately.
This negative impact of positional encoding is more visible on the small 30K
development subcorpus, but can be also observed on much larger data.

4.4 Retrieving information from the orthographic form and the
lemma

The most useful information available to the converter is contained in the ortho-
graphic form of a word. Unfortunately, the statistical method does not allow to

Tagset conversion with decision trees 5

use this information directly due to data sparsity. However, some parts of the or-
thographic information can still be extracted. For inflectional languages such as
Polish a lot of the morphological information can be obtained by analyzing only
a small prefix and suffix of the orthographic form. The same goes for the lemma
of words (since the source corpus is annotated manually, it can be assumed that
it is also lemmatized). Another useful type of information which can be easily
extracted is whether the word starts with a capital letter or not. The first idea
was to extract such prefixes, suffixes and the-first-letter-cases from the word and
from each of the words in the context. After some tests we narrowed down the
extraction of prefixes and suffixes to one word only (without the context). The
gain from including prefixes and suffixes of words from the context was not clear
(in some cases it decreased correctness). It seems that for corpora of sizes similar
to the development corpus (and even for larger data) prefixes/suffixes introduce
too much information noise and hardly ever point at useful information. Another
finding was that there is no single best prefix size or suffix size for all words.
The best results can be obtained by using a few classification attributes with
extracted prefixes/suffixes of different length and leave the choice of length in
particular cases to the classifier.

During the tests we found out that the best configuration for the conversion
task is to include the-first-letter-case for a given word and each word from the
context and to extract a single-letter prefix and one-, two- and three-letter suf-
fixes of the orthographic form of the word. Including prefixes and suffixes of the
lemma didn’t seem to improve results of the experiments.

4.5 Error driven learning of additional attributes

In most languages there are words which are grammatical exceptions, hard to
handle by general rules. As mentioned in the previous subsection, the ortho-
graphic form or the lemma cannot be used directly to distinguish such words
and treat them separately because of limited resources. However, since only a
small percentage of all words behave like this, we may treat differently only such
words. This leads us to the question of how to find such words. The answer is
simple: the conversion algorithm can be used to find a list of words whose tags
are classified incorrectly. It is done by conducting a cross-validation of the con-
verter on training data. Of course, the converter in such a case uses only those
improvements which are described in the previous sections. The set of the most
frequently appearing words from this list is a good approximation of the relevant
set.

Note that the set constructed this way may also contain words whose tags
are frequently incorrect because of their frequent adjacency to a grammatically
exceptional word, even if this exceptional word is easy to tag (e.g., because it has
just one interpretation in the lexicon). In order to force the classifier to take such
situations into consideration, the classifier should memorize also the context for
each of the words from the set. Then, for each position in the context, it should
prepare a similar set of the most frequent words at this position.

6 Bartosz Zaborowski and Adam Przepiórkowski

Finally, after some experiments, the classifier was enlarged with a pair of
attributes for each of the words in the context each signifying “the orthographic
form / the lemma is the context of a special-treatment word X” or “neither
orthographic form nor the lemma is an expected context of a special word”. Of
course, also a pair of attributes marking whether the given word is a “special
treatment word” was added. Additionally, it appeared that it is also worth to
store single-letter prefixes and suffixes of the lemmata of “special treatment”
words in separate attributes. The optimal solution seem to be to use only the
most frequent 1/3rd of the list of problematic words for preparing the attributes.

4.6 Using information from morphological analyzer

The algorithm we describe is guessing tags for all given words. Although by
design it cannot produce illegal tags (according to the tagset), there are rare
cases when the classifier selects a tag not possible for a given segment. If a
comprehensive morphological analyzer using the target tagset is available, it can
help the classifier to overcome this problem. In order to correct such cases, a
frequency table of target tags is prepared on the training data. Then, when such
a case occurs, the classifier result is replaced with a tag from the set of tags
proposed by analyzer which has the highest frequency.

The impact of this modification certainly depends on the quality and the
size of the dictionary used by the morphological analyzer. In our case the Mor-
feusz SGJP analyzer ([12, 9]) is used. It covers approximately 98.5% of the 30K
development subcorpus and on this data only a slight improvement (about 1%
reduction of the number of errors) was observed.

4.7 Fine-tuning of parameters

All the improvements proposed above interfere with each other. Although all
of them give a correctness gain even when used together, the parameters found
to be optimal for individual optimizations do not have to be optimal when all
optimizations are applied at the same time. Hence, we performed another set of
experiments to fine-tune various parameters. As opposed to the previous tests,
here the evaluation was carried out on different sizes of corpora: small (5K to-
kens), medium (30K tokens) and large corpora (120K tokens). Like the devel-
opment subcorpus, all of them are parts of the manually annotated Enhanced
Corpus of Frequency Dictionary of Contemporary Polish. The small and medium
corpora consisted of scientific texts, the large one contained also some news and
fragments of plays/dramas.

For each corpus size, we performed a number of tests for slightly changed
parameter values and observed for which parameters the best values change
between corpora. As supposed, slight trends appeared for the context size and
length of optimal suffixes, and more surprisingly, for the percentage of the most
frequent problematic words used to calculate “special-treatment” attributes. All
of them rose together with the corpus size. Finally, the best configuration of
classifier attributes found was:

Tagset conversion with decision trees 7

– left and right context sizes: 1 word
– different context for the “special treatment” attributes: 2 words left, 1

word right context; used for memorizing whole words (orthographic form
or lemma)

– suffixes for the orthographic form: one-, two- and three-letter
– no prefixes for the orthographic form at all
– “special treatment”: single-letter prefix and suffix for the lemma of a word,

two-letter suffix of the orthographic form of the processed word.
– the most frequent half of the list of the problematic words used for preparing

“special treatment” attributes

5 Influence of various improvements on performance

A set of experiments was performed to evaluate how the improvements described
above interfere with each other. The experiments were performed on the devel-
opment subcorpus (30k tokens) using 10-fold cross-validation. Table 1 shows
min/max/average correctness computed on results of experiments with particu-
lar improvements enabled or disabled. It should give a rough indication of how
useful each concept is. The detailed raw results of each of the experiments are
shown in the appendix A. All the improvements and their parameters were in
the final state, as described in Section 4.7.

improvement enabled?
correctness (%) time and

memory usedavg max min
information from
orth form

yes 94.88 95.18 94.43 61min, 206 MB
no 93.48 95.17 90.89 21min, 138 MB

context usage
yes 94.26 95.18 91.11 52min, 180 MB
no 94.11 95.12 90.89 30min, 163 MB

special treatment
words

yes 95.04 95.18 94.72 45min, 216 MB
no 93.32 94.93 90.89 37min, 128 MB

information from
morphoanalyzer

yes 94.45 95.18 92.62 41min, 172 MB
no 93.91 95.16 90.89 41min, 172 MB

positional encoding
of source tags

context + word 94.13 95.11 90.89 39min, 151 MB
context only 94.23 95.18 91.04 38min, 146 MB

no 94.18 95.16 91.04 46min, 219 MB

Table 1. How useful each improvement is? Resources usage applies to the whole cross-
validation (time is CPU time).

The results in Table 1 show that the biggest amount of valuable information
for Polish comes from special treatment words (exceptions or so). The ortho-
graphic form is also very usable, but consumes significantly more resources.
Surprisingly, neither the context nor the positional encoding is very important.

8 Bartosz Zaborowski and Adam Przepiórkowski

6 Evaluation

The final evaluation was performed on a large part of the Enhanced Corpus of
Frequency Dictionary of Contemporary Polish (ECFDCP; [1, 4]) – on all avail-
able texts annotated manually both with the IPIPAN Corpus tagset and the
National Corpus of Polish tagset which were aligned at the level of segmenta-
tion. It consisted of about 377,000 segments from scientific texts, news, essays
and plays/dramas. During the evaluation, the target corpus was reanalyzed mor-
phologically by means of Morfeusz analyzer (1.52% of segments were unknown
to the analyzer). 56.1% of the tokens were ambiguous or had no interpretation,
and the average number of ambiguous tags per token was 4.13 (including those
for which there was no tag proposed by the analyzer). Due to similar tagsets,
conversion of 90.64% of tags was trivial (renaming of values for grammatical
class and corresponding categories) and approximately this level of correctness
can be easily achieved by general, rule-based tagset converters such as DZ Inter-
set ([13]). Unfortunately, there is no so called driver for the NKJP tagset for DZ
Interset tool, therefore there is no possibility to directly compare this approach
with our approach.

The other corpora appearing in Table 2 are parts of the ECFDCP described
in Section 4.7. The evaluation was made by performing a 10-fold cross-validation.

algorithm corpus
correctness

resources used
all ambiguous nontrivial

here full 377k 96.12% 93.08% 58.54% 20h, 10.5GB of RAM
baseline full 377k 92.42% 86.49% 19.00% 5min, 600MB of RAM
here large 120k 95.41% 91.82% 50.95% 9h, 1.9GB of RAM
baseline large 120k 92.85% 87.25% 23.59% 2min, 350MB of RAM
here small 5k 94.08% 89.45% 36.74% 6min, 80MB of RAM
baseline small 5k 92.83% 87.22% 23.38% 1min, 30MB of RAM

Table 2. Results of evaluation. Resources usage applies to the whole crossvalidation
(time is CPU time).

As can be seen, the conversion approach gives quite high correctness even
with a simple baseline algorithm. The baseline even for the small corpus reaches
the correctness level reported for state-of-the-art taggers trained on much
larger corpora of hundreds thousands tokens (e.g. PANTERA: 92.95%, WMBT:
93.00%, evaluated on 1-million corpus by [8]5). The presented “here” approach
achieves significantly higher correctness than state-of-the-art taggers. Further-
more, even when trained on the 30K development subcorpus and tested on the

5 Those numbers are not strictly comparable with the results of our converter, since
the mentioned taggers made use of a morphological analysis from the gold standard
corpus during the evaluation.

Tagset conversion with decision trees 9

rest of the full corpus (that is, 347K segments), this method gives 94.95% of cor-
rectness. It is still better than the correctness achieved by the abovementioned
taggers trained on 1M corpus.

All the above “here” results were obtained using parameters tuned for the
large corpus. The evaluation was performed on a computer with a 3.1GHz AMD
FX processor running a 64-bit Linux and a Ruby interpreter (version 1.9.3). The
baseline, as well as parts of the improved converter (data pre-/postprocessing),
were implemented in the Ruby language; the C5.0 classifier used was an original
native implementation. The speed and resource usage optimization was not a
concern and it possibly could be up to 2 times better.

A list of most common errors is presented in Table 3. It clearly indicates
that an inconsistency of the manual annotation or a different understanding of
the same tags is one of the main causes of errors. Another information hard to
guess by the converter are optional grammatical categories (see appendix B for
details).

% of all errors source tag target tag (gold standard) selected tag
2.14 conj qub conj
1.91 adv:pos qub adv:pos
1.73 qub conj qub
1.54 qub qub conj
0.99 qub adv qub
0.88 adv:pos adv:pos adv
0.82 conj conj qub
0.63 adj:pl:gen:m3:pos adj:pl:gen:n:pos adj:pl:gen:m3:pos
0.61 ger:sg:gen:n:perf:aff subst:sg:gen:n ger:sg:gen:n:perf:aff
0.60 subst:sg:nom:f subst:sg:nom:m1 subst:sg:nom:f
0.58 qub qub adv
0.55 qub qub adv:pos
0.55 subst:sg:nom:n subst:sg:acc:n subst:sg:nom:n
0.53 qub adv subst:sg:nom:m3
0.51 subst:sg:gen:f subst:pl:gen:f subst:sg:gen:f
0.50 qub qub subst:sg:nom:m3
0.44 num:pl:nom:m3:rec num:pl:nom:m3:congr num:pl:nom:m3:rec
0.44 adj:pl:nom:m3:pos adj:pl:nom:n:pos adj:pl:nom:m3:pos
0.42 conj adv adv:pos
0.42 ppron3:sg:nom:f:pri ppron12:sg:nom:f:pri ppron12:sg:nom:m1:pri

Table 3. A list of most common errors from the evaluation on the full corpus, covering
17% of the total number of errors.

10 Bartosz Zaborowski and Adam Przepiórkowski

7 Conclusions

In this paper we showed that the task of tagset conversion – in the sense of
re-tagging a corpus – can be significantly improved by using information taken
from the previous manual annotation. We presented various types of information
extractable from manually annotated corpus that can be used in the conversion
process. A comparison of results of using each type of information revealed that
the most valuable information is related to orthographic forms of words, but the
source tags from the context are also useful for the algorithm. It is clear that
these two types of information are partially redundant. However, using them
together can further improve the correctness achieved by the converter.

We presented results which demonstrate an advantage of the current ap-
proach over using classical taggers for the task of tagset conversion. As opposed
to classical taggers, this approach performs well even when there is only very
little training data available for the target tagset.

References

1. Bień, J.S., Woliński, M.: Wzbogacony korpus Słownika frekwencyjnego polszczyzny
współczesnej. In: Linde-Usiekniewicz, J. (ed.) Prace lingwistyczne dedykowane
prof. Jadwidze Sambor, pp. 6–10. Uniwersytet Warszawski, Wydział Polonistyki
(2003)

2. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11, 63–91 (1993)

3. Kurcz, I., Lewicki, A., Sambor, J., Szafran, K., Woronczak, J.: Słownik frekwen-
cyjny polszczyzny współczesnej. Wydawnictwo Instytutu Języka Polskiego PAN,
Cracow (1990)

4. Ogrodniczuk, M.: Nowa edycja wzbogaconego korpusu słownika frekwencyjnego.
In: Gajda, S. (ed.) Językoznawstwo w Polsce. Stan i perspektywy, pp. 181–
190. Komitet Językoznawstwa, Polska Akademia Nauk and Instytut Filologii Pol-
skiej, Uniwersytet Opolski, Opole (2003), http://www.mimuw.edu.pl/~jsbien/
MO/JwP03/

5. Przepiórkowski, A.: A comparison of two morphosyntactic tagsets of Polish. In:
Koseska-Toszewa, V., Dimitrova, L., Roszko, R. (eds.) Representing Semantics in
Digital Lexicography: Proceedings of MONDILEX Fourth Open Workshop. pp.
138–144. Warsaw (2009)

6. Przepiórkowski, A., Woliński, M.: The unbearable lightness of tagging: A case study
in morphosyntactic tagging of Polish. In: Proceedings of the 4th International
Workshop on Linguistically Interpreted Corpora (LINC-03), EACL 2003. pp. 109–
116 (2003)

7. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, Los Alios,
CA (1993)

8. Radziszewski, A., Acedański, S.: Taggers gonna tag: an argument against evalu-
ating disambiguation capacities of morphosyntactic taggers. In: Text, Speech and
Dialogue: 14th International Conference, TSD 2012, Brno, Czech Republic. Lecture
Notes in Artificial Intelligence, Springer-Verlag (2012)

9. Saloni, Z., Gruszczyński, W., Woliński, M., Wołosz, R.: Słownik gramatyczny
języka polskiego. Wiedza Powszechna, Warsaw (2007)

Tagset conversion with decision trees 11

10. Szałkiewicz, Ł., Przepiórkowski, A.: Anotacja morfoskładniowa NKJP. In:
Przepiórkowski, A., Bańko, M., Górski, R.L., Lewandowska-Tomaszczyk, B. (eds.)
Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe PWN, Warsaw (2012)

11. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco, 2nd edn. (2005), http://www.cs.
waikato.ac.nz/ml/weka/

12. Woliński, M.: Morfeusz — a practical tool for the morphological analysis of Pol-
ish. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Infor-
mation Processing and Web Mining, pp. 503–512. Advances in Soft Computing,
Springer-Verlag, Berlin (2006)

13. Zeman, D.: Reusable tagset conversion using tagset drivers. In: Proceedings
of the Sixth International Conference on Language Resources and Evaluation,
LREC 2008. ELRA, Marrakech (2008)

A Detailed evaluation results

no orth form orth form
no pos pos word pos ctx no pos pos word pos ctx

+ ctx only + ctx only

special –
morph –

ctx – 91.04 90.89 91.04 94.43 94.45 94.43
ctx + 91.11 91.25 91.40 94.56 94.50 94.56

morph +
ctx – 92.79 92.62 92.79 94.74 94.74 94.74
ctx + 92.85 93.02 93.16 94.85 94.84 94.93

special +
morph –

ctx – 94.91 94.72 94.91 95.12 95.03 95.12
ctx + 94.99 94.99 95.03 95.16 95.10 95.13

morph +
ctx – 95.00 94.77 95.00 95.12 95.01 95.12
ctx + 95.06 95.08 95.17 95.14 95.11 95.18

Table 4. Results for the experiments with enabling different combinations of improve-
ments. Obtained on the 30K development corpus, values in percents. Background color
reflects the results (darker – worse). Improvements names: ctx – context, pos – posi-
tional encoding, special – special treatment words, morph – morphological analyzer,
orth form – information extracted from orthographic form. See Section 5 for more
details.

B Comparison of the IPIPAN and NKJP tagsets

The tagsets used in this article were designed for two large corpora of Polish:
the IPIPAN Corpus of Polish and the National Corpus of Polish (NKJP). Both
are positional, with quite a large number of possible morphosyntactic tags. The
sets of grammatical categories and grammatical classes are similar between the
tagsets. Hence, most of tags from the one tagset have a corresponding tag in the
other tagset. In Tables 5 and 6 we present a comparison of grammatical categories
and grammatical classes between tagsets with differences highlighted.

12 Bartosz Zaborowski and Adam Przepiórkowski

Some statistics: the number of all theoretically possible tags in the IPIPAN
tagset is 4389, 1357 of them were proposed in the lexical analysis, the number
of tags actually used in the annotation is 913. The number of all theoretically
possible tags in the NKJP tagset is 4187, proposed in the lexical analysis: 1697,
792 of them were actually used in the corpus annotation.

grammatical category values for IPIPAN tagset values for NKJP tagset
number sg, pl sg, pl
case nom, gen, dat, acc, inst, nom, gen, dat, acc, inst,

loc, voc loc, voc
gender m1, m2, m3, f, n m1, m2, m3, f, n
person pri, sec, ter pri, sec, ter
degree pos, comp, sup pos, com, sup
aspect imperf, perf imperf, perf
negation aff, neg aff, neg
accommodability congr, rec congr, rec
accentability akc, nakc akc, nakc
post-prepositionality npraep, praep npraep, praep
agglutination agl, nagl agl, nagl
vocalicity nwok, wok nwok, wok
fullstoppedness (not present) pun, npun

Table 5. Grammatical categories and their values in the two tagsets.

grammatical class
morphosyntactic characteristics

categories for IPIPAN tagset categories for NKJP tagset
num number, case, gender, [accom-

modability]
number, case, gender, accom-
modability

numcol number, case, gender, [accom-
modability]

number, case, gender, accom-
modability

adjc (class not present) (no categories)
adv degree [degree]
xxs number, case, gender (class not present)
comp (class not present) (no categories)
brev (class not present) fullstoppedness
burk (class not present) (no categories)
interj (class not present) (no categories)

Table 6. Grammatical classes with their morphosyntactic characteristics in the two
tagsets. Only differing classes are shown here; 28 classes have been omitted (see refer-
ences cited in text for full lists). Categories listed in [] are optional, their values may
be present or not. The rest is required.

